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Figure 1: We introduce a structured prediction layer (SPL) to the task of 3D human motion modelling. The SP-layer explicitly

decomposes the pose into individual joints and can be interfaced with a variety of baseline architectures. We show that on

H3.6M and a recent, much larger dataset, AMASS, a variety of baseline models benefit when augmented with an SP-layer.

Abstract

Human motion prediction is a challenging and impor-
tant task in many computer vision application domains. Ex-
isting work only implicitly models the spatial structure of
the human skeleton. In this paper, we propose a novel ap-
proach that decomposes the prediction into individual joints
by means of a structured prediction layer that explicitly
models the joint dependencies. This is implemented via a
hierarchy of small-sized neural networks connected analo-
gously to the kinematic chains in the human body as well
as a joint-wise decomposition in the loss function. The pro-
posed layer is agnostic to the underlying network and can
be used with existing architectures for motion modelling.
Prior work typically leverages the H3.6M dataset. We show
that some state-of-the-art techniques do not perform well
when trained and tested on AMASS, a recently released
dataset 14 times the size of H3.6M. Our experiments indi-
cate that the proposed layer increases the performance of
motion forecasting irrespective of the base network, joint-
angle representation, and prediction horizon. We further-
more show that the layer also improves motion predictions
qualitatively. We make code and models publicly available
at https://ait.ethz.ch/projects/2019/spl.

1. Introduction

Modelling of human motion over time has a number of

applications in activity recognition, human computer inter-

action, human detection and tracking, and image-based pose

estimation in the context of robotics or self-driving vehi-

cles. Humans have the ability to forecast the sequence of

poses over short-term horizons with high accuracy and can

imagine probable motion over arbitrary time scales. Despite

recent progress in data-driven modelling of human motion

[7, 8, 14, 20, 25, 33], this task remains difficult for machines.

*The first two authors contributed equally.

The difficulty of the task is manifold. First, human mo-

tion is highly dynamic, non-linear and over time becomes a

stochastic sequential process with a high degree of inherent

uncertainty. Humans leverage strong structural and tempo-

ral priors about continuity and regularity in natural motion.

However, these are hard to model algorithmically due to

i) the inter-dependencies between joints and ii) the influ-

ence of high-level activities on the motion sequences (e.g.,

transition from walking to jumping). In fact many recent

approaches forgo explicit modelling of human motion [14]

in favor of pure data-driven models [8, 20, 25].

Initial Deep Learning-based motion modelling ap-

proaches have focused on recurrent neural networks (RNNs)

[8, 7, 14], using curriculum learning schemes to increase

robustness to temporal drift. Martinez et al. [20] have shown

that a simple running-average provides a surprisingly diffi-

cult to beat baseline in terms of Euler angle error. Follow-

ing this, sequence-to-sequence models trained in an auto-

regressive fashion have been proposed [20], sometimes using

adversarial training to address the drift problem in long-term

predictions [33]. Pavllo et al. [25] study the impact of joint

angle representation and show that a quaternion-based pa-

rameterization improves short-term predictions.

However, it has been observed that quantitative perfor-

mance does not always translate to qualitatively meaningful

predictions [20, 25]. Furthermore, the H3.6M benchmark is

becoming saturated, limiting progress. This leads to the two

main research questions studied in this work: i) How to mea-

sure accuracy of pose predictions in a meaningful way such

that low errors corresponds to good qualitative results and

how to improve this performance? ii) How to exploit spatial

structure of the human skeleton for better predictions?

With respect to i) we note that much of the literature relies

on the H3.6M [12] dataset and an Euler angle based metric

as performance measure, evaluated on a limited number of
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test sequences. While enabling initial exploration of the

task, the dataset is limited in size (roughly 3 hours from 210

sequences) and in diversity of activities and poses, which

contributes to a saturation effect in terms of performance.

In this paper we show that existing techniques do not scale

well when trained on larger and more diverse datasets. To

this end, we leverage the recently released AMASS dataset

[19], itself consisting of multiple smaller motion datasets,

offering many more samples (14x over H3.6M) and a wider

range of activities. To further unpack the performance of mo-

tion modelling techniques, we introduce several evaluation

metrics to the task of human motion prediction.

Our main technical contribution is a novel structured

prediction layer (SPL) that addresses our second research

question. We leverage the compositional structure of the

human skeleton by explicitly decomposing the pose into

individual joints. The SP-layer models the structure of the

human skeleton and hence the spatial dependencies between

joints. This is achieved via a hierarchy of small-sized neural

networks that are connected analogously to the kinematic

chains of the human skeleton. Each node in the graph re-

ceives information about the parent node’s prediction and

thus information is propagated along the kinematic chain.

We furthermore introduce a joint-wise decomposition of the

loss function as part of SPL. The proposed layer is agnostic

to the underlying network and can be used in combination

with most previously proposed architectures.

We show experimentally that introducing this layer to

existing approaches improves performance of the respective

method. The impact is most pronounced on the larger and

more challenging AMASS dataset. This indicates that our

approach is indeed a step towards successfully exploiting

spatial priors in human motion modelling and in turn allows

recurrent models to capture temporal coherency more ef-

fectively. We thoroughly evaluate the SP-layer on H3.6M

and AMASS. On AMASS, for any base model, any met-

ric, and any input representation, it is beneficial to use the

SP-layer. Furthermore, even simple architectures that are

outperformed by a zero-velocity baseline [20] perform com-

petitive if paired with the SP-layer.

In summary, we contribute: i) An in-depth analysis of

state-of-the-art motion modelling methods and their evalu-

ation. ii) A new benchmark and evaluation protocol on the

recent, much larger AMASS dataset. iii) A novel predic-

tion layer, incorporating structural priors. iv) A thorough

evaluation of the SP-layer’s impact on motion modelling in

combination with several base models.

2. Related Work

We briefly review the most related literature on human

motion modelling focusing on Deep Learning for brevity.

Deep recurrent models Early work makes use of spe-

cialized Deep Belief Networks for motion modelling [30],

whereas more recent works leverage recurrent architectures.

For example, Fragkiadaki et al. [7] propose the Encoder-

Recurrent-Decoder (ERD) framework, which maps pose

data into a latent space where it is propagated through time

via an LSTM cell. The prediction at time step t is fed back

as the input for time step t+ 1. This scheme quickly leads

to error accumulation and hence catastrophic drift over time.

To increase robustness, Gaussian noise is added during train-

ing. While alleviating the drift problem, this training scheme

is hard to fine-tune. Quantitative and qualitative evaluations

are performed on the publicly available H3.6M dataset [12],

with a joint angle data representation using the exponential

map (also called angle-axis). The joint-wise Euclidean dis-

tance on the Euler angles is used as the evaluation metric.

Most of the follow-up work adheres to this setting.

Inspired by [7], Du et al. [6] have recently proposed

to combine a three-layer LSTM with bio-mechanical con-

straints encoded into the loss function for pedestrian pose and

gait prediction. Like [6], we also incorporate prior knowl-

edge into our network design, but do so through a particular

design of the output layer rather than enforcing physical con-

straints in the loss function. Similar in spirit to [7], Ghosh et

al. [8] stabilize forecasting for long-term prediction horizons

via application of dropouts on the input layer of a denoising

autoencoder. In this work we focus on short-term predictions,

but also apply dropouts directly on the inputs to account for

noisy predictions of the model at test time. Contrary to [8],

our model can be trained end-to-end.

Martinez et al. [20] employ a sequence-to-sequence ar-

chitecture using a single layer of GRU cells [4]. The model

is trained auto-regressively, using its own predictions dur-

ing training. A residual connection on the decoder leads to

smoother and improved short-term predictions. Martinez

et al. also show that simple running-average baselines are

surprisingly difficult to beat in terms of the Euler angle met-

ric. The currently best performance on H3.6M is reported

by Wang et al. [33]. They also use a sequence-to-sequence

approach trained with an adversarial loss to address the drift-

problem and to create smooth predictions. Highlighting

some of the issues with the previously used L2 loss, [33]

propose a more meaningful geodesic loss.

In this work we show that sequence-to-sequence models,

despite good performance on H3.6M, do not fare as well on

the larger, more diverse AMASS dataset. Although augment-

ing them with our SP-layer boosts their performance, they

are outperformed by a simple RNN that uses the same SP-

layer. To better characterize motion modelling performance

we furthermore introduce several new evaluation metrics.

Structured Prediction Jain et al. [14] propose to explic-

itly model structural information by automatically converting
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an st-graph into an RNN (S-RNN). The skeleton is divided

into 5 major clusters, whose interactions are then manually

encoded into an st-graph. Our model is also structure-aware.

However, our approach does not require a coarse subdivision

of joints and does not require manual definition of st-graphs.

Moreover, our layer is agnostic to the underlying network

and can be interfaced with most existing architectures.

Bütepage et al. [2] propose to encode poses with a hierar-

chy of dense layers following the kinematic chain starting

from the end-effectors (dubbed H-TE), which is similar to

our SP-layer. In contrast to this work, H-TE operates on the

input rather than the output, and has only been demonstrated

with non-recurrent networks when using 3D positions to

parameterize the poses.

Structure-aware network architectures have also been

used in 3D pose estimation from images [16, 29, 21, 17, 31].

[17] and [31] both learn a structured latent space. [21] ex-

ploit structure only implicitly by encoding the poses into

distance matrices which then serve as inputs and outputs

of the network. [16] and [29] are closest to our work as

they explicitly modify the network to account for skeletal

structure, either via the loss function [29], or using a se-

quence of LSTM cells for each joint in the skeleton [16].

[16] introduces many new layers into the architecture and

needs hyper-parameter tuning to be most effective. In con-

trast, our proposed SP-layer is simple to implement and train.

We show that it improves performance of several baseline

architectures out-of-the-box.

Parameterizations Most work parameterizes joint angles

as exponential maps relative to each joint’s parent. Pavllo et

al. [25] show results competitive with the state of the art us-

ing quaternions. Their model, QuaterNet, consists of 2 layers

of GRU cells and similar to [20] uses a skip connection. The

use of quaternions allows for integration of a differentiable

forward kinematics layer, facilitating loss computation in

the form of Euclidean distance of 3D joint positions. For

short-term predictions, QuaterNet directly optimizes for the

Euler-angle based metric as introduced by [7]. We show

that QuaterNet also benefits from augmentation with our SP-

layer, indicating that SPL is independent of the underlying

joint angle representation.

Bütepage et al. [2, 3] and Holden et al. [10] convert the

data directly to 3D joint positions. These works do not use

recurrent structures, which necessitates the extraction of

fixed-size, temporal windows for training. [2] and [10] focus

on learning of latent representations, which are shown to be

helpful for various tasks, such as denoising, forecasting, or

motion generation along a given trajectory [9]. [3] extends

[2] by applying a conditional variational autoencoder (VAE)

to the task of online motion prediction in human-robot inter-

actions. We use the positional representation of human poses

to compute an informative metric of the prediction quality.

However, for learning we use joint angles since they encode

symmetries better and are inherently bone-length invariant.

3. Method

The goal of our work is to provide a general solution

to the problem of human motion modelling. To this end

we are motivated by the observation that human motion is

strongly regulated by the spatial structure of the skeleton.

However, integrating this structure into deep neural network

architectures has so far not yielded better performance than

architectures that only model temporal dependencies explic-

itly. In this section we outline a novel structured prediction

layer (SPL) that explicitly captures the spatial connectivity.

The layer is designed to be agnostic to the underlying net-

work. We empirically show in Sec. 5 and 6 that it improves

the performance of a variety of existing models irrespective

of the dataset or the data representation used.

3.1. Problem Formulation

A motion sample can be considered as a sequence X =
{x1 . . .xT } where a frame xt ∈ R

N at time-step t denotes

the N -dimensional body pose. N depends on the number

of joints in the skeleton, K, and the size M of the per-joint

representation (angle-axis, rotation matrices, quaternions, or

3D positions), i.e. N = K ·M .

Due to their temporal nature, motion sequences are often

modelled with auto-regressive approaches. Such models

factorize the joint probability of a motion sequence as a

product of conditionals as follows:

pθ(X) =

T
∏

t=1

pθ(xt | x1:t−1) (1)

where the joint distribution is parameterized by θ. At each

time step t, the next pose is predicted given the past poses.

While this auto-regressive setting explicitly models the

temporal dependencies, the spatial structure is treated only

implicitly. In other words, given a pose vector xt, the model

must predict the whole pose vector xt+1 at the next time step.

This assumes that joints are independent from each other

given a particular context (i.e., a neural representation of

the past frames). However, the human body is composed of

hierarchical joints and the kinematic chain introduces spatial

dependencies between them.

3.2. Structured Prediction Layer

To address this shortcoming, we propose a novel struc-

tured prediction layer (SPL). This is formed by decomposing

the model prediction into individual joints. This decompo-

sition is guided by the spatial prior of the human kinematic

chain, depicted in Fig. 2. Formally, xt ∈ R
N is a concatena-

tion of K joints x
(k)
t ∈ R

M :

xt = [x
(hip)
t ,x

(spine)
t . . . x

(lwrist)
t ,x

(lhand)
t ]
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Figure 2: SPL overview. Given the context ht of past

frames, joint predictions x̂
(k)
t are made hierarchically by

following the kinematic chain defined by the underlying

skeleton. Only a subset of joints is visualized for clarity.

To interface with existing architectures, the SP-layer takes

a context representation ht as input. Here, ht is assumed to

summarize the motion sequence until time t. Without loss

of generality, we assume this to be a hidden RNN state or its

projection. While existing work typically leverages several

dense layers to predict the N -dimensional pose vector xt

from ht, our SP-layer predicts each joint individually with

separate smaller networks:

pθ(xt) =

K
∏

k=1

pθ(x
(k)
t | parent(x

(k)
t ),ht) (2)

where parent(x
(k)
t ) extracts the parent of the k-th joint. Im-

portantly, the full body pose xt is predicted by following the

skeletal hierarchy in Fig. 2 as follows:

pθ(xt) = pθ(x
(hip)
t | ht)pθ(x

(spine)
t | x

(hip)
t ,ht) · · · (3)

In this formulation each joint receives information about its

own configuration and that of the immediate parent both ex-

plicitly, through the conditioning on the parent joint’s predic-

tion, and implicitly via the context ht. The joint probability

of Eq. 1 is further factorized in the spatial domain:

pθ(X) =

T
∏

t=1

K
∏

k=1

pθ(x
(k)
t | parent(x

(k)
t ),ht) (4)

The benefit of this structured prediction approach is two-

fold. First, the proposed factorization allows for integration

of a structural prior in the form of a hierarchical architec-

ture where each joint is modelled by a different network.

This allows the model to learn dedicated representations per

joint and hence saves model capacity. Second, analogous

to message passing, each parent propagates its prediction to

the child joints, allowing for more precise local predictions

because the joint has access to the information it depends on

(i.e., the parent’s prediction).

In our experiments (cf. Sec. 5 and 6) we show that this

layer improves the prediction performance of a diverse set

Figure 3: Difference between dense and SP-layer with 2

joints. When all dashed weights are zero, a dense hidden

layer is equivalent to a SP-layer that ignores the hierarchy. In

a dense layer, the hidden unit uk is connected to all joints via

w1,k and w2,k. Hence, the gradient ∂L/∂uk is affected by

both joints, whereas in SPL only w2,k contributes by design.

of underlying architectures across many settings and metrics.

One potential reason for why this is the case can be found

in the resulting network structure and its implications on

network training. Fig. 3 compares our structured approach

with the traditional one-shot prediction using a dense layer.

Because the per-joint decomposition leads to many small

separate networks, we can think of an SP-layer as a dense

layer where some connections have been set to zero explic-

itly by leveraging domain knowledge. This decomposition

changes the gradients w.r.t. the units in the hidden layer,

which are now only affected by the gradients coming from

the joint hierarchy that they model. In the traditional setting,

the error computed as an average over all joints can easily be

distributed over all network weights in an arbitrary fashion.

3.3. Per­joint Loss

We additionally propose to perform a similar decomposi-

tion in the objective function that leads to further improve-

ments. The training objective is often a metric in Euclidean

space between ground-truth poses xt and predictions x̂t:

L(X, X̂) =
1

T ·N

T
∑

t=1

f(xt, x̂t) (5)

where f is a loss function such as an ℓp norm. The loss f is

calculated on the entire pose vector and averaged across the

temporal and spatial domain. In our work, we use a slightly

modified version that preserves joint integrity:

L(X, X̂) =

T
∑

t=1

K
∑

k=1

f(x
(k)
t , x̂

(k)
t ) (6)

where the loss f is first calculated on every joint and then

summed up to calculate the loss for the entire motion se-

quence. In this work we use the MSE for f , but the formula-

tion allows for an easy adaptation of domain-specific losses

such as the geodesic distance proposed by [33].
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4. Human Motion Modelling

We now evaluate our SP-layer on the task of human mo-

tion modelling. We perform our experiments on two datasets

and three different underlying architectures which use three

different data representations. In the following we explain

the datasets and models in more detail.

4.1. Datasets

For ease of comparison to the state of the art we first

report results from the H3.6M dataset. We follow the same

experiment protocol used in [14, 20].

Given the small size of H3.6M and the reported variance

of test results [25], we propose to use the recently introduced

AMASS dataset [19] for the motion modelling task. We

downloaded the dataset from [11] as the data from [19] has

not yet been released at the time of this writing. AMASS

is composed of publicly available databases, e.g. the CMU

Mocap database [5] or HumanEva [26] and uses the SMPL

model [18] to represent motion sequences. The dataset con-

tains 8′593 sequences, which comprise a total of 9′084′918
frames sampled at 60 Hz. This is roughly equivalent to 42
hours of recording, making AMASS about 14 times bigger

than H3.6M (632′894 frames at 50 Hz).

We split the AMASS dataset into training, validation and

test splits consisting of roughly 90%, 5% and 5% of the

samples, respectively. Similar to the H3.6M protocol, the

input sequences are 2 seconds (120 frames) and the target

sequences are 400-ms (24 frames) long. The H3.6M bench-

marks use a total of 120 test samples across 15 categories.

This is a relatively small test set and it has been reported to

cause high variance [24]. In our H3.6M experiments we use

this setting to ensure fair comparison. However, on AMASS

we use every frame in the test split by shifting a 2-second

window over the motion sequences, which extracts 3′304
test samples. H3.6M and AMASS model the human skeleton

with 21 and 15 major joints, respectively. We implement

separate SP-layers corresponding to the underlying skeleton.

4.2. Models

The modular nature of our SP-layer allows for flexi-

ble deployment with a diverse set of base models. In our

experiments, we test the layer with the following three

representative architectures proposed in the literature. To

ease experimentation with SPL and other base architec-

tures, we make all code and pre-trained models available at

https://ait.ethz.ch/projects/2019/spl.

Seq2seq is a model proposed by Martinez et al. [20], con-

sisting of a single layer of GRU cells. It contains a residual

connection between the inputs and predictions. Input poses

are represented as exponential maps.

QuaterNet uses a quaternion representation instead [24,

25]. The model augments RNNs with quaternion based

normalization and regularization operations. Similarly, the

residual connection from inputs to outputs is implemented

via the quaternion product. In our experiments, we replace

the final linear output layer with our SP-layer and keep the

remaining setup intact.

RNN uses a single layer recurrent network to calculate the

context ht, which we feed to our SP-layer. In contrast to

the Seq2seq and QuaterNet settings, we represent poses via

rotation matrices. To account for the error accumulation

problem at test time [7, 8, 14], we apply dropout directly on

the inputs. This architecture is similar to the ERD [7] but is

additionally augmented with the residual connection of [20].

In the SP-layer, each joint is modelled with only one small

hidden layer (64 or 128 units) followed by a ReLU activation

and a linear projection to the joint prediction x̂
(k)
t ∈ R

M .

We experiment with different hierarchical configurations

in SPL (cf. Sec. 6.3) where following the true kinematic

chain performed best. Some models benefit from inputting

all parent joints in the kinematic chain compared to using

only the immediate parent. Note that we changed existing

Seq2seq and QuaterNet models only as much as required to

integrate them with SPL. To ensure a fair comparison we

fine-tune hyper-parameters like learning rate, batch size and

hidden layer units. See appendix Sec. 8.1 for details.

5. Evaluation on H3.6M Dataset

In our first set of comparisons we baseline the proposed

SP-layer on the H3.6M dataset using the Euler angle metric

as is common practice in the literature.

5.1. Metrics

Euler angles Let w = θa denote a rotation of angle θ
around the unit axis a ∈ R

3. w is the angle-axis (or ex-

ponential map) representation of a single joint angle. The

Euler angles are extracted from w by first converting it into a

rotation matrix R = exp(w) using Rodrigues’ formula and

then computing the angles α = (αx, αy, αz) following [27].

This assumes that R follows the z-y-x order. Furthermore, as

noted by [27], there exist always two solutions for α, from

which [14] picks the one that leads to the least amount of

rotation. The Euler angle metric for time step t is then

Leul(t) =
1

|Xtest|

∑

xt∈Xtest

√

∑

k

(α
(k)
t − α̂

(k)
t )2 (7)

where α
(k)
t are the predicted Euler angles of joint k at time

t. Xtest is defined by [14] and comprises of 120 sequences.

5.2. Results

Tab. 1 summarizes the relative performances of models

with and without the SP-layer on the H3.6M dataset and

compares them to the state of the art. The publicly available
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Walking Eating Smoking Discussion

milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

LSTM-3LR [7] 0.77 1.00 1.29 1.47 0.89 1.09 1.35 1.46 1.34 1.65 2.04 2.16 1.88 2.12 2.25 2.23

SRNN [14] 0.81 0.94 1.16 1.30 0.97 1.14 1.35 1.46 1.45 1.68 1.94 2.08 1.22 1.49 1.83 1.93

Zero-Velocity [20] 0.39 0.68 0.99 1.15 0.27 0.48 0.73 0.86 0.26 0.48 0.97 0.95 0.31 0.67 0.94 1.04

AGED [33] 0.22 0.36 0.55 0.67 0.17 0.28 0.51 0.64 0.27 0.43 0.82 0.84 0.27 0.56 0.76 0.83

Seq2seq-sampling-sup [20] 0.28 0.49 0.72 0.81 0.23 0.39 0.62 0.76 0.33 0.61 1.05 1.15 0.31 0.68 1.01 1.09

Seq2seq-sampling-sup-SPL 0.23 0.37 0.53 0.61 0.20 0.32 0.52 0.67 0.26 0.48 0.92 0.90 0.29 0.63 0.90 0.99

Seq2seq-sampling [20] 0.27 0.47 0.70 0.78 0.25 0.43 0.71 0.87 0.33 0.61 1.04 1.19 0.31 0.69 1.03 1.12

Seq2seq-sampling-SPL 0.23 0.38 0.58 0.67 0.20 0.32 0.52 0.66 0.26 0.48 0.92 0.90 0.30 0.64 0.91 0.99

QuaterNet [25] 0.21 0.34 0.56 0.62 0.20 0.35 0.58 0.70 0.25 0.47 0.93 0.90 0.26 0.60 0.85 0.93

QuaterNet-SPL 0.22 0.35 0.54 0.61 0.20 0.33 0.55 0.68 0.25 0.47 0.91 0.88 0.26 0.59 0.84 0.91

RNN 0.30 0.48 0.78 0.89 0.23 0.36 0.57 0.72 0.26 0.49 0.97 0.95 0.31 0.67 0.95 1.03

RNN-SPL 0.26 0.40 0.67 0.78 0.21 0.34 0.55 0.69 0.26 0.48 0.96 0.94 0.30 0.66 0.95 1.05

Table 1: H3.6M results for the commonly used walking, eating, smoking, and discussion activities across different prediction

horizons. Values correspond to the Euler angle metric measured at the given time. “Seq2seq-sampling” and “Seq2seq-

sampling-sup” models correspond to “Residual unsup. (MA)” and “Residual sup. (MA)” models in [20], respectively. Note

the relative performance improvement for each base model when augmented with our SP-layer.

Seq2seq [20] and QuaterNet [25] models are augmented with

our SP-layer, but we otherwise follow the original training

and evaluation protocols of the respective baseline model.

Using the SP-layer improves the Seq2seq performance

significantly and achieves state-of-the-art performance in

the walking category. Similarly, SPL yields the best perfor-

mance with QuaterNet in short-term smoking and discussion

motions and marginally outperforms the vanilla QuaterNet

in most categories or is comparative to it. While our SP-

layer also boosts the performance of the RNN model in

walking, eating and smoking motion categories, performance

remains similar for discussion.

We follow the same evaluation setting as in previous work

for direct comparability. It is noteworthy to mention that the

evaluation metrics reported on H3.6M exhibit high variance

due to the small number of test samples [24] and low errors

do not always correspond to good qualitative results [20].

6. AMASS: A New Benchmark

In this section we evaluate the baseline methods and

our SP-layer on the large-scale AMASS dataset, detailed

in Sec. 4.1. The diversity and large amount of motion sam-

ples in AMASS increase both the task’s complexity and the

reliability of results due to a larger test set. In addition to

proposing a new evaluation setting for motion modelling we

suggest usage of a more versatile set of metrics for the task.

6.1. Metrics

So far, motion prediction has been benchmarked on

H3.6M using the Euclidean distance between target and

predicted Euler angles [14, 20, 25, 33]. Numbers are usually

reported per action at certain time steps averaged over 8 sam-

ples [14]. Unfortunately, Euler angles have twelve different

conventions (not counting the fact that each of these can be

defined using intrinsic or extrinsic rotations), which makes

the practical implementation of this metric error-prone.

For a more precise analysis we introduce additional met-

rics from related pose estimation areas [28, 32, 34]. In order

to increase the robustness we furthermore suggest to i) sum

until time step t rather than report the metric at time step

t, ii) use more test samples covering a larger portion of the

test data set and iii) evaluate the models with complemen-

tary metrics. Note that we do not train the models on these

metrics; they only serve as evaluation criteria at test time.

Joint angle difference To circumvent the potential source

of error in the Euler angle metric, we propose using another

angle-based metric following [11, 32]. This metric computes

the angle of the rotation required to align the predicted joint

with the target joint. Unlike Leul, this metric is independent

of how rotations are parameterized. It is furthermore similar

to the geodesic loss proposed by [33]. Let R̂ be the predicted

joint angle for a given joint, parameterized as a rotation

matrix, and the respective target rotation R. The difference

in rotation can be computed as R̃ = R̂RT , from which we

construct the metric at time step t as follows:

Langle(t) =
1

|Xtest|

∑

xt∈Xtest

1

K

∑

k

∥

∥

∥
log

(

R̃
(k)

t

)
∥

∥

∥

2
(8)

where R̃
(k)

t is the rotation matrix of joint k at time t. In

contrast to Leul we compute the loss on global joint angles by

first unrolling the kinematic chain before computing Langle.
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Euler Joint Angle Positional PCK (AUC)

milliseconds 100 200 300 400 100 200 300 400 100 200 300 400 100 200 300 400

Zero-Velocity [20] 1.91 5.93 11.36 17.78 0.37 1.22 2.44 3.94 0.14 0.48 0.96 1.54 0.86 0.83 0.84 0.82

Seq2seq [20]* 1.46 5.28 11.46 19.78 0.24 0.95 2.16 3.87 0.09 0.35 0.80 1.41 0.91 0.87 0.87 0.83

Seq2seq-SPL 1.57 5.00 10.01 16.43 0.27 0.94 2.01 3.45 0.10 0.36 0.79 1.36 0.91 0.87 0.87 0.84

Seq2seq-sampling [20]* 1.71 5.15 9.71 15.15 0.32 1.00 1.97 3.14 0.12 0.39 0.77 1.23 0.88 0.86 0.87 0.85

Seq2seq-sampling-SPL 1.71 5.13 9.60 14.86 0.31 0.97 1.91 3.04 0.12 0.38 0.74 1.18 0.89 0.86 0.88 0.85

Seq2seq-dropout 1.26 4.41 9.24 15.46 0.23 0.84 1.82 3.13 0.09 0.33 0.71 1.21 0.92 0.88 0.88 0.85

Seq2seq-dropout-SPL 1.26 4.26 8.67 14.23 0.23 0.81 1.74 2.96 0.09 0.32 0.68 1.16 0.92 0.89 0.89 0.86

QuaterNet [25]* 1.49 4.70 9.16 14.54 0.26 0.89 1.83 3.00 0.10 0.34 0.71 1.18 0.90 0.87 0.88 0.85

QuaterNet-SPL 1.34 4.25 8.39 13.43 0.25 0.83 1.71 2.83 0.09 0.32 0.67 1.10 0.91 0.88 0.89 0.86

RNN 1.69 5.23 10.18 16.29 0.31 1.05 2.17 3.62 0.12 0.41 0.85 1.43 0.89 0.85 0.86 0.83

RNN-SPL 1.33 4.13 8.03 12.84 0.22 0.73 1.51 2.51 0.08 0.28 0.57 0.96 0.93 0.90 0.90 0.88

Table 2: AMASS results of the base models with and without the proposed SP-layer. We report normalized area-under-the-

curve (AUC) for PCK values (higher is better, maximum is 1). For the remaining metrics, lower is better. “Seq2seq” and

“Seq2seq-dropout” are trained by using ground-truth inputs. "-dropout" applies 0.1 dropout on the inputs. “*” indicates our

evaluation of this model. Note that models with SPL perform better except on short-term predictions for “Seq2seq” model.

Positional Following Pavllo et al.’s [25] suggestion, we

introduce a positional metric. This metric simply performs

forward kinematics on xt and x̂t to obtain 3D joint positions

pt and p̂t, respectively. It then computes the Euclidean

distance per joint. We normalize the skeleton bones such

that the right thigh bone has unit length.

Lpos(t) =
1

|Xtest|

∑

xt∈Xtest

1

K

∑

k

∥

∥

∥
p
(k)
t − p̂

(k)
t

∥

∥

∥

2
(9)

PCK In cases where large errors occur, the value of Lpos

can be misleading. Hence, following the 3D (hand) pose

estimation literature [13, 22, 28, 34], we introduce PCK by

computing the percentage of predicted joints lying within a

spherical threshold ρ around the target joint position, i.e.

PCK(xt, x̂t, ρ) =
1

K

∑

k

I

[∥

∥

∥
p
(k)
t − p̂

(k)
t

∥

∥

∥

2
≤ ρ

]

Lpck(t, ρ) =
1

|Xtest|

∑

xt∈Xtest

PCK(xt, x̂t, ρ) (10)

where I[·] returns 1 if its input is true, and 0 otherwise. Note

that for PCK we do not sum, but average, until time step t.

6.2. Results

Tab. 2 summarizes the performance of the three model

variants, each with and without the SP-layer. We trained

the base models with minimal modifications, i.e. design,

training objective and regularizations are kept intact. We use

angle-axis, quaternion and rotation matrix representations

for Seq2seq, QuaterNet, and RNN models, respectively. To

make a fair comparison, we run hyper-parameter search on

the batch size, cell type, learning rate and hidden layer size.

Unlike on H3.6M, LSTM cells consistently outperform

GRUs on AMASS for the Seq2seq and RNN models. Dif-

ferent from [20], we also train the Seq2seq model by apply-

ing dropout on the inputs similar to our RNN architecture.

QuaterNet gives its best performance with GRU cells while

some fine-tuning for the teacher forcing ratio is necessary.

In all settings, the Seq2seq models fail to give competi-

tive performance on this large-scale task and are sometimes

outperformed by the zero-velocity baseline proposed by Mar-

tinez et al. [20]. QuaterNet shows a strong performance and

is in fact the closest vanilla model to the SPL variants. How-

ever, our SP-layer still improves the QuaterNet results further.

The contribution of the SP-layer is best observable on the

RNN model. With the help of a larger dataset, the proposed

RNN-SPL achieves the best results under different metrics

and prediction horizons. Fig. 4 compares two baseline meth-

ods for 400 millisecond predictions with their corresponding

SPL extension for different choices of the threshold ρ. The

RNN-SPL consistently outperforms other methods. More

results are shown in the appendix Sec. 8.3.

Figure 4: PCK curves of the best Seq2seq variant and

QuaterNet with and without SPL on AMASS for 400 ms

predictions. More results are shown in appendix Sec. 8.3.
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Figure 5: Qualitative Comparison on AMASS. We use a 2-second seed sequence and predict the next 1 second (60 frames).

The last pose of the seed and the first pose of the prediction sequences are consecutive frames. Note that there is no transition

problem. Top: Ground-truth sequence. Middle: Output of the vanilla RNN which quickly deteriorates. Bottom: The same

RNN model augmented with our SP-layer. It produces accurate short-term predictions as well as natural long-term motion.

Please also note the complementary effect of the proposed

metrics in Tab. 2. The Seq2seq-dropout-SPL model at 100
ms shows a significant improvement (1.26) w.r.t. the Euler

angle metric, and in fact achieves the best result across all

models. However, this is no longer the case when we look at

the proposed metrics. The model performs marginally worse

than the best performing model, RNN-SPL, in these metrics.

The joints closer to the root of the kinematic chain have a

much larger impact on the overall pose since wrong rotations

propagate to all the child joints on the chain. This effect

might be ignored when only local rotations are considered,

which is the case for Leul. Langle and Lpos account for this

by first unrolling the kinematic chain.

In line with [25, 33], we report that the residual connec-

tion from [20] is very effective for short-term predictions.

All models we trained performed better with the residual

connection irrespective of the dataset or pose representation.

6.3. Ablation Study

To study the SPL in more depth we conduct an ablation

study presented in Tab. 3. We observe that the main per-

formance boost is achieved by the decomposition of the

output layer and the per-joint loss in Eq. (6). While the

per-joint-loss alone (i.e., without SPL) is not beneficial on

H3.6M, on AMASS its application alone already helps (RNN-

per-joint). Assuming independent joints without modelling

any hierarchy (RNN-SPL-indep.) improves the results fur-

ther. Introducing hierarchy into the prediction layer either

in reverse or random order performs often similar or better.

However, introducing the spatial dependencies according to

the kinematic chain (RNN-SPL) yields the best results with

the exception of the positional metric.

AMASS H3.6M

Euler Joint Angle Pos. Walking

RNN 16.44 3.570 1.396 0.900

RNN-per-joint 13.13 2.573 0.986 0.950

RNN-SPL-indep. 12.96 2.552 0.982 0.836

RNN-SPL-random 12.98 2.547 0.980 0.863

RNN-SPL-reverse 13.03 2.543 0.973 0.849

RNN-SPL 12.85 2.533 0.975 0.772

Table 3: Ablation study on AMASS and H3.6M (walking)

for 400 ms predictions. Each entry is an average over 5

randomly initialized trainings. Please refer to Sec. 6.3 for

detailed explanations and the appendix for more results.

7. Conclusion

We introduce prior knowledge about the human skeletal

structure into a neural network by means of a structured

prediction layer (SPL). The SP-layer explicitly decomposes

the pose into individual joints and can be interfaced with a

variety of baseline architectures. We furthermore introduce

AMASS, a large-scale motion dataset, and several metrics to

the task of motion prediction. On AMASS, we empirically

show that for any baseline model, any metric, and any input

representation, it is better to use the proposed SP-layer. The

simple RNN model augmented with the SP-layer achieved

state-of-the-art performance on the new AMASS benchmark.
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Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and

Yoshua Bengio. Learning phrase representations using rnn

encoder–decoder for statistical machine translation. In Pro-

ceedings of the 2014 Conference on Empirical Methods in

Natural Language Processing (EMNLP), pages 1724–1734,

Doha, Qatar, Oct. 2014. Association for Computational Lin-

guistics.

[5] Fernando De la Torre, Jessica Hodgins, Adam Bargteil,

Xavier Martin, Justin Macey, Alex Collado, and Pep Bel-

tran. Guide to the carnegie mellon university multimodal

activity (cmu-mmac) database. Robotics Institute, page 135,

2008.

[6] Xiaoxiao Du, Ram Vasudevan, and Matthew Johnson-

Roberson. Bio-lstm: A biomechanically inspired recurrent

neural network for 3d pedestrian pose and gait prediction.

IEEE Robotics and Automation Letters (RA-L), 2019. ac-

cepted.

[7] Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Jiten-

dra Malik. Recurrent network models for human dynamics.

In Proceedings of the 2015 IEEE International Conference

on Computer Vision (ICCV), ICCV ’15, pages 4346–4354,

Washington, DC, USA, 2015. IEEE Computer Society.

[8] Partha Ghosh, Jie Song, Emre Aksan, and Otmar Hilliges.

Learning human motion models for long-term predictions.

In 2017 International Conference on 3D Vision, 3DV 2017,

Qingdao, China, October 10-12, 2017, pages 458–466, 2017.

[9] Daniel Holden, Jun Saito, and Taku Komura. A deep learning

framework for character motion synthesis and editing. ACM

Trans. Graph., 35(4):138:1–138:11, July 2016.

[10] Daniel Holden, Jun Saito, Taku Komura, and Thomas Joyce.

Learning motion manifolds with convolutional autoencoders.

In SIGGRAPH Asia 2015 Technical Briefs, SA ’15, pages

18:1–18:4, New York, NY, USA, 2015. ACM.

[11] Yinghao Huang, Manuel Kaufmann, Emre Aksan, Michael J.

Black, Otmar Hilliges, and Gerard Pons-Moll. Deep iner-

tial poser: Learning to reconstruct human pose from sparse

inertial measurements in real time. ACM Transactions on

Graphics, (Proc. SIGGRAPH Asia), 37:185:1–185:15, Nov.

2018.

[12] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian

Sminchisescu. Human3.6m: Large scale datasets and predic-

tive methods for 3d human sensing in natural environments.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 36(7):1325–1339, jul 2014.

[13] Umar Iqbal, Pavlo Molchanov, Thomas Breuel, Juergen Gall,

and Jan Kautz. Hand pose estimation via latent 2.5d heatmap

regression. In ECCV (11), volume 11215 of Lecture Notes in

Computer Science, pages 125–143. Springer, 2018.

[14] Ashesh Jain, Amir Roshan Zamir, Silvio Savarese, and

Ashutosh Saxena. Structural-rnn: Deep learning on spatio-

temporal graphs. In 2016 IEEE Conference on Computer

Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV,

USA, June 27-30, 2016, pages 5308–5317, 2016.

[15] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

[16] Kyoungoh Lee, Inwoong Lee, and Sanghoon Lee. Propagat-

ing LSTM: 3d pose estimation based on joint interdependency.

In Computer Vision - ECCV 2018 - 15th European Confer-

ence, Munich, Germany, September 8-14, 2018, Proceedings,

Part VII, pages 123–141, 2018.

[17] Sijin Li, Weichen Zhang, and Antoni B. Chan. Maximum-

margin structured learning with deep networks for 3d human

pose estimation. In 2015 IEEE International Conference on

Computer Vision, ICCV 2015, Santiago, Chile, December

7-13, 2015, pages 2848–2856, 2015.

[18] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard

Pons-Moll, and Michael J Black. Smpl: A skinned multi-

person linear model. ACM Transactions on Graphics (TOG),

34(6):248, 2015.

[19] Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Ger-

ard Pons-Moll, and Michael J. Black. Amass: Archive of

motion capture as surface shapes. In The IEEE International

Conference on Computer Vision (ICCV), Oct 2019.

[20] Julieta Martinez, Michael J. Black, and Javier Romero. On

human motion prediction using recurrent neural networks.

In Proceedings IEEE Conference on Computer Vision and

Pattern Recognition (CVPR) 2017, Piscataway, NJ, USA, July

2017. IEEE.

[21] Francesc Moreno-Noguer. 3d human pose estimation from a

single image via distance matrix regression. In CVPR, pages

1561–1570. IEEE Computer Society, 2017.

[22] Franziska Mueller, Florian Bernard, Oleksandr Sotnychenko,

Dushyant Mehta, Srinath Sridhar, Dan Casas, and Christian

Theobalt. Ganerated hands for real-time 3d hand tracking

from monocular rgb. In Proceedings of Computer Vision and

Pattern Recognition (CVPR), June 2018.

7152



[23] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. In NIPS-W, 2017.

[24] Dario Pavllo, Christoph Feichtenhofer, Michael Auli, and

David Grangier. Modeling human motion with quaternion-

based neural networks. CoRR, abs/1901.07677, 2019.

[25] Dario Pavllo, David Grangier, and Michael Auli. Quater-

net: A quaternion-based recurrent model for human mo-

tion. In British Machine Vision Conference 2018, BMVC

2018, Northumbria University, Newcastle, UK, September

3-6, 2018, page 299, 2018.

[26] L. Sigal, A.O. Balan, and M.J. Black. Humaneva: Synchro-

nized video and motion capture dataset and baseline algorithm

for evaluation of articulated human motion. International

Journal on Computer Vision (IJCV), 87(1):4–27, 2010.

[27] Gregory G. Slabaugh. Computing euler angles from a rotation

matrix. http://www.gregslabaugh.net/publications/euler.pdf,

last accessed 21.03.2019.

[28] Adrian Spurr, Jie Song, Seonwook Park, and Otmar Hilliges.

Cross-modal deep variational hand pose estimation. In CVPR,

2018.

[29] Xiao Sun, Jiaxiang Shang, Shuang Liang, and Yichen Wei.

Compositional human pose regression. In ICCV, pages 2621–

2630. IEEE Computer Society, 2017.

[30] Graham W. Taylor, Geoffrey E. Hinton, and Sam T. Roweis.

Two distributed-state models for generating high-dimensional

time series. Journal of Machine Learning Research, 12:1025–

1068, 2011.

[31] Bugra Tekin, Isinsu Katircioglu, Mathieu Salzmann, Vincent

Lepetit, and Pascal Fua. Structured prediction of 3d human

pose with deep neural networks. In Proceedings of the British

Machine Vision Conference 2016, BMVC 2016, York, UK,

September 19-22, 2016, 2016.

[32] Timo von Marcard, Bodo Rosenhahn, Michael Black, and

Gerard Pons-Moll. Sparse inertial poser: Automatic 3d hu-

man pose estimation from sparse imus. Computer Graphics

Forum 36(2), Proceedings of the 38th Annual Conference

of the European Association for Computer Graphics (Euro-

graphics), pages 349–360, 2017.

[33] Yuxiong Wang, Liang-Yan Gui, Xiaodan Liang, and Jose

M. F. Moura. Adversarial geometry-aware human motion

prediction. In European Conference on Computer Vision

(ECCV). Springer, October 2018.

[34] Christian Zimmermann and Thomas Brox. Learning to es-

timate 3d hand pose from single rgb images. In IEEE In-

ternational Conference on Computer Vision (ICCV), 2017.

https://arxiv.org/abs/1705.01389.

7153


