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Abstract

Diverse and accurate vision+language modeling is an

important goal to retain creative freedom and maintain user

engagement. However, adequately capturing the intrica-

cies of diversity in language models is challenging. Re-

cent works commonly resort to latent variable models aug-

mented with more or less supervision from object detec-

tors or part-of-speech tags [10, 40]. In common to all

those methods is the fact that the latent variable either only

initializes the sentence generation process or is identical

across the steps of generation. Both methods offer no fine-

grained control. To address this concern, we propose Seq-

CVAE which learns a latent space for every word position.

We encourage this temporal latent space to capture the ‘in-

tention’ about how to complete the sentence by mimicking

a representation which summarizes the future. We illustrate

the efficacy of the proposed approach to anticipate the sen-

tence continuation on the challenging MSCOCO dataset,

significantly improving diversity metrics compared to base-

lines while performing on par w.r.t. sentence quality.

1. Introduction

Diverse yet accurate image captioning is an important

goal towards augmenting present-day editing and auto-

response tools with technology that maintains creative free-

dom while providing meaningful and inspiring suggestions.

On the quest to succeed in this tightrope walk, methods need

to maintain accuracy of the provided descriptions while

elaborately managing the intricacies of the respective lan-

guage. This balancing act to aesthetically craft short yet

precise statements that hit the point is an art.

Despite best efforts, any description is always and inher-

ently targeted towards a group of readers. Because words

‹First two authors contributed equally.

Figure 1: Meaningful diverse captions generated (blue arrows) for a given

image by linearly interpolating from one latent vector (green arrows) to

another (red arrows).

are overloaded, the crisp picture that we intend to draw blurs

rapidly if we don’t use language and associations that read-

ers are familiar with. Without the right language the mes-

sage of the description is diluted, remains hard to access or

even inaccessible.

Going forward, imagine your description to automati-

cally adjust depending on the background knowledge of the

reader. Obviously we are far from this idea being remotely

feasible. Nonetheless, in recent years, remarkable progress

has been made in image captioning [3,6,7,12–14,21,22,24,

25, 30, 36, 39, 41] and particularly controllable [10, 40] and

diverse [9,10,26,34,38,40] image captioning. Many of the

proposed mechanisms for image captioning rely on long-

short-term-memory (LSTM) [18] nets where words are gen-

erated one at a time. For diversity, LSTM based variational

auto-encoders [23] or generative adversarial nets [16] and

their conditional counterparts [37] are employed. For high-

level control, one-hot encodings that represent observed ob-

jects or groups of objects are injected at the first step of the

LSTM [40]. Very recently [10], more low-level control has

also been discussed by conditioning on abstract representa-

tions of part-of-speech tags. Again, the conditioning was

achieved by changing the initial LSTM input.

Because of this single initial conditioning input, none

of the aforementioned methods provide the fine-grained di-

versity that is desirable for adjusting individual words of a

sentence. We address this shortcoming by developing Seq-

CVAE, a method which learns a latent space for every word.

Importantly, we want the latent space to be predictive of
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the subsequent parts of the sentence, i.e., the future of the

sentence. We achieve this by employing a data-dependent

transition model which captures the ‘intention,’ i.e., a repre-

sentation which encodes the remaining part of the sentence.

During training the intention model is tasked to fit the rep-

resentations of a backward LSTM.

This proposed approach enables to distinctly modify de-

scriptions starting from a particular position. We demon-

strate this fine-grained diversity by sampling a diverse set

of captions and linearly interpolating between the chosen

latent representations. As illustrated in Fig. 1, a convex

combination of latent vectors permits to gradually transition

from one caption to another.

We evaluate the proposed approach quantitatively on the

challenging MSCOCO [27] dataset and significantly out-

perform competing methods w.r.t. diversity metrics: among

5000 sampled captions more than 4200 are novel and not

part of the training set while the runner-up baselines pro-

duces just short of 3500 novel ones. Despite this diver-

sity the proposed approach is on par w.r.t. accuracy metrics.

These results are particularly remarkable because all com-

peting baselines use additional information like object de-

tectors [32] during inference, while the proposed approach

does not use any additional information.

Contributions: We develop an image captioning model

with a sequential latent space to capture the intention, i.e.,

the future of the sentence (Sec. 3). We show that sampling

with sequential latent spaces results in significantly more di-

verse captions than baselines (Tab. 2) despite not using any

additional information. Perceptual metrics of our diverse

captions are on par with baselines (Tab. 1). The sequen-

tial latent space permits distinct access to sentences starting

from any specific position (Fig. 1).

2. Related Work

Image captioning and paragraph generation [3, 4, 6, 7,

12–14, 19–22, 24, 25, 30, 36, 39, 41] have attracted a signifi-

cant amount of work. Early classical approaches are based

on sentence retrieval [3]: the best fitting sentence from a

set of possible descriptions is recovered by matching sen-

tence representations with image representations. Those

representations are learned from a set of available captions.

However, firstly, this matching procedure is computation-

ally expensive and, secondly, it is demanding to construct a

database of captions which is sufficiently large to describe

a reasonably comprehensive set of images accurately.

Image Captioning: Therefore, more recently, recurrent

neural networks (RNNs) and variants like long-short-term-

memory (LSTM) [18] networks decompose the caption

space into a product space of individual words. Specifi-

cally, image representations are first extracted via a convo-

lutional deep network which are subsequently used to prime

the LSTM based recurrent network. The latter is trained via

maximum likelihood to predict the next word given current

and past words. Extensions involve object detectors [42],

attention-based deep networks [1], and convolutional ap-

proaches [2]. Beyond maximum likelihood, reinforcement

learning based techniques have also been discussed to pro-

duce a single caption, directly optimizing perceptual met-

rics [28, 33]. All these methods have demonstrated com-

pelling results and have consequently been adopted widely.

However, predicting a single caption does not allow for

modeling ambiguity that is inherent. Consequently, diver-

sity based methods have very recently been discussed.

Diversity in Image Captioning: To achieve diversity, four

techniques have been investigated. Among the first was

beam search, a classic approach to sample multiple cap-

tions which are assigned a high probability by the under-

lying model. While multiple captions are readily avail-

able, results usually only differ slightly because single word

changes affect the sentence probability minimally.

To address this concern, diverse beam search [38] aug-

ments beam search. It advocates for more drastic changes

by encouraging to recover different modes of a probability

distribution rather than high-probability configurations.

To avoid sampling from a distribution defined over a

high-dimensional output space, generative adversarial net-

works (GANs) have been proposed [9, 26, 34]. While GAN

based methods improve diversity, they tend to suffer on per-

ceptual metrics.

Variational auto-encoders (VAEs) are a fourth direction

that has been explored [40]. The intuition is identical to

the one of GANs, i.e., avoid sampling from a distribution

defined over a high-dimensional output space. However,

in contrast to GAN-based methods, VAE-based image cap-

tioning techniques tend to produce high-quality captions

when evaluated on perceptual metrics.

Similar to the aforementioned approaches we develop

an approach based on VAEs. However, different from all

the aforementioned techniques we also aim at incorporating

more fine-grained diversity.

Controllability in Image Captioning: Beyond diversity,

controllability of captions has become an important topic

very recently. In particular Wang et al. [40] use a varia-

tional auto-encoder conditioned on object detections to con-

trol diversity. While intuitive, control remains indirect as

the sentence generating decoder is only influenced at its

first timestep. Influencing subsequent generation of words

did not significantly change the result. Even more recently

POSCap [10] was developed. While also only priming the

decoder at its first step, use of clustered part-of-speech tags

was proposed and shown to improve diversity. However,

due to use of encoded and clustered part-of-speech tags,

controllability was limited.
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Figure 2: (a): Computation graph for the generation network. The hidden states of the intention model LSTM and the decoder LSTM are hT
t

and hD
t

respectively. At a given time step t, the latent sample zt depends on all prior words xăt and all prior latent samples zăt. The sample zt along with all

prior words xăt predicts xt. (b): Computation graph for the encoder network. The hidden states of the forward LSTM and the backward LSTM are hF
t

and hB
t

respectively. At a given time t, the latent sample zt depends on the entire caption x through the forward and backward models. (c): Our proposed

Seq-CVAE training architecture, shown for a single time slice t. Our model includes three components during training: (1) Two-stage encoder; (2) Intention

Model; and (3) Decoder. Details for each of the components are provided in Sec. 3. At test time only decoder and intention model are used.

In contrast to the aforementioned techniques, we develop

a VAE-based technique which learns a latent space for ev-

ery word position. While enabling diversity, direct control

over words emitted at a particular position is also possible

as illustrated in Fig. 1.

Sequential VAE: Our proposed approach is related to a se-

quence of papers on sequential recurrent nets. Fraccaro et

al. [15] develop SRNN, Chung et al. [8] devise VRNN, and

Goyal et al. [17] propose Z-forcing. Although VRNN [8],

SRNN [15], and Z-forcing [17] have similar intuition, i.e.,

maximizing a lower bound of the data likelihood, these

models differ in the assumptions made on the graphical

model for data generation, the choice of the prior, approxi-

mate posterior used for amortized variational inference and

the decoder networks:

(1) VRNN uses a filtering posterior, i.e., the latent distribu-

tion at each time step depends on (a) all the previous latent

vectors and (b) the previous input data. Instead we use a

smoothing posterior, where the latent distribution at a given

time depends on (a) the latent vector from previous time

steps and (b) input data from all time steps, past and future.

This leads to better models, since all context is provided.

(2) SRNN uses a smoothing posterior via a backward RNN

as we do. However, decoder and prior differ: (a) unlike

us, SRNN doesn’t use latent variables in the autoregressive

decoder, hence intention isn’t available; (b) SRNN uses a

Markovian prior, while we include the entire history of la-

tent variables for the prior at time t.

(3) Z-forcing assumptions are similar, but differ architec-

turally: their prior, decoder and the approximating posterior

share the same forward LSTM. This is undesirable since

different distributions are best served by their own individ-

ual representation.

More crucially, these methods assess test set log-likelihood

for sequential modeling, or perplexity on the IMDB dataset.

In contrast, along with accuracy, we also care about diver-

sity for image captioning. Hence, we are the first to exten-

sively study these models on various measures of diversity

(Tab. 2, Fig. 3, Fig. 7).

3. Approach

We first outline the proposed approach before discussing

individual components.

3.1. Overview

Given an image I we are interested in generating a di-

verse set of captions xk, k P t1, . . . ,Ku. For readability

we drop the index k henceforth and note that the developed

method will produce many captions that are ranked subse-

quently. Every generated caption x “ px1, . . . , xT q is a

tuple consisting of words xt P X , t P t1, . . . , T u, each

from a discrete vocabulary X . Given an image I , we devise

a probabilistic model pθpx|Iq which depends on parameters

θ and assigns a probability to every caption x.

To effectively sample from this probabilistic space, we

assume the probability distribution pθpx|Iq, jointly defined

over all words xt of a caption, to factorize into a product of

word-conditionals, i.e.,

pθpx|Iq “
ź

tPt1,...,T u

pθpxt|xăt, Iq.

This factorization enforces a temporal ordering, i.e., the

probability distribution for word xt is conditioned on all

preceding words xăt. Importantly, because the condi-

tional’s domain is the vocabulary space X and not a prod-

uct space thereof, as it is the case for the joint distribution

pθpxq, ancestral sampling is a suitable and effective tech-

nique to generate a diverse set of captions.

In practice, the conditional probability distributions

pθpxt|xăt, Iq are modeled via recurrent LSTM nets or
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masked convolutions, where we use hD
t´1

to refer to its

hidden state which summarizes xăt´1, while xt´1 directly

influences the distribution. However, given the preceding

words xăt the conditional distribution pθpxt|xăt, Iq has

to cover many suitable options to complete the sentence.

While LSTM-nets can model complex distributions, we hy-

pothesize that a latent variable zt which captures the current

intention about how to complete the sentence can signifi-

cantly reduce the complexity of the conditional.

Therefore, instead of directly modeling pθpxt|xăt, Iq
which marginalizes across all possible intentions, we are

interested in modeling and sampling from the decoder dis-

tribution pθpxt|xăt, zďt, Iq, i.e., a distribution conditioned

on the current and all previous intentions, which are how-

ever unobserved.

During inference, as illustrated in Fig. 2(a), we ensure ef-

fective sampling of an intention zt by modeling the tran-

sition through the tuple of all intentions z “ pz1, . . . , zT q
again via a product of conditionals pθpzt|zăt, xăt, Iq, i.e.,

(intention model)
ź

tPt1,...,T u

pθpzt|zăt, xăt, Iq.

To obtain a description for a given image, as shown in

Fig. 2(a), we alternatingly sample from pθpzt|zăt, xăt, Iq,

which is sometimes referred to as the ‘prior,’ and from

the decoder ppxt|xăt, zďt, Iq. Different from classical ap-

proaches we employ a parametric ‘intention model’ which

decomposes temporally. Note that the ‘intention distribu-

tion’ at time t, i.e., pθpzt|zăt, xăt, Iq is dependent on xăt.

This is technically correct due to the temporal decomposi-

tion, i.e., the distribution at time t can depend on all pre-

viously available data. Similar to the decoder, we use an

LSTM net to capture the recurrence of the intention model

and refer to its latent state via hT
t .

To model the intentions z, during training, as illustrated

in Fig. 2(b), we encourage the intention model to fit the ap-

proximate posterior qφpz|x, Iq which we model using again

a product of conditionals, i.e.,

(approx. posterior) qφpz|x, Iq “
ź

tPt1,...,T u

qφpzt|zt´1, x, Iq.

The distribution qφpz|x, Iq is commonly referred to as the

encoder. To adequately capture the intention on how to

complete the sentence, as illustrated in Fig. 2(b), we de-

velop a two-stage encoder consisting of a forward stage to

model language and a backward stage to summarize inten-

tion, i.e., the future of the sentence. We discuss details in

Sec. 3.4.

During training we are given a dataset D “ tpI, xqu con-

sisting of pairs pI, xq, each containing an image I and a cor-

responding caption x. We maximize the data log-likelihood
ř

pI,xqPD ln pθpx|Iq. For readability we drop the summa-

tion over samples in the dataset subsequently. By using the

aforementioned decompositions we note that the data log-

likelihood ln pθpx|Iq is obtained by marginalizing over the

space of intentions, i.e.,

ln pθpx|Iq “ ln
ÿ

z

pθpx, z|Iq

“ ln
ÿ

z

ź

t

decoder
hkkkkkkkkkikkkkkkkkkj

pθpxt|xăt, zďt, Iq

intention
hkkkkkkkkkikkkkkkkkkj

pθpzt|zăt, xăt, Iq
loooooooooooooooooooooomoooooooooooooooooooooon

pθpxt,zt|xăt,zăt,Iq

.

Marginalization over the space of intentions makes max-

imization of this objective computationally expensive. It is

therefore common to utilize an approximate posterior and

apply Jensen’s inequality which gives the lower bound

ln pθpx|Iq ě Ez„qφpz|x,Iq

„

ln
pθpx, z|Iq

qφpz|x, Iq



.

Combined with the employed temporal decomposition, this

yields the objective

Ez„qφpz|x,Iq

«

ÿ

t

pln pθpxt|xăt, zďt, Iq (1)

`ln pθpzt|zăt, xăt, Iq´ln qφpzt|zt´1, x, Iqqs ,

which we maximize w.r.t. parameters θ and φ. In the follow-

ing we discuss decoder, prior (intention model) and encoder

in more detail. Notice, all their parameters are subsumed in

the vectors θ and φ and jointly trained end-to-end. A sin-

gle timestep of all three recurrent models is illustrated in

Fig. 2(c).

3.2. Decoder

As illustrated in the top part of Fig. 2(c), the decoder is a

classical LSTM net. At time t the decoder yields a multino-

mial probability distribution pθpxt|xăt, zďt, Iq defined over

words xt P X .

While representations of zt and xt´1 are concatenated

before being provided as input to the LSTM net, we encode

dependence on xăt´1 and zăt via its hidden representation

hD
t´1

. Dependence on the image is encoded into the LSTM

net via an image embedding obtained from the fc7 layer of a

VGG16 network [35], pre-trained on the ImageNet dataset.

The image embedding is fed as input at every time step of

the LSTM, concatenated with the input word embedding

and the sampled vector from the latent space. For all our

experiments, we found a 512-dimensional latent vector to

give the best results (Tab. 4).

3.3. Intention Model

Similar to the decoder we model the intention tran-

sition model pθpzt|zăt, xăt, Iq as an LSTM net. How-

ever, different from the decoder, given zăt and xăt, we

model pθpzt|zăt, xăt, Iq as a Gaussian distribution with
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Method Best-1 Oracle Accuracy on M-RNN Test Split
B4 B3 B2 B1 C R M S

B
ea

m
si

ze
#
sa

m
p
le

s:
2
0 Beam search 0.489 0.626 0.752 0.875 1.595 0.698 0.402 0.284

Div-BS [38] 0.383 0.538 0.687 0.837 1.405 0.653 0.357 0.269
AG-CVAE [40] 0.471 0.573 0.698 0.834 1.259 0.638 0.309 0.244
POS [10] 0.449 0.593 0.737 0.874 1.468 0.678 0.365 0.277
Seq-CVAE 0.445 0.591 0.727 0.870 1.448 0.671 0.356 0.279

B
ea

m
si

ze
#
sa

m
p
le

s:
1
0
0 Beam Search 0.641 0.742 0.835 0.931 1.904 0.772 0.482 0.332

Div-BS [38] 0.402 0.555 0.698 0.846 1.448 0.666 0.372 0.290
AG-CVAE [40] 0.557 0.654 0.767 0.883 1.517 0.690 0.345 0.277
POS [10] 0.578 0.689 0.802 0.921 1.710 0.739 0.423 0.322
Seq-CVAE 0.575 0.691 0.803 0.922 1.695 0.733 0.410 0.320

Table 1: Best-1-Oracle Accuracy. Our Seq-CVAE method obtains high

scores on standard captioning metrics. We obtain an accuracy comparable

to both the very recently proposed POS approach [10] which uses a part-of-

speech prior and also to the AG-CVAE method [40]. Both these methods

use additional information in the form of object vectors from a Faster-

RCNN [32] during inference. In contrast, we do not use any additional

information during inference. To calculate the best-1-accuracy, we report

the caption with highest CIDEr score from all the sampled captions (#
samples = 20 or 100). Beam search, although obtaining the highest CIDEr

score, is known to be extremely slow and significantly less diverse.

time-dependent mean µT
t pzăt, xăt, Iq and standard devi-

ation σT
t pzăt, xăt, Iq obtained from an LSTM net. The

LSTM net input zTt´1
and xT

t´1
directly influence µT

t and

σT
t . Dependence on zăt´1 and xăt´1 is encoded via the

hidden representation hT
t´1

. Dependence on the image is

encoded into the LSTM net via an image embedding ob-

tained from the fc7 layer of a VGG16 network [35], pre-

trained on the ImageNet dataset. The 512 dimensional im-

age embedding is fed as input at every time step of the in-

tention model LSTM, concatenated with the output from the

previous time step and the word embedding of the previous

word. The image embedding, the word embedding and the

latent vector are all 512-dimensional.

During inference, at time t we use a sample zt from the

modeled Gaussian with mean µT
t pzăt, xăt, Iq and standard

deviation σT
t pzăt, xăt, Iq as input for the decoder. How-

ever, during training, as illustrated in Fig. 2(c), we use a

sample from the encoder. This discrepancy is justified by

the fact that part of the training objective given in Eq. (1)

maximizes the negative KL-divergence

ÿ

t

´Ezt„qφpzt|zt´1,x,Iq

„

ln
qφpzt|zt´1, x, Iq

pθpzt|zăt, xăt, Iq



between the intention model and the encoder at each time-

step. This is highlighted in Fig. 2(c). Therefore, upon train-

ing we want those distributions to be adequately close. This

ensures that samples used during testing are suitable.

More importantly however, note that the encoder

qφpzt|zt´1, x, Iq depends on the entire sentence x while the

intention model pθpzt|zăt, xăt, Iq only depends on the past

observations xăt. Consequently, if we construct an ade-

quate encoder and if pθpzt|zăt, xăt, Iq is accurate, we are

able to capture the intention about how to complete the sen-

tence using samples from the intention model. We discuss

an encoder structure that yielded encouraging results next.

Method Distinct
Captions

# Novel
Sentences

mBleu-4
n-gram Diversity

Div-1 Div-2

B
ea

m
si

ze
#
sa

m
p
le

s:
2
0 Beam search 100% 2317 0.77 0.21 0.29

Div-BS [38] 100% 3106 0.81 0.20 0.26
AG-CVAE [40] 69.8% 3189 0.66 0.24 0.34

POS [10] 96.3% 3394 0.64 0.24 0.35
Seq-CVAE 94.0% 4266 0.52 0.25 0.54

B
ea

m
si

ze
#
sa

m
p
le

s:
1
0
0 Beam search 100% 2299 0.78 0.21 0.28

Div-BS [38] 100% 3421 0.82 0.20 0.25
AG-CVAE [40] 47.4% 3069 0.70 0.23 0.32

POS [10] 91.5% 3446 0.67 0.23 0.33
Seq-CVAE 84.2% 4215 0.64 0.33 0.48

5 Human 99.8% - 0.51 0.34 0.48

Table 2: Diversity Statistics. We report the number of novel sentences

(sentences never seen during training) for each method. Beam search and

diverse beam search (Div-BS) produce the least number of novel sentences.

POS [10] uses additional information in the form of part-of-speech tokens

and object detections from Faster-RCNN [32]. AG-CVAE [40] also uses

additional information in the form of object vectors. Our Seq-CVAE with

ELMo doesn’t use any additional information during inference and pro-

duces 4278/5000 novel sentences. Our method also yields significant im-

provements on 2-gram diversity, producing « 20% more unique 2-grams

for 20 samples and a « 15% improvement for 100 samples when com-

pared to the runner-up, i.e., POS [10]. The model also provides the lowest

m-Bleu-4, which shows that for each image the diverse captions are most

different from each other. Beam search has the highest m-Bleu-4, which

shows that all the distinct captions don’t differ from each other at many

word locations.

3.4. Encoder to Expose Intention

To adequately encode the intention, i.e., the future of

a sentence, we need to construct a model which contains

at time t information about the entire sentence rather than

only its past. To achieve this, we develop a two-stage en-

coder qφpzt|zt´1, x, Iq which models at time t a Gaussian

distribution with mean µE
t pzt´1, x, Iq and standard devia-

tion σE
t pzt´1, x, Iq modulated by multiplying with the ex-

ponentiated function value FφpµE
t , x, Iq P R, i.e.,

qφpzt|zt´1, x, Iq 9 N pzt|µ
E
t , σ

E
t q ¨ expFφpµE

t , x, Iq.

Note that multiplication with the exponentiated function

value FφpµE
t , x, Iq doesn’t change the fact that qφ is a valid

distribution over the latent space. Importantly however,

multiplication permits to add the term ´FφpµE
t , x, Iq to the

objective given in Eq. (1). As detailed below, we will use Fφ

to encourage µE
t to better capture the future of a sentence.

The first stage of the encoder captures the past via a clas-

sical forward LSTM net with hidden states referred to as

hF
t . The second stage of the encoder captures the future via

a backward LSTM net with hidden states referred to as hB
t .

We subsequently combine both via a multi-layer perceptron

(MLP) net which yields mean µE
t pzt´1, x, Iq and standard

deviation σE
t pzt´1, x, Iq of the Gaussian distribution.

To ensure that the mean µE
t pzt´1, x, Iq more closely re-

sembles the information obtained from the backward pass

we choose

F pµE
t , x, Iq “ λ}gpµE

t pzt´1, x, Iqq ´ hB
t }2

2
, (2)

where g is another MLP which maps µE
t to fit hB

t . The latter
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Figure 3: (a & b): n-gram diversity across word positions. Seq-CVAE improves significantly upon many baselines. (c): L2 distance between the ELMo

hidden state and the representation inferred by passing the encoder mean µE
t

through an MLP. The latter matches hB
t

better as the training progresses. This

indicates that the latent space learned by the encoder at a given time t is trained to better regress to word representations which summarize future words.

is 512-dimensional in our case. λ is a hyper-parameter set

to 5e´4. For the backward LSTM we use the pre-trained

ELMo [31] model, with a hidden dimension of 512. ELMo

is a deep bidirectional language model trained on 1 Billion

Word Language Model Benchmark [5]. We only use the

backward part of the model. Word representations taken

from this backward pass at any time t are a good encoding

of the future xąt. ELMo is not fine-tuned through training.

4. Results

In the following, we first describe the dataset along with

the competitive baselines for diverse captioning and the

evaluation metrics used. We then present our results.

Dataset: We use the challenging MSCOCO dataset [27]

for our experiments. Following the approach in [10,40], we

perform our analysis on the split of M-RNN [30] which has

118,287 train, 4,000 val and 1,000 test images. Additional

results are deferred to the supplementary material.

Methods: We refer to our proposed approach as Seq-

CVAE. We also provide results of our proposed approach

without the ELMo based backward LSTM and without the

data-dependent intention model.

We compare the results to the diverse captioning ap-

proach of [10] which uses part-of-speech as a prior and

refer to the method via POS. We also compare to the ad-

ditive Gaussian conditional VAE-based diverse captioning

method of Wang et al. [40], denoted by AG-CVAE which

uses object detections as additional information. Moreover,

we compare to beam search denoted as Beam search and

diverse beam search [38] referred to as Div-BS applied to

standard captioning methods based on convolutions [2] and

LSTM nets [22].

Evaluation criteria: We compare all aforementioned

methods via the following accuracy and diversity metrics:

• Accuracy. In Sec. 4.1, we report the Top-1-Accuracy

evaluated on the standard image captioning metrics

(Bleu-1 to Bleu-4, CIDEr, ROUGE, METEOR and

SPICE, each abbreviated with its initial).

• Diversity. Our diversity evaluation is presented in

Sec. 4.2

4.1. Top-1-Accuracy

We use CIDEr as an oracle to pick the top-1 caption from

a set of generated diverse captions for a given image.

Following the approach of Deshpande et al. [10] and

Wang et al. [40], the top-1 caption is chosen as the caption

with the maximum score calculated with the ground-truth

test captions as references. The oracle metric provides the

maximally possible top-1 accuracy that a given model can

achieve. In Tab. 1 we show that our Seq-CVAE performs

on par with the best baselines on the M-RNN split [30].

Specifically, in Tab. 1 we show for 20 and 100 sam-

ples, that the proposed approach obtains a CIDEr score

of 1.448 and 1.695 respectively, on par with POS. Impor-

tantly, we emphasize that the proposed approach doesn’t

use any additional information in the form of part-of speech

tags or object vectors from a Faster-RCNN [32] during in-

ference. Note that all the other scores, are comparable

to the POS [10] approach while improving upon the AG-

CVAE [40] method. The latter is the only other VAE based

method which exhibits stochasticity when producing di-

verse captions. Note that although beam search obtains the

best scores, it is known to be slow and less diverse as shown

in Sec. 4.2.

4.2. Diversity Evaluation

To ensure comparability to the baselines, our diversity

numbers are calculated on the M-RNN split [30]. In Tab. 2

we show the diversity results using the following metrics:

(1) Uniqueness. The number of distinct captions gener-

ated by sampling from the latent space. We show that the

proposed method produces 18.48/20 (92.4%) and 80.9/100

(80.9%) unique sentences. Note that beam search and Div-

BS are deterministic and are guaranteed to generate 100%

unique captions. Similarly, POS is completely determin-

istic and ensures a large number of unique captions via

a strong connection between generated words and a hard-

coded ‘latent space’ which depends on part-of-speech tags

and is learned in a fully supervised manner. In contrast, AG-

CVAE, just like the proposed approach, has a flexible la-

tent space. Compared to AG-CVAE, the proposed approach

generates significantly more distinct captions.

4266



Method ELMo
Distinct
Captions

# Novel
Sentences

mBleu-4
n-gram Diversity

CIDEr

Div-1 Div-2

POS - 96.3% 3394 .64 .24 .35 1.468
Z-forcing [17] X 47.7% 4361 .79 .25 .37 1.140

CVAE ˆ 12.1% 1991 .52 .16 .29 0.959
CVAE X 11.9% 1923 .51 .25 .29 0.952

Seq-CVAE+N ˆ 19.7% 2888 .63 .24 .35 1.057
Seq-CVAE+N X 52.8% 4162 .69 .25 .43 1.244

Seq-CVAE(BRNN) ˆ 91.8% 4267 .65 .25 .52 1.348
Seq-CVAE X 94.0% 4266 .52 .25 .54 1.448

Human - 99.8% - .510 .34 .48 -

Table 3: Diversity and best-1 oracle accuracy on M-RNN test split for

different models calculated using top-5 captions and consensus reranking.

(2) Novel Sentences. Novel sentences are those sentences

which were never observed in the training data. We see that

Seq-CVAE produces significantly more novel sentences

than any other baseline. This is remarkable and illustrates

the ability to emit novel words that form reasonable sen-

tences, particularly when considering that accuracy metrics

are on par with the best performing baselines. In Tab. 2,

we show that our approach produces >4000 novel captions

among the 5000 captions chosen. We choose the top-5 gen-

erated captions per image, ranked by CIDEr, using consen-

sus re-ranking following the approach in [11, 40].

(3) Mutual Overlap – (mBleu-4). m-Bleu-4 measures the

difference between predicted diverse captions. Specifically,

for a given image, we calculate the Bleu-4 metric for every

one of the K diverse captions w.r.t. the remaining K´1 and

average across all test images. A lower value of m-Bleu in-

dicates more diversity. Again we observe that the proposed

approach significantly improves upon all baselines. As be-

fore, we use top-5 generated captions, ranked by CIDEr,

using consensus re-ranking [11, 40].

(4) n-gram diversity – (Div-n): For Div-n scores, we mea-

sure the ratio of distinct n-grams to the total number of

words generated per set of diverse captions. Higher is better.

Again we observe that our approach significantly improves

upon the baselines, particularly when considering 2-grams.

For instance, we improve from 0.35 to 0.54 when consid-

ering 20 samples and from 0.33 to 0.48 when considering

100 samples. This is encouraging because it illustrates the

ability of our approach to produce fitting yet diverse de-

scriptions without using any additional information.

(5) Unique n-grams. We measure the unique 2-grams and

the unique 4-grams produced by our model in Fig. 3(a, b).

We observe that our model produces the largest number of

4-grams for all word positions until position 8. We produce

a comparable number of unique 2-grams as POS [10]. To

compute the numbers we use 20 samples from the latent

space for each of the 1000 test images. This higher number

of unique 4-grams, indicates that a model is not just produc-

ing unique words, but also unique combinations of words.

4.3. Ablation Study

(1) Is ELMo the reason for good performance? To ana-

lyze if the improvements are only due to a strong language

Method ELMo Intention Latent C@20 C@100

Seq-CVAE ˆ N 512 1.015 ˘ 0.002 1.082 ˘ 0.001

Seq-CVAE ˆ zt|zăt

512

1.016 ˘ 0.002 1.089 ˘ 0.002

Seq-CVAE X zt|zăt 1.332 ˘ 0.002 1.568 ˘ 0.004

Seq-CVAE X zt|zăt, xăt 1.332 ˘ 0.002 1.573 ˘ 0.002

Seq-CVAE ˆ zt|zăt

256

0.998 ˘ 0.014 1.059 ˘ 0.017

Seq-CVAE X zt|zăt 1.339 ˘ 0.003 1.559 ˘ 0.003

Seq-CVAE X zt|zăt, xăt 1.335 ˘ 0.002 1.575 ˘ 0.004

Seq-CVAE ˆ zt|zăt

128

0.957 ˘ 0.001 1.000 ˘ 0.002

Seq-CVAE X zt|zăt 1.328 ˘ 0.008 1.544 ˘ 0.006

Seq-CVAE X zt|zăt, xăt 1.324 ˘ 0.006 1.571 ˘ 0.002

Table 4: Ablation Analysis. We observe that the ELMo based repre-

sentation improves the oracle CIDEr @100 by „0.5. Using ELMo along

with a data dependent intention model gives the best performance with

CIDEr „1.573. The low value of the standard deviation calculated over 10

runs for all the models is indicative that the learned latent space is robustly

structured. Using a constant Gaussian intention model (N ) performs on

par with using a parametric LSTM based intention model without ELMo,

clearly showing the efficacy of the proposed approach.

model like ELMo, we replaced ELMo with a backward

RNN trained on MSCOCO training data. The performance

in both diversity metrics and CIDEr, are comparable to our

ELMo based model, indicating the high performance gains

are not just from using a strong pretrained language model

(Tab. 3 row 7, Seq-CVAE(BRNN)).

(2) Using a single latent variable. Accuracy and diversity

drop when using a single z (both with and without ELMo)

to encode the entire sentence (Tab. 3 rows 3, 4; CVAE), due

to posterior collapse. Also, the latent space differs per word

(Fig. 5, Fig. 6). A single z doesn’t efficiently encode this.

(3) Using a single LSTM for Encoder, Decoder and

Transition Network. Different distributions are best served

by their own individual representation. Following the ap-

proach in [17] using the same LSTM for all networks leads

to inferior results (Tab. 3 row 2, Z-forcing).

(4) Using a constant Gaussian distribution per word. Re-

placing the LSTM based learnable intention model with

a constant Gaussian reduces performance (both with and

without ELMo) indicating the importance to distill intent

via the backward LSTM into a sequential latent space

(Tab. 3 rows 5, 6; Seq-CVAE+N ).

(5) Conditioning over different z and x. The results are

summarized in Tab. 4 and averaged over 10 runs. We show

results without using the ELMo based backward LSTM in

the encoder (see column titled ELMo), without using a data-

dependent intention model (zt|zăt, i.e., the intention model

isn’t conditioned on xăt), and without using any intention

(i.e., the intention model is a zero mean unit variance Gaus-

sian N for all word positions t). Note, based on the CIDEr

metric, data dependent intention doesn’t contribute much

when sampling 20 captions. However, data dependent in-

tention has a slight edge when sampling 100 captions, irre-

spective of the chosen latent dimension. Note that the stan-

dard deviations shown in Tab. 4 are fairly small.
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Image Seq-CVAE POS AG-VAE Div-BS Beam Search

• a cat is sitting on a suitcase on 

a bed

• cat sitting on a piece of 

luggage

• a small cat sitting on the back 

of a suitcase

• a cat is sitting in a suitcase on 

a bed 

• a cat sitting on top of a 

suitcase on a bed

• a cat that is laying down on a 

suitcase

• a small gray and white cat 

sitting in a suitcase

• a white and white cat with a 

suitcase

• a cat sitting on a piece of 

luggage.

• a black and white cat is sitting 

in a suitcase

• a black and white cat sitting on 

top of a piece of luggage

• a cat is sitting in a suitcase

• a black and white cat is laying 

in a suitcase

• a close up of a cat laying on a 

luggage bag

• a cat that is laying down on a 

suitcase

• the birds are swimming in the 

water and one is on the top

• two birds are standing in the 

water and drinking

• a group of birds on some water 

near water

• two white birds are standing in 

the water

• two large white birds standing 

in the water

• two birds are standing in the 

water together

• a large white and black bird in

• a body of water

• a white and white bird 

standing on top of a body of 

water

• a red and white photo of some 

birds in a pond.

• a couple of birds standing on 

top of a river

• a couple of birds standing on 

top of a pond

• a couple of birds that are 

standing next to each other

• couple of birds standing in the 

water

• a couple of birds that are 

standing in the water

• a couple of birds standing on a 

body of water

Figure 4: Qualitative results illustrating captions obtained from different image captioning methods.

(a) (b)

Figure 5: t-SNE plots of the means µT
t

obtained from the intention model,

learned with ELMo (a) and without ELMo (b). Notice that with ELMo

representation, the model better disentangles the means per word.

Figure 6: t-SNE plot of the means µT
t

learned by the intention model,

mapped to the words produced by the decoder. Notice that similar words

like ‘suit,’ ‘cheese,’ etc. are grouped in tight clusters.

4.4. Latent Space Analysis

To further understand the intricacies of the learned latent

space we analyze its behavior in the following.

In Fig. 3(c) we illustrate for different training iterations

(see legend) and word positions t the averaged F pµE
t , x, Iq

given in Eq. (2), i.e., the L2 distance between the ELMo

representation hB
t obtained via the backward LSTM and the

ELMo representation inferred by passing the encoder mean

µE
t through the MLP g. Intuitively we observe models at

later iterations to better match the ELMo representation hB
t .

To further investigate whether the mean µT
t of the in-

tention model used during inference captures meaningful

transitions, we illustrate in Fig. 5(a, b) t-SNE [29] plots of

means obtained from different images and colored by word

position t. We can clearly observe that the word positions of

µT
t are much better grouped when using ELMo representa-

tion (Fig. 5 (a)) whereas they are more cluttered when train-

ing Seq-CVAE without ELMo representations. We verified

this analysis across multiple runs.

α

0.0 a horse is running down a dirt path a man and woman are playing video
games together

0.2 a horse is being led by a man on a horse people are sitting on a couch with their
feet up to the wii

0.4 a man riding a horse through a field a group of people are sitting on a couch
with a wii remote in

0.6 a woman walking across a dirt field
with a horse

people are sitting on a couch while
playing a video game

0.8 a man riding a horse on a dirt field a group of people are playing a video
game

1.0 a woman riding a horse on a dirt field a group of people playing a video game
together

Figure 7: Diversity of sentences controlled by linear interpolation between

two samples. We observe meaningful sentences across all interpolated po-

sitions. Here α is the coefficient of linear interpolation.

In Fig. 6 we illustrate a t-SNE plot of µT
t based on words

emitted by the decoder. We clearly observe clusters of

words like ‘woman,’ ‘man,’ ‘dog,’ ‘horse,’ ‘group,’ ‘bath-

room,’ ‘toilet,’ etc. This grouping is encouraging as it il-

lustrates how we can control individual emitted words by

transitioning from one representation to another. Results

for this transition are illustrated in Fig. 1.

4.5. Qualitative Results

We show a transition between two sampled captions in

Fig. 7. We linearly interpolate the latent vectors at all word

positions between two sampled descriptions.

5. Conclusion

We propose Seq-CVAE which learns a word-wise latent

space that captures the future of the sentence, i.e., the ‘in-

tention’ about how to complete the image description. This

differs from existing techniques which generally learn a sin-

gle latent space to initialize sentence generation or to iden-

tically bias word generation throughout the process. We

demonstrate the proposed approach on the standard dataset

and illustrate results on par w.r.t. baseline accuracies while

significantly improving a large variety of diversity metrics.
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