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Abstract

Extrapolating fine-grained pixel-level correspondences

in a fully unsupervised manner from a large set of mis-

aligned images can benefit several computer vision and

graphics problems, e.g. co-segmentation, super-resolution,

image edit propagation, structure-from-motion, and 3D re-

construction. Several joint image alignment and congealing

techniques have been proposed to tackle this problem, but

robustness to initialisation, ability to scale to large datasets,

and alignment accuracy seem to hamper their wide applica-

bility. To overcome these limitations, we propose an unsu-

pervised joint alignment method leveraging a densely fused

spatial transformer network to estimate the warping pa-

rameters for each image and a low-capacity auto-encoder

whose reconstruction error is used as an auxiliary measure

of joint alignment. Experimental results on digits from mul-

tiple versions of MNIST (i.e., original, perturbed, affNIST

and infiMNIST) and faces from LFW, show that our ap-

proach is capable of aligning millions of images with high

accuracy and robustness to different levels and types of per-

turbation. Moreover, qualitative and quantitative results

suggest that the proposed method outperforms state-of-the-

art approaches both in terms of alignment quality and ro-

bustness to initialisation.

1. Introduction

Establishing pixel-level correspondences between pair

of images including instances of the same object category

can benefit several important applications, such as motion

estimation [33], medical imaging [1, 19], object recogni-

tion [13] and 3D reconstruction [20]. As a result, this has

become a fundamental problem in computer vision [12, 14].

Typically, pixel-level correspondences between two images

are computed by extracting sparse local feature descriptors

(e.g., SIFT [29], HOG [11], SURF [5], SCIRD [2, 4]),

∗Contribution to this research project was entirely made while this co-

author was at Onfido.

(a) (b)
Figure 1. Unsupervised joint alignment (a.k.a. congealing) results

obtained by the proposed method on digit ‘2’ from affNIST [43]

and Jennifer Capriati from LFW [18]. (a) input images

before alignment (initialisation in red), (b) output images aligned

with the proposed method.

then matching the extracted descriptors, and finally prun-

ing mismatches based on geometric constraints. Although

this approach has been applied successfully in different do-

mains, its performance can degrade significantly due to fac-

tors such as intra-class variations, non-rigid deformations,

partial occlusions, illumination, image blur, and visual clut-

ter. Recently, the representational power of Convolutional

Neural Networks (CNNs) has been leveraged to improve

the overall process. In particular, several CNN-based meth-

ods for learning powerful feature descriptors have been in-

troduced [40, 47, 31]. More recently, end-to-end trainable

CNNs for learning image descriptors as well as estimating

the geometric transformation between the two images have

been introduced in [36, 21]. The majority of previously pro-
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posed methods focus on the problem of finding pixel-level

correspondences between a pair of images. However, a

plethora of other tasks such as, co-segmentation, image edit

propagation, video stabilisation and structure-from-motion,

require global correspondences between a set of images

containing a specific object. A straightforward way to ad-

dress this problem is to identify pixel correspondences be-

tween each pair of images in the dataset and solve the prob-

lem in a sequential manner. However, this approach would

be prone to important limitations, as (i) it would fail to take

into account valuable cross-image appearance information

(i.e. statistics of local patches across the entire dataset)

during the optimisation; and (ii) the computational com-

plexity of the problem would increase exponentially with

the number of images, therefore significantly limiting the

scalability to large datasets. Thus, estimating global corre-

spondences of a set of images (image ensemble) by jointly

aligning them in an unsupervised manner can be immensely

valuable.

Congealing (joint image alignment) was originally intro-

duced by Learned-Miller in [23]. His approach aligns (by

estimating rigid transformations) an ensemble of images of

a particular object by minimising the sum of entropies of

pixel values at each pixel location. Although this method

has been effectively applied to handwritten digits and mag-

netic resonance image volumes, it has shown some limita-

tions, including slow and/or sometimes poor convergence

and relatively high sensitivity to hyper-parameters. Later,

Huang et al. improved the performance of [23] by using

hand-crafted SIFT features [17]. To overcome the optimi-

sation problems of the original congealing approach, Cox et

al. [9, 10] proposed to utilise a reference image (i.e., tem-

plate) and then minimise the sum of squared differences in-

stead of the sum of entropies. This way, standard Gauss-

Newton gradient descent method could be adopted to make

the optimisation efficient. Later, motivated by lossy com-

pression principles, Vedaldi et al. [44] proposed a joint

alignment approach based on log-determinant estimation.

A common drawback of the aforementioned methods is

that they cannot simultaneously handle variability in terms

of illumination, gross pixel corruptions and/or partial occlu-

sions. RASL, an image congealing method that overcomes

this drawback was proposed in [35]. The key assumptions

made in RASL and its multiple variants, e.g. [26, 8, 32]

are that (i) an ensemble of well-aligned images of the same

object is approximately low-rank and (ii) that gross pixel er-

rors are sparsely distributed. Therefore, image congealing is

performed by seeking a set of optimal transformations such

that the ensemble of misaligned images is written as the

superposition of two components i.e., a low-rank compo-

nent and a sparse error component. RASL has been widely

used for jointly aligning multiple images in different ap-

plications such as face landmarks localisation [37, 34, 39],

Figure 2. Block diagram of the proposed method. Black ar-

rows correspond to forward pass, while red and blue to back-

propagation.

pose-invariant face recognition [39, 38], and medical imag-

ing [6]. Despite its wide applicability, it is worth noting

that (i) RASL joint alignment performance can be severely

affected by non-optimal initialisation and high intra-class

variability in the image ensemble; (ii) scalability to large

ensembles is limited by the formulation of the low-rank

minimisation problem and related SVD-based sub-routines;

and (iii) a new optimisation is required for every new image

added to the ensemble. To address some of these limita-

tions, t-GRASTA [15] and PSSV [32] have been recently

proposed.

The first deep learning approach to unsupervised joint

image alignment was proposed by Huang et al. [16]. A

modified version of the convolutional restricted Boltzmann

machine was introduced to obtain features that could better

represent the image at differing resolutions, and that were

specifically tuned to the statistics of the data being aligned.

They then used those learnt features to optimise the stan-

dard entropy-based congealing loss and achieved excellent

joint alignment results on the Labelled Faces in the Wild

(LFW) benchmark.

Here, we propose a congealing method to solve large-

scale joint alignment problems, which is of significant prac-

tical importance in light of the ever increasing availabil-

ity of image data. The proposed method consists of two

main modules: (i) the aligner and (ii) the low-capacity auto-

encoder. Specifically, the joint alignment task is cast as a

batch-based optimisation problem in which the aligner is

used to estimate the global transformation required to warp

each image to a reference. The alignment error is quan-

tified via ℓ1-norm between the transformed batch images

and the reference. Motivated by the observation that a set

of well-aligned images require less modelling capacity to

be reconstructed well (e.g. reconstruction with low-rank

bases [35]), the aligned batch is subsequently processed by

a low-capacity auto-encoder and reconstruction errors are

back-propagated to the aligner (a snapshot of the results is

displayed in Fig. 1).

Contributions: In summary, the main contributions of

this paper are: (i) a congealing method which is shown

to be capable of handling large-scale joint alignment prob-

lems i.e., up to one million data points, simultaneously;

(ii) a novel differentiable formulation of the congealing
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problem, which combines the advantages of previously pro-

posed similarity- and rank-based approaches and that can be

easily optimised with Stochastic Gradient Descent (SGD),

end-to-end; (iii) an extensive experimental evaluation of the

proposed method and state-of-the-art approaches on several

benchmark datasets, including digits and faces at different

resolutions, assessing joint alignment performance and ro-

bustness to linear and non-linear geometric perturbations of

different magnitude and type.

2. Methodology

In the following, we briefly summarise the approaches

most related to ours. Then, we introduce the proposed

method.

RASL. Let us assume we have N misaligned images

{Ii}
N
i=1 ∈ R

w×h of a particular object and let {pi}
N
i=1 be a

set of transformations such that {I0i = Ii◦pi}
N
i=1 becomes a

set of well-aligned images. If we define vec : Rw×h → R
m

as the operator that vectorises an image, the main assump-

tion of the RASL method is that the matrix:

D ◦P = [vec(I01) | · · · | vec(I0N )] = A (1)

will be approximately low-rank. However, in practice this

assumption can be violated when the object of interest

is affected by occlusion, shadows, and noise. Therefore,

the authors assume that each aligned image is corrupted

with non-Gaussian-but-sparse errors E ∈ R
m×N , such that

D ◦ P = A + E. Given the observation of the misaligned

and corrupted images, the goal is to estimate a set of trans-

formations {pi}
N
i=1 such that the rank of the transformed

noise-free images {Ii ◦ pi}
N
i=1 ∈ R

w×h becomes as small

as possible. Formally,

argmin
A,E,{pi}N

i=1

rank(A) s.t. D ◦P = A+E, ‖E‖
0
≤ q,

(2)

where q controls the sparsity of the error matrix E. Unfortu-

nately, the non-convex and discontinuous nature of the opti-

misation problem in Eq. (2) makes it not directly tractable.

To this end, an algorithm that provides a sub-optimal so-

lution via iterative convex programming was proposed. As

discussed in [35], this algorithm is limited by the follow-

ing assumptions: (i) initial misalignment not too large, (ii)

rank of the matrix A to be recovered not too high, and (iii)

only a small fraction of all pixels affected by error. A fur-

ther limitation is the scalability of the algorithm. In fact,

the convex relaxation replacing the rank(·) with the nuclear

norm requires a very expensive Singular Value Decomposi-

tion (SVD) computation at every optimisation step.

Least-Squares Congealing (LSC). This method [9, 10]

has been specifically proposed for targeting large-scale joint

alignment problems. Building on the success of Lucas-

Kanade image alignment [30], the idea is to define a refer-

ence image Ij and align each of the remaining ones {Ii}i 6=j

to that reference. In general, this optimisation problem can

be formulated as:

argmin
pi 6=j

∑

i 6=j

∣∣∣
∣∣∣Ii ◦ pi − Ij

∣∣∣
∣∣∣
2

2

, (3)

where p = {p1,p2, . . . ,pN−1} is the set of transforma-

tions to apply to {Ii}i 6=j to map them onto the reference

Ij . The main advantage of LSC over low-rank/entropy-

based ones is faster convergence, as the adoption of the

least-squares cost function allows for the use of standard

Gauss-Newton optimisation techniques. On the other hand,

alignment performance tend to be worse due to its simplic-

ity.

2.1. Proposed Method

Motivated by the need for highly accurate alignment in

very large-scale problems, we propose a congealing frame-

work that leverages the advantages of adopting a similarity-

based cost function (i.e. direct, such as ℓ2-norm in LSC)

and a complexity-based one (i.e. indirect, such as rank-

based used in RASL). To perform this task at scale, we for-

mulate the congealing problem in a way that can be effi-

ciently optimised via standard back-propagation and SGD.

Our formulation can be interpreted in terms of lossy

compression optimisation [44]:

argmin
{pi}N

i=1

D(Ii 6=j ◦ pi 6=j , Ij) + λ C(Ii ◦ pi), (4)

where the distortion D reflects the total error when approx-

imating the reference image Ij (i.e., original data) with the

aligned image Ii ◦pi (i.e., compressed data), the complexity

C is the total number of symbols required to encode Ii ◦ pi,

and the parameter λ ≥ 0 trades off the two quantities. A

good candidate for our distortion (or similarity) measure D
should be robust to occlusions, noise, outliers and, in gen-

eral, objects that might partially differ in appearance (e.g.

same digit but different font, same face but wearing glasses

or not). In RASL, this is achieved by adding explicit con-

straints on the noise model and its sparsity properties which

have a significant impact on the optimisation efficiency. To

circumvent this problem, we adopt the ℓ1-norm as measure

of distortion, which can be efficiently optimised and offers

a higher level of robustness compared to the ℓ2-norm used

in LSC or [44]. Formally,

D =
∑

i 6=j

∣∣∣
∣∣∣Ii ◦ pi − Ij

∣∣∣
∣∣∣
1

. (5)

Motivated by the need for optimisation in large-scale joint

alignment problems, we propose an efficient alternative to

rank minimisation. Specifically, we observe that when a

set of images are well-aligned, they form a sequence that

contains a significant level of redundant information. As a
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consequence, the stack of images can be compressed with

higher compression rates w.r.t. the original misaligned ones.

Alternatively, a lower reconstruction error can be attained,

at parity of compression rate. Exploiting this consideration

we therefore propose to optimise:

argmin
{pi}N

i=1
,φ,θ

∑

i

∣∣∣
∣∣∣Dφ(Eθ(Ii ◦ pi))− Ii ◦ pi

∣∣∣
∣∣∣
1

,

s.t. f(Eθ(Ii ◦ pi)) ≤ β

(6)

where ℓ1-norm is preferred to typical ℓ2-norm for similar

reasons as the ones mentioned above; Eθ := R
w×h → R

b
+

defines an encoder mapping an w × h image into a code

vector z with b positive components; Dφ := R
b
+ → R

w×h

defines a decoder mapping a code z into a w × h image;

f := R
b
+ → R defines a (monotonically increasing) posi-

tional weighting penalty applied to z. This penalty explic-

itly encourages the encoder-decoder to represent the aligned

images using primarily the first components of z. Simi-

larly, β can be interpreted as an hyper-parameter controlling

the number of first components used to represent each im-

age, hence the representational power (or capacity) of the

encoder-decoder block. Intuitively, at parity of encoder-

decoder capacity, improving the joint alignment (i.e., op-

timising w.r.t. p) will lead to increased redundancy across

the image stack. In fact, we would have very similar colour

intensities at the same pixel location across the image stack.

Therefore, this capacity will be diverted from modelling

inter-image pixel intensity distributions (merely due to mis-

alignment) to modelling the key details of the object these

images share, hence leading to lower reconstruction error.

With the aim of solving large-scale alignment problems ef-

ficiently, we leverage principles from Lagrangian relaxation

and penalty functions [25, 41] to approximate the solution

of the constrained problem in Eq. (6) and instead propose to

minimise:

C =
∑

i

∣∣∣
∣∣∣Dφ(Eθ(Ii ◦pi))− Ii ◦pi

∣∣∣
∣∣∣
1

+ γ f(Eθ(Ii ◦pi)),

(7)

where γ ≥ 0 trades off the contribution of the reconstruc-

tion error and the capacity of the encoder-decoder block,

and C is our measure of complexity. Plugging Eq. (5) and

Eq. (7) in Eq. (4), we obtain a novel formulation to solve

congealing:

argmin
{pi}N

i=1
,φ,θ

∑

i

∣∣∣
∣∣∣Ii 6=j ◦ pi 6=j − Ij

∣∣∣
∣∣∣
1

+

+ λ
(∣∣∣
∣∣∣Dφ(Eθ(Ii ◦ pi))− Ii ◦ pi

∣∣∣
∣∣∣
1

+ γ f(Eθ(Ii ◦ pi))
)
.

(8)

To take advantage of efficient back-propagation and

SGD optimisation, (i) we implement Eθ and Dφ

as Neural Networks (NNs) to form a low-capacity

auto-encoder (controlled by γ); (ii) we define

f(Eθ(Ij ◦ pj)) , f(zj) = w⊤zj , and each compo-

nent wl of the weighing vector w = [w1, . . . , wb]
⊤ is such

that wl = lk/
∑b

l=1
lk with k ∈ N; and (iii) we adopt the

state-of-the-art Densely fused Spatial Transformer Network

(DeSTNet) [3] as the module learning and applying the set

of global transformations (p) to the stack of images. Fig. 2

shows the proposed method for large-scale congealing.

Each input image in a batch1 is first aligned to the reference

Ij by the DeSTNet, and the alignment error as computed by

the similarity-based loss D is directly back-propagated to

update DeSTNet’s parameters to achieve better alignment

to the reference. Once a batch of images has been aligned, it

goes to the penalised auto-encoder: the reconstruction error

as computed by C is used to update (i) the auto-encoder,

i.e. to improve reconstruction at parity of alignment

quality, and (ii) to further update the DeSTNet, i.e. to

improve reconstruction by better alignment at parity of

auto-encoder capacity. Importantly, our approach does not

require gradient adjustment, as the gradient of the total loss

(Eq. (8)) w.r.t. the learnable parameters is implicitly and

seamlessly distributed to each module (auto-encoder and

alignment), by chain-rule.

3. Experiments

We extensively evaluate the performance of the proposed

method and compare it with state-of-the-art approaches [35,

15, 32] in terms of alignment quality, scalability and ro-

bustness to noise on MNIST [24] and several variants. To

quantify performance, we adopt the Alignment Peak Signal

to Noise Ratio, APSNR = 10 log10

(
255

2

MSE

)
[35, 15, 32]

where,

MSE =
1

Nhw

N∑

i=1

h∑

r=1

w∑

c=1

(
Î0i (r, c)− Ī0(r, c)

)2

, (9)

Î0i represents image i and Ī0 the average image, both com-

puted after alignment. We then investigate the impact of

each individual term of the loss (D and C) on the alignment

quality and how they interact to achieve an improved level

of performance when combined. With the aim of comparing

the proposed method with Deep Congealing (DC) [16]2 and

to assess the possibility of adopting the proposed method on

more challenging datasets, we scale the framework and use

it to jointly align multiple subsets of the LFW [18], under

different initialisation.

3.1. MNIST

With the aim of evaluating the scalability of the

proposed method and the baselines, we start by cre-

1We use batch-based optimisation.
2A comparison on MNIST and variants thereof was not possible as, to

the best of our knowledge, the authors have not made the original imple-

mentation available.
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Table 1. Architectures used for MNIST and LFW experiments. convD1-D2: convolution layer with D1×D1 receptive field, D2 channels,

F : fusion operation used in DeSTNet for fusing the parameters update, |z|: dimentionality of z. Default stride for convD1-D2 is 1, ∗

corresponds to 2.

MNIST LFW

Aligner F{[ conv7-4 | conv7-8 | conv1-8 ]×4} F{[ conv3-64∗ | conv3-128∗ | conv3-256∗ | conv1-8 ]×5}

Encoder [conv3-100∗]× 3 | [conv1-1024] ×2 | conv1-|z| [conv3-128∗]× 3 | [conv1-512] ×2 | conv1-|z|

Decoder [conv1-1024] ×2 | conv1-16 | [conv3-100∗]× 3 | conv1-1 [conv1-512] ×2 | conv1-3072 | [conv3-128∗]× 3 | conv1-3

Figure 3. Relative processing time for RASL [35], t-

GRASTA [15], and the proposed method when aligning an

increasingly large number of images. Mean and variances of the

aligned images produced by the compared methods for the 6 000
samples are also displayed.

ating multiple MNIST subsets, as follows. For each

digit in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, we randomly sample

{1 000, 2 000, 3 000, 4 000, 5 000, 6 000} images from the

original MNIST dataset and align them separately. For the

proposed method, we adopt DeSTNet-4 [3] with expansion

rate kF = 32 as aligner, and the penalised reconstruc-

tion auto-encoder defined in Table 1, where we use tanh

non-linearities after each layer, apart from the last layer of

the encoder, where sigmoid is used, to keep each compo-

nent of z in
[
0, 1

]
. We set λ = 1 to use both similarity-

and complexity-based loss, γ = 1 and k = 1. We op-

timise the entire architecture end-to-end, using a standard

Adam-based SGD optimiser with learning rate 10−5. Fol-

lowing [35, 15, 23], we qualitatively assess alignment re-

sults for the proposed method and the baselines by comput-

ing the mean and variance across the entire dataset before

and after alignment. To evaluate scalability, we measure the

relative processing time for RASL, t-GRASTA, and the pro-

posed method when aligning an increasingly large number

of images. Due to the difference in hardware (CPUs used by

the baselines, GPUs by the proposed method), we normalise

processing times w.r.t. the time required to align 1, 000 im-

ages to provide a fair comparison. As Fig. 3 shows for the

case of digit ‘3’3, the proposed method scales better than the

baselines. Moreover, as Fig. 4 shows in the most challeng-

ing case, i.e. datasets with 6, 000 images, the much sharper

mean and lower variance images (hence higher APSNR)

suggest that proposed method achieves much better align-

ment too. Following the experimental protocol in [27, 3],

3Similar results hold for the other digits.

31.74 31.78 31.13 33.30

(a) (b) (c) (d) (e)
Figure 4. Congealing results on 6 000 images per digit from

MNIST. (a) Before alignment, (b) RASL [35], (c) t-GRASTA [15],

(d) PSSV [32], and (e) Proposed method. In each subfigure (a)-

(e), the first column shows means, whereas the second one shows

variances. APSNR for each digit is reported at the top of each

subfigure.

we evaluate the robustness of each method to synthetic dis-

tortions based on random perspective warps. Specifically,

assuming each MNIST image is s × s pixels (s = 28),

the four corners of each image are independently and ran-

domly scaled with Gaussian noise N (0, σ2s2), then ran-

domly translated with the same noise model. We assess

alignment quality under three levels of perturbation, i.e.

σ =
{
10%, 20%, 30%

}
. To this aim, we apply this per-

turbation model to each 6 000 images dataset and report a

subset of the results in Fig. 4. We observe that although a

10% perturbation seems to be well handled by RASL and t-

GRASTA, alignment performance deteriorates significantly

at 20% and they tend to fail at the most challenging 30%.

On the other hand, the proposed method shows strong ro-

bustness to this perturbation model across all the digits and

under significant noise.

3.2. Ablation Study

The proposed congealing approach takes advantage of

both the similarity- and complexity-based losses (i.e., D
and C in Eq. (5) and Eq. (7), respectively), as described

in Eq. (8). With the aim of disentangling the contribution

of each term to the final result, we have evaluated the joint

alignment performance when one of the two losses is ex-

cluded from the optimisation. Figs. 6(b) and (c) show the

alignment results when excluding D, and C, respectively,

while the alignment results produced when both are used are
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31.91 32.01 31.40 33.28

σ
=

1
0
%

31.66 30.64 30.48 33.20

σ
=

2
0
%

29.80 29.36 29.47 32.96

σ
=

30
%

(a) (b) (c) (d) (e)
Figure 5. Robustness of congealing methods to random perspec-

tive warps with σ =
{

10%, 20%, 30%
}

, corresponding to top,

middle and bottom block, respectively. (a) Before alignment,

(b) RASL [35], (c) t-GRASTA [15], (d) PSSV [32], and (e) Pro-

posed method. In each subfigure (a)-(e), the first column shows

means, whereas the second one shows variances. For compact-

ness, APSNR for each method is averaged across the digits and

reported at the top of each cell.

displayed in Fig. 6(d). We observe that, in general, exclud-

ing D has a stronger impact on the final alignment results;

moreover, the use of the reference image when computing

D makes the optimisation much more robust, as it implicitly

avoids the shrinking effect typically observed when only C
is used. The latter is due to the fact that, at parity of re-

construction capacity for the auto-encoder, a lower com-

plexity measure is attained when the object to reconstruct

shows less spatial variability and can therefore be better re-

(a) (b) (c) (d)
Figure 6. Ablation study: disentangling the impact of the

similarity- (D) and complexity-based (C) losses on the final align-

ment result. Variance images (a) before alignment, (b) D-only, (c)

C-only, and (d) both.

constructed4 (see Eq. (7)). We observe that, (i) the addition

of C to the loss based only onD, contributes to further refin-

ing the alignment results and achieving even lower variance

(see digit ‘6’ and ‘9’); (ii) importantly, C tends to drive the

overall optimisation towards solutions that favour a more

(spatially) uniform alignment, as shown for digit ‘3’; in this

sense, the complexity-based loss can be interpreted as a reg-

ulariser.

3.3. affNIST

Previously proposed congealing approaches have shown

limitations in terms of scaling efficiency; in fact, on very

low-resolution datasets, joint alignment optimisation results

have been reported only for up to a few thousands sam-

ples [10]. Moreover, as confirmed in the experiments re-

ported in the previous section, large intra-class spatial vari-

ability (modelled with synthetic perturbation) seems to sig-

nificantly deteriorate performance. To further push the lim-

its and evaluate the performance of the proposed method,

we assess joint alignment performance on a much more

challenging version of MNIST, namely affNIST [43]. This

dataset is built by taking images from MNIST and apply-

ing various reasonable affine transformations to them. In

the process, the images become 40 × 40 pixels large, with

significant translations involved. From this dataset, we take

the first 100 000 samples for each digit and perform align-

ment (results in Fig. 7), using the same parameter setting

adopted in the experiments above. The strong variability

characterising this dataset is clear by looking at the means

and variances before alignment, and a subset of the actual

inputs (Fig. 7-middle). Nevertheless, the proposed method

achieves a good level of alignment, as demonstrated by the

average and variance images after alignment (hence high

APSNR) and a subset of the actual outputs (Fig. 7-bottom).

4Notice that this undesired effect is typical of low-rank-based congeal-

ing approaches [35].
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33.19 33.29 34.44 32.59

(a) (b) (c) (d)
Figure 7. Congealing results of the proposed method on 100 000
images per digit from affNIST. (a)-(d) correspond to different dig-

its. Top: mean (first columns) and variance (second columns) im-

ages, before (first rows) and after (second rows) alignment. Mid-

dle: a subset of the actual inputs. Bottom: a subset of the actual

outputs. APSNR for each digit is reported at the top of each sub-

figure.

3.4. infiMNIST

So far, the proposed method has shown robustness to

global affine/perspective perturbations, and joint alignment

problems with up to 100, 000 samples per digit. Here, we

evaluate the alignment performance under non-linear (local)

deformations (e.g. tickening) and translations, and solve

the joint alignment problem for 1, 000, 000 images per digit

sampled from infiMNIST [28]5. Notice, we use the same

parameter setting adopted above to assess the robustness

and generalisation of the proposed method in a much more

challenging joint alignment problem. As Fig. 8 shows, de-

spite the random translations being relatively smaller than

the ones used in affNIST, the non-linear perturbations add

a much higher level of intra-class variability. Nevertheless,

the proposed method achieves remarkable joint alignment

at this scale and under this kind of perturbations.

3.5. LFW

LFW [22] has been widely used to assess the per-

formance of state-of-the-art joint alignment methods, e.g.

in [35, 16]. This dataset is made challenging by multi-

ple factors, including variations in facial expression, oc-

clusion, illumination changes, clutter in the background

and head pose variations. Moreover, each subject image

is 250 × 250 pixels, which is much larger than MNIST

(and variants) images used in the experiments above.

We selected four subsets, corresponding to male and fe-

5The code to generate datasets from infiMNIST is available at

https://leon.bottou.org/projects/infiMNIST.

32.20 32.63 31.93

(a) (b) (c)
Figure 8. Congealing results of the proposed method on 1 000 000
images per digit from infiMNIST. (a)-(c) correspond to different

digits. Top: mean (first columns) and variance (second columns)

images, before (first rows) and after (second rows) alignment.

Middle: a subset of the actual inputs. Bottom: a subset of the

actual outputs. APSNR for each digit is reported at the top of each

subfigure.

male subjects with the largest amount of images, namely

George W Bush, Tony Blair, Serena Williams,

and Jennifer Capriati. To accommodate the differ-

ence in input image size and considering the more com-

plex task w.r.t. MNIST-based datasets, we scale the aligner

and the encoder-decoder block as reported in Table 1. In

Fig. 9, we report a qualitative and quantitative comparison

of the proposed method with RASL [35], PSSV [32] and

Deep Congealing [16], for which joint alignment results ini-

tialised with the Viola-Jones face detector [45] are available

at http://vis-www.cs.umass.edu/lfw/. For fair comparison,

we adopt the same initialisation for the proposed method

and the baselines. We observe that, overall, the proposed

method outperforms both RASL, PSSV and Deep Congeal-

ing, in terms of APSNR which is qualitatively confirmed

by sharper average images across all the subjects. More-

over, unlike RASL and PSSV, the proposed method does

not suffer a zoom-in/zoom-out effect which makes the op-

timisation focus on smaller/larger portion of the region of

interest. This can be attributed to the use of the reference

image in D.

Although important progress has been made in recent

years in face detection [7, 46, 48, 42], some level of inaccu-

racy is inevitable in a practical setting. So, it is important to

assess the robustness of the proposed method to coarser ini-

tialisation. To this aim, we increased the size of the initial

bounding box returned by the Viola-Jones face detector by

15% and 30% in width and height, and report the joint align-

ment results in Fig. 10. We observe that the performance of

both RASL (Figs 10(b,e)) and PSSV (Figs 10(c,f)) degrade
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29.90 29.74 30.31 30.73

(a) (b) (c) (d) (e)
Figure 9. Congealing results (means) on LFW. (a) Before align-

ment, (b) RASL [35], (c) PSSV [32], (d) Deep Congealing [16],

and (e) Proposed method. The bounding box initialisation is

shown in red in (a) for all the subjects. For compactness, average

APSNR for each method is reported at the top of each subfigure

and averaged across the subjects.

significantly when the initialisation is not close to the ob-

ject, as confirmed by a sharper decrease in average APSNR

and the average aligned faces being blurry. Instead, the pro-

posed method demonstrates strong robustness to the initiali-

sation: as can be observed in Figs 10(d,g), our mean aligned

faces are clean and crisp which indicates a remarkable level

of alignment even with a bounding box 30% larger.

Following the protocol adopted in [35, 15], we further

quantify alignment performance by computing the average

errors in the locations of three landmarks (the eye outer

corners and tip of nose), calculated as the distances of the

estimated locations to their centre, normalised by the eye-

to-eye distance. We compare our alignment performance

against RASL (best rank-based baseline) and DC (deep

learning approach). We average the performance for each

landmark in a given subject and report them in Table 2.

Confirming the considerations above, when the original ini-

tialisation is adopted, the proposed method attains the low-

est errors across all the subjects. Moreover, while at 15%
coarser initialisation RASL starts to show difficulties on

some subjects, at 30% performance degrades significantly.

Instead, the proposed method shows much stronger robust-

ness across subjects and initialisation.

4. Conclusions

Image alignment is a major area of research in com-
puter vision. However, the majority of previously pro-
posed methods focus on identifying pixel-level correspon-
dences between a pair of images. Instead, a plethora of

Init [45] ←− +15% −→ ←− +30% −→
29.75 29.25 30.43 29.14 28.67 30.29

(a) (b) (c) (d) (e) (f) (g)
Figure 10. Robustness of congealing methods to initialisation, i.e.

bounding box 15% and 30% larger than the one estimated by [45]

(in red colour in (a)). Mean images (a) before alignment, (b)(e)

RASL [35], (c)(f) PSSV [32], and (d)(g) Proposed method. For

compactness, average APSNR for each method is reported at the

top of each subfigure and averaged across the subjects.

Table 2. Average errors for three landmarks (the eye outer cor-

ners and tip of nose), calculated as the distances of the es-

timated locations to their centre, normalised by the eye-to-

eye distance. S1:George W Bush, S2:Jennifer Capriati,

S3:Serena Williams, S4:Tony Blair.
Init Methods S1 S2 S3 S4

[45]

RASL [35] 2.88% 2.45% 3.32% 3.24%

DC [16] 3.97% 3.48% 3.48% 3.27%

Proposed 2.67% 1.86% 2.24% 2.39%

+15%
RASL [35] 3.24% 6.40% 5.02% 3.65%

Proposed 3.84% 2.12% 4.34% 2.04%

+30%
RASL [35] 6.29% 6.77% 7.08% 6.87%

Proposed 4.27% 1.92% 3.69% 2.55%

other tasks such as, co-segmentation, image edit propaga-
tion and structure-from-motion, would considerably bene-
fit from establishing pixel-level correspondences between a
set of images. Several congealing or joint alignment meth-
ods have been previously proposed; however, scalability to
large datasets and the limited robustness to initialisation and
intra-class variability seem to hamper their wide applicabil-
ity. To address these limitations, we have proposed a novel
congealing method and shown that it is capable of han-
dling joint alignment problems at very large scale i.e., up
to one million data points, simultaneously. This is achieved
through a novel differentiable formulation of the congeal-
ing problem, which combines the advantages of similarity-
and rank-based congealing approaches and can be easily
optimised with standard SGD, end-to-end. Extensive ex-
perimental results on several benchmark datasets, includ-
ing digits and faces at different resolutions, show that the
proposed congealing framework outperforms state-of-the-
art approaches in terms of scalability, alignment quality and
robustness to linear and non-linear geometric perturbations
of different magnitude and type.
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