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Abstract

In this paper we consider the problem of motion segmenta-

tion, where only pairwise correspondences are assumed as

input without prior knowledge about tracks. The problem is

formulated as a two-step process. First, motion segmenta-

tion is performed on image pairs independently. Secondly,

we combine independent pairwise segmentation results in a

robust way into the final globally consistent segmentation.

Our approach is inspired by the success of averaging meth-

ods. We demonstrate in simulated as well as in real ex-

periments that our method is very effective in reducing the

errors in the pairwise motion segmentation and can cope

with large number of mismatches.

1. Introduction

Motion segmentation is an essential task in many applica-

tions in Computer Vision and Robotics, such as surveil-

lance [18], action recognition [56] and scene understand-

ing [12]. The classic way to state the problem is the follow-

ing: given a set of feature points that are tracked through

a sequence of images, the goal is to cluster those trajecto-

ries according to the different motions they belong to. It

is assumed that the scene contains multiple objects that are

moving rigidly and independently in 3-space. There is a

plenty of available techniques to accomplish such task, as

detailed in Sec. 1.1. Among them, the methods developed

in [17, 21, 58] achieve a very low misclassification error

on the Hopkins155 benchmark [47], which is a well estab-

lished dataset to test the performance of motion segmen-

tation. However, the tracks available in the dataset are not

realistic at all since they were filtered with the aid of manual

operations. In this paper we take motion segmentation one

step further by considering more difficult/realistic assump-

tions, namely we assume that pairwise matches (e.g. those

computed from SIFT keypoints [26]) are available only, and

we address the task of classifying image points (instead of

tracks), as shown in Fig. 1. This problem has not been con-

sidered before but it has great practical relevance since it

does not require to compute tracks in advance, which is a

Figure 1: Segmentation results are reported on four images for the

technique in [58] combined with [30] (top) and our method (mid-

dle). Image points are drawn in different colours: green (correctly

classified); red (misclassified); blue (unknown). Ground-truth seg-

mentation is also reported (bottom) where different colors encode

the membership to different motions.

challenging task in the presence of multiple moving objects.

More precisely, we formulate motion segmentation as a

two-step process:

1. segmentation of corresponding points is performed on

each image pair in isolation;

2. segmentation of image points is computed without re-

lying on the feature locations, using only the classifi-

cation of matching points derived in Step 1.

Our new formulation is detailed in Sec. 2. Regarding Step 2,

we develop a simple scheme that classifies each point based

on the frequencies of labels of that point in different image

pairs, which is reported in Sec. 3. The resulting method is a

general framework that can be combined with any algorithm

able to perform motion segmentation in two images.

The idea of combining results from individual image

pairs was also present in [24], where all the pairs were con-

sidered, and in [21, 58], where only pairs of consecutive

frames were used. These techniques, however, are different

from our approach since they do not completely perform

segmentation of image pairs but they rely on partial results

only (i.e. correlation of corresponding points). Such results

are used to build an affinity matrix that encodes the simi-

larity between different tracks, to which spectral clustering
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[54] (or its multi-view variations [6, 20, 55]) is applied. As a

consequence, they perform segmentation of tracks, whereas

our method classifies image points. A related approach [16]

considers the scenario where correspondences are unknown

and uses the Alternating Direction Method of Multipliers

(ADMM) [3] to jointly perform motion segmentation and

tracking, where sequences with at most 200 trajectories are

analyzed only due to algorithmic complexity.

Experiments on both synthetic and real data were per-

formed to validate our approach. Robust Preference Analy-

sis (RPA) [28] was used in Step 1. A new dataset was also

created, consisting of five sequences of moving objects in

an indoor environment, where SIFT keypoints [26] were ex-

tracted and manually labelled to get ground-truth segmenta-

tion. Results are reported in Sec. 4, where it is shown that:

our method is comparable or better than most traditional

(track-based) solutions on Hopkins155 [47]; it outperforms

the methods developed in [17, 58] on synthetic/real datasets

with mismatches; it is very effective in reducing the errors

in the pairwise segmentations; it can be profitably used to

segment SIFT keypoints in a collection of images.

Our two-step formulation of motion segmentation is in-

spired by the success gained by synchronization or averag-

ing methods (e.g. [42, 46, 14, 1, 4]) that formulate other

computer vision problems (e.g. structure from motion and

3D registration) in an analogous manner. For instance, 3D

registration – where the task is to bring multiple scans into

alignment – can be addressed by first computing rigid trans-

formations between each pair of scans in isolation, and then

globally optimizing these transformations without consid-

ering points. In particular, our method – which computes

the segmentation of one image at a time (as explained in

Sec. 3) – presents similarities with [46, 14], which estimate

the transformation of one camera/scan at a time.

1.1. Related Work

Motion segmentation lies at the intersection of several com-

puter vision problems, including subspace separation, mul-

tiple model fitting and multibody structure from motion.

The goal of subspace separation is to cluster high-

dimensional data drawn from multiple low-dimensional

subspaces. Existing solutions include Generalized Principal

Component Analysis (GPCA) [50], Local Subspace Affin-

ity (LSA) [59], Power Factorization (PF) [52], Agglomera-

tive Lossy Compression (ALC) [36], Low-Rank Represen-

tation (LRR) [25], Sparse Subspace Clustering (SSC) [11],

Structured Sparse Subspace Clustering (S3C) [22], and Ro-

bust Shape Interaction Matrix (RSIM) [17]. Motion seg-

mentation can be cast as subspace separation since – under

the affine camera model – the point trajectories lie in the

union of d subspaces in R
2n of dimension at most 4, where

d denotes the number of motions and n denotes the num-

ber of images. Subspace separation techniques can also be

used to solve motion segmentation in two images under the

perspective camera model, since corresponding points un-

dergoing the same motion – after a proper rearrangement of

coordinates – belong to a subspace of R9 of dimension at

most 8, as observed in [24].

The goal of multiple model fitting is to estimate mul-

tiple models (e.g. geometric primitives) that fit data cor-

rupted by outliers and noise, without knowing which model

each point belongs to. Some methods follow a consensus-

based approach, namely they focus on the estimation part

of the problem, with the aim of finding models that de-

scribe as many points as possible. The Hough transform

[57], Sequential RANSAC [53], Multi-RANSAC [62] and

Random Sample Coverage (RansaCov) [29] belong to this

category. Other techniques follow a preference-based ap-

proach, namely they concentrate on the segmentation side

of the problem, from which model estimation follows. So-

lutions of this type include Residual Histogram Analysis

(RHA) [61], J-Linkage [44], Kernel Optimization [5], T-

linkage [27], Random Cluster Model (RCM) [34] and Ro-

bust Preference Analysis (RPA) [28]. The problem of fitting

multiple models can also be expressed in terms of energy

minimization [8, 9], as done by PEARL (Propose Expand

and Re-estimate Labels) [15] and Multi-X [2]. Model fit-

ting techniques can be exploited to solve motion segmen-

tation under the affine camera model, by fitting multiple

subspaces to feature trajectories in an image sequence, sim-

ilarly to subspace separation methods. They can also be

used to solve motion segmentation in two images under the

perspective camera model, by fitting multiple fundamental

matrices to corresponding points in an image pair.

The goal of multibody structure from motion is to simul-

taneously estimate the motion between each object and the

camera as well as the 3D structure of each object, given

a set of images of a dynamic scene. This problem can be

seen as the generalization of structure from motion [32]

to the dynamic case, where motion segmentation has to

be solved in addition to 3D reconstruction. Geometric so-

lutions are available for two images [51] and three im-

ages [49]. Other techniques follow a statistical approach

[45, 35, 41, 43, 31, 38], whereas in [13, 7, 23, 60] mo-

tion segmentation and structure from motion are combined.

More details can be found in survey [40].

Ad-hoc solutions to motion segmentation are also

present in the literature [24, 21, 58], which are not explic-

itly related to the aforementioned problems. The authors

of [24] formulate a joint optimization problem which builds

upon the SSC algorithm, where it is required that all im-

age pairs share a common sparsity profile. In [21] an ac-

cumulated correlation matrix is built by sampling homogra-

phies over consecutive image pairs, and spectral clustering

[54] is applied to get the sought segmentation. Such ap-

proach is generalized in [58] where multiple models (affine,
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fundamental and homography) are combined to get an im-

proved segmentation. Different approaches are analyzed to

reach such task, namely Kernel Addition (KerAdd) [6], Co-

Regularization (Coreg) [20] and Subset Constrained Clus-

tering (Subset) [55]. Motion segmentation is also addressed

in [39, 37], where existing algorithms are customized for

specific scenarios and acquisition platforms.

2. Problem Formulation

Let n denote the number of images and let d denote the

number of motions. Suppose that a number pi of points are

found in image i using a feature extraction algorithm, so

that the total amount of points over all the images is given

by p =
∑n

i=1
pi. Let si ∈ {0, 1, . . . , d}pi denote the la-

bels of points in image i, which identify the membership

to a specific motion. The meaning of the zero label, which

essentially represents outliers, will be clarified in Sec. 3.3.

The vector si is referred to as the total segmentation of

image i, since it represents labels of points considering a

global numbering of motions. The goal here is to estimate

si for i = 1, . . . , n, as shown in Fig. 2. In other words, we

aim at classifying image points as opposed to existing meth-

ods which segment tracks. In order to reach such a task,

we assume that points have been matched in image pairs

and that segmentation between pairs of images is available.

Note that the knowledge of matches, which involve two im-

ages at a time, is a weaker assumption than the presence of

tracks, which involve all the images simultaneously.

Figure 2: A set of points is detected in multiple images and the

goal is to assign them a label (purple or yellow) based on the mov-

ing object (star or circle) they belong to.

Let sij ∈ {0, 1, . . . , d}mij denote the labels of corre-

sponding points in images i and j, where the zero label

corresponds to outliers and let mij ≤ min{pi, pj} denote

the number of matches of the pair (i, j). Vector sij is re-

ferred to as the partial segmentation of the pair (i, j), since

it represents labels of corresponding points considering a

local numbering of motions, as shown in Fig. 3. Observe

that each sij may contain some errors, which can be caused

either by mismatches or by failure of the algorithm used

for pairwise segmentation, and some image points may not

have a label assigned in some pairs due to missing corre-

spondences.

Thus we have to face the problem of how to assign a

unique/global label to all image points such that the con-

straints coming from pairwise segmentation are best sat-

Figure 3: Motion segmentation is performed on image pairs (with

possible errors). The same motion (star or circle) may be given a

different label (purple or yellow) in different pairs.

isfied. In other words, the segmentation task can be re-

duced to the problem of estimating the total segmentations

s1, . . . , sn starting from the knowledge of partial segmen-

tations sij with i, j = 1, . . . , n. It is worth noting that in

this way the actual coordinates of image points are not used

anymore after pairwise segmentation, since only labels mat-

ter for the final segmentation. Observe also that this general

formulation does not assume any particular camera model

or scene geometry.

3. Proposed Method

Our method (sketched in Fig. 7) takes as input the results

from pairwise segmentation. It first computes the total seg-

mentation of each image individually and then updates all

these estimates in order to have a single/global numbering

of motions.

3.1. Segmenting a single image

The key observation is that each partial segmentation sij ∈
{0, 1, . . . , d}mij gives rise to two vectors

ŝ
j
i ∈ {NaN, 0, 1, . . . , d}pi (1)

ŝ
i
j ∈ {NaN, 0, 1, . . . , d}pj (2)

which contain labels of matching points in images i and j,

respectively, where NaN accounts for missing correspon-

dences. This implies that, if we fix one image (e.g. image

i), then several estimates are available for its total segmen-

tation, which define a set Bi

Bi = {ŝki s.t. k = 1, . . . , n, k 6= i}. (3)

However, these estimates are not absolute since they may

differ by a permutation of the labels associated with each

motion, as shown in Fig. 4.

In order to resolve such ambiguity, we consider a graph

where each node is an element in Bi (i.e. a partial segmen-

tation involving image i) and the edge between nodes h and
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Figure 4: A possible solution for the total segmentation of image

1 is given by each partial segmentation where image 1 is involved.

The same motion (star or circle) may be given a different label

(purple or yellow) in different pairs.

k is associated with a permutation Phk of labels that best

maps ŝ
k
i (i.e. labels of image i in the pair (i, k)) into ŝ

h
i

(i.e. labels of image i in the pair (i, h)). Computing such

permutation is a linear assignment problem, which can be

solved using the Hungarian algorithm [19]. The task here

is to compute a permutation Pk for each node that reveals

the true numbering of motions. It can be seen that this can

be expressed as a permutation synchronization, that is the

problem of estimating Pk for k = 1, . . . , n (k 6= i) such

that Phk = PhP
−1

k , which can be solved via eigenvalue

decomposition [33].

Figure 5: After solving a permutation synchronization problem,

several estimates for the total segmentation of image 1 are avail-

able, where the same motion (star or circle) has the same label

(purple or yellow) in different pairs.

After this step, the set in Eq. (3) contains several esti-

mates of si with respect to a single numbering of motions,

as shown in Fig. 5. Thus a scheme that assigns a unique

label to each point in image i is required, which can be re-

garded as the best over the set Bi. A reasonable approach

consists in labelling each point with the most frequent label

(i.e. the mode) among all the available measures. In other

words, the label of point r is given by

si(r) = mode {ŝki (r) s.t. ŝki ∈ Bi, ŝ
k
i (r) 6= NaN} (4)

where only labels of actual correspondences are considered,

with r = 1, . . . , pi. As long as the algorithm used for pair-

wise segmentation correctly classifies all the points in most

pairs, this procedure works well, as confirmed by experi-

ments in Sec. 4.

3.2. Segmenting multiple images

The above procedure is applied to all the images in order to

estimate the sought total segmentations s1, s2 . . . , sn. Such

Figure 6: Motion segmentation is performed on each image indi-

vidually. The same motion (star or circle) may be given a different

label (purple or yellow) in different images.

estimates, however, are not absolute since each image has

been treated independently from the others, and hence re-

sults may differ by a permutation of the labels associated

with each motion, as shown in Fig. 6.

In order to address this issue, we consider a graph where

each node corresponds to an image and the edge between

images i and j is associated with a permutation Pij that

best maps sj into si. In order to compute such permuta-

tion, we ground on pairwise segmentation, since labels of

the same points are required: in order to map sj (labels of

image j) into si (labels of image i), we first map ŝ
j
i (la-

bels of image i in the pair (i, j)) into si, and then we map

sj into ŝ
i
j (labels of image j in the pair (i, j)). These are

linear assignment problems [19]. Thus the task is to com-

pute a permutation Pi for each image that reveals the true

numbering of motions such that Pij = PiP
−1

j , which can

be viewed as a permutation synchronization [33]. Hence

all the total segmentations are expressed with respect to the

same numbering of motions, as in Fig. 2.

Figure 7: Outline of the proposed approach.

3.3. Dealing with outliers

When doing pairwise segmentation, it is expected that mis-

matched points are classified as outlier (zero label). When

dealing with total segmentation, instead, the situation is dif-

ferent: in principle, there exists no outlier since each image

point actually belongs to a motion. However, in the pres-

ence of high corruption in the input matches, one may not

be able to assign a valid label to all image points. Indeed, it

may happen that a point is mismatched (and hence assigned

the zero label) in all the pairs, so that there is no valid infor-

mation to classify it. Such points are expected to have zero

label in the absolute segmentation. However, since they are

not actual outliers, we will refer to them as “unclassified”

or “unknown” in the experiments.
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Table 1: Average misclassification error [%] for several methods on the Hopkins155 benchmark [47]. Results are copied from [58].

LSA [59] GPCA [50] ALC [36] SSC [11] TPV [24] LRR [25] T-Linkage [27] S3C [22] RSIM [17] MSSC [21] KerAdd [58] Coreg [58] Subset [58] Baseline MODE

2 Motions 4.23 4.59 2.40 1.52 1.57 1.33 0.86 1.94 0.78 0.54 0.27 0.37 0.23 2.26 1.00

3 Motions 7.02 28.66 6.69 4.40 4.98 4.98 5.78 4.92 1.77 1.84 0.66 0.75 0.58 9.04 2.67

All 4.86 10.02 3.56 2.18 2.34 1.59 1.97 2.61 1.01 0.83 0.36 0.46 0.31 3.79 1.37

Table 2: Average and median misclassification error [%] for several methods on the Hopkins12 benchmark [52]. Results for different

variants of ALC and SSC are taken from [17] whereas results for the remaining methods are copied from the respective papers.

PF [52] PF+ALC [36] RPCA+ALC [36] ℓ1+ALC [36] SSC-R [11] SSC-O [11] RSIM [17] KerAdd [58] Coreg [58] Subset [58] Baseline MODE

Mean 14.94 10.81 13.78 1.28 3.82 8.78 0.61 0.11 0.06 0.06 7.45 4.33

Median 9.31 7.85 8.27 1.07 0.31 4.80 0.61 0.00 0.00 0.00 2.16 0.38

In order to deal with those points, a reasonable approach

is to ignore the labels which are set to zero by pairwise seg-

mentation and compute the mode over the remaining mea-

sures, i.e. substitute them with NaN before using Eq. (4).

In this way all the image points are assigned a valid label

(except those which are deemed as outlier in all the pairs),

meaning that this approach tends to classify a high amount

of points even in the presence of mismatches.

4. Experiments

In order to evaluate the performance of our approach –

named MODE
1 – we ran experiments on both synthetic data

and real images, in addition to the real data Hopkins155

[47] and Hopkins12 [52]. For pairwise segmentations –

which constitute the input to our method – we fitted multi-

ple fundamental matrices to correspondences in each image

pair using RPA [28] (code available online2). Default values

specified in the original paper were used for the algorithmic

parameters in all the experiments.

Note that there are no direct competitors to our method,

since the task of segmentation from pairwise matches has

not been addressed so far. For this reason, we focus on the

comparison with a trivial solution (named the “baseline”)

which takes the same input as our approach (i.e. the re-

sults from pairwise segmentation) and it is constructed as

follows: first, a maximum-weight spanning tree is com-

puted, where each node in the graph is an image and edges

are weighted with the number of inliers; then, the results

from pairwise segmentation are used to segment each im-

age along the tree, where the global numbering of motions

is fixed at the root and propagated to the leaves.

In order to enrich the evaluation, we also considered tra-

ditional methods requiring tracks as input. In the case of

the Hopkins datasets such tracks are available (Sec. 4.1),

whereas in the remaining scenarios (Sec. 4.2 and 4.3) they

were recovered from pairwise matches with two different

approaches (i.e. [30, 48]). Similarly to most works in mo-

tion segmentation literature, we assumed that the number of

1https://github.com/federica-arrigoni/ICCV_19
2http://www.diegm.uniud.it/fusiello/demo/rpa/

motions was known in advance and gave this value as input

to all the analysed techniques.

4.1. Hopkins Datasets

The Hopkins155 benchmark [47] contains 155 sequences

of indoor and outdoor scenes with two or three motions,

which are categorized into checkerboard, traffic and artic-

ulated/nonrigid sequences, and the Hopkins12 dataset [52]

provides 12 additional sequences with missing data. We

emphasize that these datasets provide (cleaned) tracks over

multiple images, so they are not suitable for the task ad-

dressed in this paper, which is segmentation from raw pair-

wise matches. However, we report results on these se-

quences since they are widely used in the literature.

In order to make a meaningful comparison with the state

of the art, a scheme that assigns a unique label to each track

is required, starting from labels of image points. To ac-

complish such a task, we use the same criterion as the one

developed in Sec. 3 to label each image point given multi-

ple measures derived from pairwise segmentation. We as-

sign to each track the mode of the labels of points belong-

ing to the track, and the same procedure is applied to the

baseline. Performance is measured in terms of misclassifi-

cation error, that is the percentage of misclassified tracks,

as it is customary in motion segmentation literature. Tracks

labelled as zero (if any) were counted as errors, since we

know that outliers are not present in these datasets.

Results are reported in Tab. 1 and Tab. 2 where MODE is

compared to several motion segmentation algorithms. Our

approach clearly outperforms the baseline and it performs

comparably or better than most of the state-of-the-art tech-

niques, with a mean error of 1.37% over all the sequences

in Hopkins155 and a median error of 0.38% over all the

sequences in Hopkins12. In particular, it is noticeable that

our method achieves (nearly) zero error in 139 out of 155

sequences in Hopkins155 and in 10 out of 12 sequences in

Hopkins12, as shown in Fig. 8. After inspecting the solu-

tion, it was found that the remaining sequences correspond

to situations where the algorithm used for pairwise segmen-

tation (RPA) performed bad in most image pairs.
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(a) Hopkins12 [52]

(b) Hopkins155 [47]

Figure 8: Histograms of misclassification errors achieved by

MODE and the baseline on the Hopkins155 and Hopkins12

datasets. The horizontal axis corresponds to a possible misclassifi-

cation error in an individual sequence, and the vertical axis corre-

sponds to the number of sequences where a given error is reached.

The fact that our method is not the best is not surprising

since we are making much weaker assumptions (matches

between image pairs instead of tracks over multiple im-

ages), i.e., we are addressing a more difficult task. Nev-

ertheless, our method achieves good performances. In gen-

eral, there is no reason to use our approach when tracks

are available and one out of the best traditional methods

(e.g.[17, 21, 58]) can be used. Our method is designed

for the scenario where pairwise matches are available only.

The next sections demonstrate the benefits of our approach

for this specific task.

4.2. Simulated Data

We considered the cars1 dataset from the traffic sequences

in Hopkins155, where d = 2, n = 20 and p = 6140.

Noise-free pairwise matches were obtained from the avail-

able tracks and synthetic errors were added to these cor-

respondences in order to produce mismatches. More pre-

cisely, in each image pair a fraction of the correspondences

– which ranged from 0 to 0.8 in our experiments – was ran-

domly switched. This scenario resembles unordered image

collections (e.g. in multibody structure from motion) where

errors are ubiquitous among pairwise matches. For each

configuration the test was repeated 10 times and average re-

sults were computed.

We compared MODE with the baseline, which – as our

method – takes as input the results from pairwise segmen-

tation. We also included in the comparison two traditional

methods which require tracks over multiple images as input,

namely RSIM3 [17] and Subset4 [58], whose implementa-

3
https://github.com/panji1990/Robust-shape-interaction-matrix

4https://alex-xun-xu.github.io/ProjectPage/CVPR_18/
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Figure 9: Misclassification error [%] and classified points [%] ver-

sus fraction of mismatches for several methods on the cars1 se-

quence from Hopkins155 [47].

Figure 10: Histograms of misclassification error achieved by

RPA [28] on cars1 [47] for a single trial. The horizontal axis

corresponds to the misclassification error in an individual image

pair. The vertical axis corresponds to the number of pairs where

a given error is obtained. The error and the percentage of points

classified by MODE are, respectively, 0.2% and 100% for 40% of

mismatches (left), 0.7% and 99.8% for 60% of mismatches (mid-

dle), 24.8% and 94.3% for 80% of mismatches (right).

tions are available online. The former provides a robust so-

lution to subspace separation, whereas the latter can be re-

garded as the current state of the art in motion segmentation

with mean error of 0.31% on the Hopkins155 benchmark

(see Tab. 1). We used two different techniques for comput-

ing tracks from pairwise matches, namely StableSfM5 [30]

and QuichMatch6 [48].

Performance was measured in terms of misclassification

errors, which is defined here as the percentage of misclassi-

fied points over the total amount of classified image points.

In other words, unlike in Sec. 4.1, segmentation results

were evaluated considering only points with a nonzero label

(i.e. points with zero label did not contribute to the error).

Indeed, due to the presence of mismatches, one may not ex-

pect to give a valid label to all the image points, as observed

in Sec. 3.3. We also computed the percentage of points clas-

sified by each method.

Results are reported in Fig. 9, which clearly shows the

robustness to mismatches gained by our approach: it is re-

markable that the error remains constant (around 0%) with

up to 60% of mismatches. MODE is significantly better

than the baseline both in terms of misclassification error and

percentage of classified points. The former exploits redun-

dant measures in order to produce the final segmentation,

whereas the latter uses results from a tree only.

5
http://www.maths.lth.se/matematiklth/personal/calle/sys_paper/sys_paper.html

6https://bitbucket.org/tronroberto/quickshiftmatching
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Concerning traditional methods, it was found by inspect-

ing the solution that Subset and RSIM actually segment all

the tracks, and unclassified data correspond to image points

that were not included in any track by the algorithm used

for computing tracks. Such techniques achieve a low mis-

classification error only when mismatches are below 10%
and performances degrade with increasing ratio of mis-

matches. Indeed, wrong correspondences propagate into the

tracks making traditional motion segmentation really hard

to solve. Notice that a track can even contain points of dif-

ferent motions, in which case errors in the output segmen-

tation appear by assigning a unique label to the entire track.

This clearly motivates the need of our method for segmen-

tation from raw pairwise matches.

In order to give a full picture on the performance of our

approach, we report in Fig. 10 the histograms of misclas-

sification error achieved by RPA over all the image pairs,

which gives an idea about how hard it is to solve the motion

segmentation given results of pairwise segmentation. In-

deed, RPA may fail to detect errors in the input matches and

it may not correctly segment some points since it lacks the-

oretical guarantees, thus producing errors in the individual

pairwise segmentations. As expected, the histograms shift

to the right as the percentage of input mismatches increases.

Let us consider the central histogram, which corresponds to

60% of mismatches: it is worth noting that, despite individ-

ual pairwise segmentations are noisy, our method achieves

nearly zero error. In other words, MODE is able to suc-

cessfully solve motion segmentation while reducing errors

in the pairwise segmentations, thanks to the fact that it ex-

ploits redundant measures in a principled manner. Further

analysis can be found in the supplementary material.

4.3. Real Data

In order to evaluate the performance of our approach on real

data, we considered both indoor and outdoor images. SIFT

keypoints [26] were extracted in all the images and corre-

spondences between image pairs were established using the

nearest neighbor and ratio test as in [26], using the VLFeat

library7. For each image pair (i, j), we kept only those cor-

respondences that were found both when matching image

i with j and when matching image j with i, and isolated

features (i.e. points that are not matched in any image) were

removed. No further filtering was applied.

4.3.1 Indoor scenes

Since there are no standard datasets for segmentation from

pairwise matches, we created a small benchmark consisting

of five image sequences. We considered indoor scenes con-

taining two or three motions where one object is fixed (i.e.

it is a part of the background), and we acquired from 6 to 10

7http://www.vlfeat.org/

(a) Flowers (b) Pencils (c) Bag (d) Bears (e) Penguin

Figure 11: Sample images from our dataset.

Figure 12: SIFT matches on an image pair from the Bag sequence.

images of size 2922× 2000 with a moving camera. Fig. 11

shows a sample image from each sequence and more details

about the dataset8 can be found in the supplementary mate-

rial. SIFT correspondences on such images are very noisy,

as shown in Fig. 12, making motion segmentation a chal-

lenging task. In the case of the Penguin sequence there is

no motion between some frames, so pairwise segmentation

was not performed. In the remaining sequences, RPA was

applied to all the image pairs.

As in Sec. 4.2, we compared MODE with the baseline,

which takes as input the results from pairwise segmentation,

and we also considered two traditional methods, namely

RSIM [17] and Subset [58], where StableSfM [30] and

QuichMatch [48] were used to compute tracks over mul-

tiple images. In order to evaluate results quantitatively, we

manually labelled points in each sequence, thus producing

a ground-truth segmentation of each image, that was used

to compute the misclassification error. Results are shown in

Tab. 3, which also reports the percentage of points classi-

fied by each method. See also Fig. 1 and the supplementary

material for qualitative evaluations.

While there are no significant differences between

MODE and the baseline in terms of misclassification error,

the former is superior in terms of the percentage of classi-

fied points since it exploits redundant two-frame segmenta-

tions. Both our method and the baseline – with a misclassi-

fication error lower than 5% in all the sequences – are sig-

nificantly better than Subset and RSIM. Traditional meth-

ods exhibit poor performances on our dataset since they do

not deal with mismatches, confirming the outcome of the

experiments on synthetic data.

We also tested the method developed in [16], which does

not require pairwise matches but feature locations and de-

scriptors only. We ran the available Matlab implementation

of [16] on Pencils. It did not return any solution after sev-

eral hours of computation due to “out of memory” error.

We conclude that it is not yet a practical approach to mo-

tion segmentation on the scenarios considered in our paper.

8https://github.com/federica-arrigoni/ICCV_19
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Table 3: Misclassification error [%] and classified points [%] for several methods on our dataset. The number of motions d, the number of

images n, and the total number of image points p are also reported for each sequence.

MODE Baseline StableSfM + Subset [58] QuichMatch + Subset [58] StableSfM + RSIM [17] QuichMatch + RSIM [17]

Dataset d n p Error Classified Error Classified Error Classified Error Classified Error Classified Error Classified

Penguin 2 6 5865 0.76 69.17 0.95 33.95 32.27 99.59 41.05 70.11 41.50 99.59 41.54 70.11

Flowers 2 6 7743 1.23 73.65 2.84 32.70 8.55 99.50 8.59 72.59 16.65 99,50 14.20 72.59

Pencils 2 6 2982 3.80 65.33 2.30 30.65 41.46 99.56 40.88 66.36 23.07 99.56 23.45 66.36

Bag 2 7 6114 1.52 57.95 1.54 26.56 14.22 99.69 15.67 65.85 34.55 99.69 39.92 65.85

Bears 3 10 15888 4.82 73.65 2.72 29.80 38.13 99.58 35.21 63.12 49.48 99.58 53.80 63.12

(a) helicopter [10] (b) boat [24] (c) cars7 [47] (d) cars8 [47]

Figure 13: Segmentation results are reported on sample images for MODE (top), the baseline (middle) and StableSfM + Subset [58]

(bottom). Different colours encode the membership to different motions. For better visualization, unclassified points are not drawn.

4.3.2 Outdoor scenes

To study a more realistic scenario, we considered four out-

door scenes, namely helicopter [10], boat [24], cars7 [47]

and cars8 [47]. A subset of the images was chosen for each

sequence in order to ensure enough motion between consec-

utive frames. The properties of each dataset are presented

in Tab. 4, which also reports the percentage of points classi-

fied by MODE, the baseline and Subset [58] combined with

StableSfM [30]. The latter provided the best results among

all possible combinations of traditional segmentation meth-

ods and tracking algorithms. In the case of the helicopter

sequence, a subset of the images has ground-truth pixel-

wise annotation, which was used to compute the misclas-

sification error (see Tab. 4). For the remaining sequences

no ground-truth is available, so only qualitative evaluation

can be provided, which is reported in Fig. 13 and in the sup-

plementary material.

Results show that our solution is of good quality in all

the images, outperforming the baseline in terms of amount

of classified data. This is particularly evident in the right

column of Fig. 13a where the baseline is not able to classify

any point in the moving object. The poor performance of

the baseline on some images gives an idea about how noisy

the individual pairwise segmentations are. Our method is

able to reduce such errors thanks to the fact that it exploits

redundant measures. There are no significant differences

between Subset and MODE in the boat sequence, which,

however, is a simple scene for matching due to slow mo-

tion. In the helicopter, cars7 and cars8 sequences, Subset

produces useless results.

Table 4: Misclassification error [%] and classified points [%] for

several methods on outdoor scenes. The number of motions d, the

number of images n, and the total number of image points p are

also reported for each sequence.

MODE Baseline StableSfM + Subset [58]

Dataset d n p Error Classified Error Classified Error Classified

helicopter [10] 2 10 17139 2.01 80.82 0.78 45.93 16.81 99.52

boat [24] 2 10 21183 – 87.34 – 56.31 – 99.62

cars7 [47] 2 21 16602 – 92.27 – 57.38 – 99.66

cars8 [47] 2 19 13438 – 93.12 – 50.53 – 99.61

5. Conclusion

We presented a new solution to the motion segmentation

where the problem is split in two steps. First, a segmenta-

tion is performed independently on pairs of images. Then,

the partial/local results are combined to segment points in

all the images. This general framework – combined with a

robust solution to two-frame segmentation (e.g. RPA [28])

– handles realistic situations such as the presence of mis-

matches that have been overlooked so far in previous work.

Our approach does not require tracks as input but only pair-

wise correspondences. Thus it could be exploited to build

tracks that are aware of segmentation, which constitute the

foundation of a multibody structure from motion pipeline.

Future research will explore this direction.
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Multiview registration via graph diffusion of dual quater-

nions. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2441 – 2448, 2011.
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[50] René Vidal, Yi Ma, and S. Shankar Sastry. Generalized

principal component analysis (GPCA). IEEE Transactions

on Pattern Analysis and Machine Intelligence, 27(12):1945–

1959, 2005.
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Salvi. Joint estimation of segmentation and structure

from motion. Computer Vision and Image Understanding,

117(2):113 – 129, 2013.

[61] Wei Zhang and Jana Kosecká. Nonparametric estimation of
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