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Abstract

We introduce a method for the generation of images from

an input scene graph. The method separates between a lay-

out embedding and an appearance embedding. The dual

embedding leads to generated images that better match

the scene graph, have higher visual quality, and support

more complex scene graphs. In addition, the embedding

scheme supports multiple and diverse output images per

scene graph, which can be further controlled by the user.

We demonstrate two modes of per-object control: (i) im-

porting elements from other images, and (ii) navigation in

the object space, by selecting an appearance archetype.

Our code is publicly available at https://www.

github.com/ashual/scene_generation.

1. Introduction

David Marr has defined vision as the process of discov-

ering from images what is present in the world, and where

it is [15]. The combination of what and where captures the

essence of an image at the semantic level and therefore, also

plays a crucial role when defining the desired output of im-

age synthesis tools.

In this work, we employ scene graphs with per-object lo-

cation and appearance attributes as an accessible and easy-

to-manipulate way for users to express their intentions, see

Fig. 1. The what aspect is captured hierarchically: objects

are defined as belonging to a certain class (horse, tree, boat,

etc.) and as having certain appearance attributes. These at-

tributes can be (i) selected from a predefined set obtained

by clustering previously seen attributes, or (ii) copied from

a sample image. The where aspect, is captured by what is

often called a scene graph, i.e., a graph where the scene ob-

jects are denoted as nodes, and their relative position, such

as “above” or “left of”, are represented as edge types.

Our method employs a dual encoding for each object in

the image. The first part encodes the object’s placement and

captures a relative position and other global image features,

as they relate to the specific object. It is generated based

on the scene graph, by employing a graph convolution net-

work, followed by the concatenation of a random vector z.

The second part encodes the appearance of the object and

can be replaced, e.g., by importing it from the same object

as it appears in another image, without directly changing the

other objects in the image. This copying of objects between

images is done in a semantic way, and not at the pixel level.

In the scene graph that we employ, each node is equipped

with three types of information: (i) the type of object, en-

coded as a vector of a fixed dimension, (ii) the location at-

tributes of the objects, which denote the approximate loca-

tion in the generated image, using a coarse 5 × 5 grid and

its size, discretized to ten values, and (iii) the appearance

embedding mentioned above. The edges denote relations:

“right of”, “left of”, “above”, “below”, “surrounding”, and

“inside”. The method is implemented within a convenient

user interface, which supports a dynamic placement of ob-

jects and the creation of a scene graph. The edge relations

are inferred automatically, given the relative position of the

objects. This eliminates the need for mostly unnecessary

user intervention. Rendering is done in real time, support-

ing the creation of novel scenes in an interactive way, see

Fig. 1 and more examples in the supplementary.

The neural network that we employ has multiple sub-

parts, as can be seen in Fig. 2: (i) A graph convolutional

network that converts the input scene graph to a per-object

embedding to their location. (ii) A CNN that converts the

location embedding of each object to an object’s mask.

(iii) A parallel network that converts the location embed-

ding to a bounding box location, where the object mask is

placed. (iv) An appearance embedding CNN that converts

image information into an embedding vector. This process

is done off-line and when creating a new image, the vectors

can be imported from other images, or selected from a set

of archetypes. (v) A multiplexer that combines the object

masks and the appearance embedding information, to cre-

ate a one multidimensional tensor, where different groups

of layers denote different objects. (vi) An encoder-decoder

residual network that creates the output image.

Our method is related to the recent work of [9], who

create images based on scene graphs. Their method also

uses a graph convolutional network to obtain masks, a mul-
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Figure 1. An example of the image creation process. (top row) the schematic illustration panel of the user interface, in which the user

arranges the desired objects. (2nd row) the scene graph that is inferred automatically based on this layout. (3rd row) the layout that is

created from the scene graph. (bottom row) the generated image. Legend for the GUI colors in the top row: purple – adding an object,

green – resizing it, red – replacing its appearance. (a) A simple layout with a sky object, a tree and a grass object. All object appearances

are initialized to a random archetype appearance. (b) A giraffe is added. (c) The giraffe is enlarged. (d) The appearance of the sky is

changed to a different archetype. (e) A small sheep is added. (f) An airplane is added. (g) The tree is enlarged.

tiplexer that combines the layout information and a subse-

quent encoder-decoder architecture for obtaining the final

image. There are, however, important differences: (i) by

separating the layout embedding from the appearance em-

bedding, we allow for much more control and freedom to

the object selection mechanism, (ii) by adding the location

attributes as input, we allow for an intuitive and more di-

rect user control, (iii) the architecture we employ enables

better quality and higher resolution outputs, (iv) by adding

stochasticity before the masks are created, we are able to

generate multiple results per scene graph, (v) this effect is

amplified by the ability of the users to manipulate the re-

sulting image, by changing the properties of each individual

object, (vi) we introduce a mask discriminator, which plays

a crucial role in generating plausible masks, (vii) another

novel discriminator captures the appearance encoding in a

counterfactual way, and (viii) we introduce feature match-

ing based on the discriminator network and (ix) a perceptual

loss term to better capture the appearance of an object, even

if the pose or shape of that object has changed.

2. Previous Work

Image generation techniques based on GANs [3] are con-

stantly improving in resolution, visual quality, the diversity

of generated images, and the ability to cover the entire vi-

sual domain presented during training. In this work, we

address conditional image generation, i.e., the creation of

images that match a specific input. Earlier work in condi-

tional image generation includes class based image gener-

ation [16], which generates an image that matches a given

textual description [18, 25]. In many cases, the conditioning

signal is a source image, in which case the problem is often

referred to as image translation. Pix2pix [7] is a fully super-

vised method that requires pairs of matching samples from

the two domains. The Pix2pixHD architecture that was re-

cently presented by [24] is highly influential and many re-

cent video or image mapping works employ elements of it,

including our work.

Image generation based on scene graphs was recently

presented in [9]. A scene graph representation is often used

for retrieval based on text [10, 17], and a few datasets in-

clude this information, e.g., COCO-stuff [2] and the visual
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Figure 2. The architecture of our composite network, including the subnetworks G,M,B,A,R, and the process of creating the layout

tensor t. The scene graph is passed to the network G to create the layout embedding ui of each object. The bounding box bi is created from

this embedding, using network B. A random vector zi is concatenated to ui, and the network M computes the mask mi. The appearance

information, as encoded by the network A, is then added to create the tensor t with c + d5 channels, c being the number of classes. The

autoencoder R generates the final image p from this tensor.

genome [12]. Also related is the synthesis of images from

a given input layout of bounding boxes (and not one that

is inferred by a network from a scene graph), which was

very recently studied by [27] for small 64x64 images. In

another line of work, images are generated to match input

sentences, without constructing the scene graph as an inter-

mediate representation [18, 25, 6].

Recently, an interactive tool was introduced based on the

novel notion of GAN dissection [1]. This tool allows for the

manipulation of well-localized neurons that control the oc-

currence of specific objects across the image using a draw-

ing interface. By either adding or reducing the activations of

these neurons, objects can be added, expanded, reduced or

removed. The manipulation that we offer here is both more

semantic (less related to specific locations and more to spa-

tial relations between the objects), and more precise, in the

sense that we provide full control over the exact instance of

the object and not just of the desired class.

3. Method

Each object i in the input scene graph is associated with

a single node ni = [oi, li], where oi ∈ R
d1 is a learned en-

coding of the object class and li ∈ {0, 1}d2+d3 is a location

vector. The object class embedding oi is one of c possible

embedding vectors, c being the number of classes, and oi is

set according to the class of object i, denoted ci. The em-

bedding size d1 is set arbitrarily to 128. The first d2 = 25
bits of li denote a coarse image location using a 5× 5 grid,

and the rest denotes the size of the object, using a scale of

d3 = 10 values. The edge information eij ∈ R
d1 exists for

a subset of the possible pairs of nodes, and encodes, using

a learned embedding, the relations between the nodes. In

other words, the values of eij are taken from a learned dic-

tionary with six possible values, each associated with one

type of pairwise relation.

The location of each generated object is given as a

pseudo-binary mask mi (output of a sigmoid) and a bound-

ing box bi = [x1, y1, x2, y2]
⊤ ∈ [0, 1]4, which encodes the

coordinates of the bounding box as a ratio of the image di-

mensions. The mask, but not the bounding box, is also de-

termined by a per-object random vector zi ∼ N(0, 1)d4 to

create a variation in the generated masks, where d4 = 64
was set arbitrarily, without testing other values.

The method employs multiple ways of embedding input

information. The class identity and every inter-object rela-

tion, both taking a discrete value, are captured by embed-

ding vectors of dimension d1, which are learned as part of

the end-to-end training. The object appearance ai ∈ R
d5

of object i seen during training, is obtained by applying a

CNN A to a (ground truth) cropped image I ′i of that object,

resized to a fixed resolution of 64× 64. d5 was set arbitrar-

ily to 32 to reflect that it has less information than that of

the entire object, which is embedded in R
d1 .

The way in which the data flows through the sub-

networks, as depicted in Fig. 2, is captured by the equations:

ui = G({ni}, {eij}) (1)

mi = M(ui, zi) (2)

bi = B(ui) (3)

ai = A(I ′i) (4)

t = T ({ci,mi, bi, ai}) (5)

p = R(t) (6)

where G is the graph convolutional network [9, 20] that

generates the per-object layout embedding, M and B are

the networks that generate the object’s mask and its bound-

ing box, respectively, T is the fixed (unlearned) function

that maps the various object embeddings to a tensor t. Fi-

nally, R is the encoder-decoder network that outputs an im-

age p ∈ R
H×W×3 based on t. The exact architecture of

each network is provided in the supplementary.

The function T constructs the tensor t as a sum of per-
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object tensors ti ∈ R
H×W×(d5+c), where c is the number of

objects. First, the mask mi is shifted and scaled, according

to the bounding box bi, resulting in a mask mHW
i of size

H×W . Then, a first tensor t1i of size H×W×d5 is formed

as the tensor product of mHW
i and ai. Similarly, a second

tensor t2i ∈ R
H×W×c is formed as the tensor product of

mHW
i and the one hot vector of length c encoding class ci.

The tensor ti is a concatenation of the two tensors t1i and t2i
along the third dimension.

For performing adversarial training of the appearance

embedding network A, we create two other tensors: t′ and

t′′. The first one is obtained by employing the ground truth

bounding box b′i of object i and the ground truth segmenta-

tion mask m′
i. The second one is obtained by incorporating

the same ground truth bounding box and mask in a counter-

factual way, by replacing ai with ak, where ak is an appear-

ance embedding of an object image I ′k of a different object

from the same class ci, i.e., ak = A(I ′k), ci = ck and

t′ = T ({ci,m
′
i, b

′
i, ai}) (7)

t′′ = T ({ci,m
′
i, b

′
i, ak}) (8)

During training, in half of the training samples, the lo-

cation and size information vectors li are zeroed, in order

to allow the network to generate layouts, even when this

information is not available.

3.1. Training Loss Terms

The loss used to optimize the networks contains multi-

ple terms, which is not surprising, given the need to train

five networks (not including the adversarial discriminators

mentioned below) and two vector embeddings (oi and eij).

L = LRec+λ1Lbox+λ2Lperceptual+λ3LD-mask+λ4LD-image

+ λ5LD-object + λ6LFM-mask + λ7LFM-image (9)

where in our experiments we set λ1 = λ2 = λ6 = λ7 =
10, λ3 = λ4 = 1, λ5 = 0.1.

The reconstruction loss LRec is the L1 difference be-

tween the reconstructed image p and the ground truth train-

ing image. The box loss Lbox is the MSE between the

computed bi (summed over all objects) and the ground

truth bounding box b′i. Note that unlike [9], we do not

employ a mask loss, since our mask contains a stochas-

tic element (Eq. 2). The perceptual loss Lperceptual =∑
u∈U

1
u
||Fu(p) − Fu(p′)||1 [8] compares the generated

image with the ground truth training image p′, using the ac-

tivations Fu of the VGG network [21] at layer u in a set of

predefined layers U .

Our method employs three discriminators Dmask, Dobject,

and Dimage. The mask discriminator employs a Least

Squares GAN (LS-GAN [14]) and is conditioned on the ob-

ject’s class ci. Recall that m′
i is the real mask of object i

and mi, the generated mask, which depends on a random

variable zi. The GAN loss associated with the mask dis-

criminator is given by

LD−mask = [logDmask(m
′
i, ci)]+

E
z∼N (0,1)64

[log(1−Dmask(M(ui, z), ci)] (10)

For the purpose of training Dmask, we minimize

−LD−mask. The second discriminator Dimage, is used for

training in an adversarial manner three networks R, M , and

A. The loss of LD-image is a compound loss that is given as

LD-image = Lreal − Lfake-image − Lfake-layout + Lalt-appearance

where

Lreal = logDimage(t
′, p′) (11)

Lfake-image = log(1−Dimage(t
′, p)) (12)

Lfake-layout = log(1−Dimage(t, p
′)) (13)

Lalt-appearance = log(1−Dimage(t
′′, p′)) (14)

The goal of the compound loss is to make sure that the

generated image p, given a ground truth layout tensor t′ is

indistinguishable from the real image p′, and that this is

true, even if the layout tensor t is based on estimated bound-

ing boxes and masks (unlike t′). In addition, we would like

the ground truth image to be a poor match for a counterfac-

tual appearance vector, as given in t′′.

Following [24] we use a multi-scale LS-GAN with two

scales. In other words, LD-image is computed at the full scale

and at half scale (using two different discriminators), and

both terms are summed up to obtain the actual LD-image.

The third discriminator, Dobject, guarantees that the gen-

erated objects, one by one, look real. For this purpose, we

crop p using the bounding boxes bi to create object im-

ages Ii. Recall that I ′i are ground truth crops of images,

obtained from the ground truth image p′, using the ground

truth bounding boxes b′.

Lobject =
∑

i=1

logDobject(I
′
i)− logDobject(Ii) (15)

Dobject maximizes this loss during training.

The mask feature matching loss LFM-mask and the image

feature matching loss LFM-image are similar to the perceptual

loss, i.e., they are based on the L1 difference in the acti-

vation. However, instead of the VGG loss, the discrimina-

tors are used, as in [19]. In these losses, all layers are used.

LFM-mask compares the activations of the generated mask mi

and the real mask m′
i (the discriminator Dmask also takes the

class ci as input). The other feature matching loss LFM-image

compares the activations of Dimage(t, p) with those of the

ground truth layout tensor and image Dimage(t
′, p′).
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(a) (b) (c) (d) (e) (f) (g)
Figure 3. Image generation based on a given scene graph. Each row is a different example. (a) the scene graph, (b) the ground truth image,

from which the layout was extracted, (c) our results when we used the ground truth layout of the image, similar to [27], (d) our method’s

results, where the appearance attributes present a random archetype and the location attributes coarsely describe the ground truth bounding

box, (e) our results when we use the ground truth image to generate the appearance attributes, and the location attributes are zeroed li = 0,

(f) our results where li = 0, and the appearance attributes are sampled from the archetypes, and (g) the results of [9].

(a) (b) (c) (d) (e) (f) (g)
Figure 4. The diversity obtained when keeping the location attributes li fixed at zero and sampling different appearance archetypes. (a) the

scene graph, (b) the ground truth image, from which the layout was extracted, (c–g) generated images.

3.2. Generating the archetypes

The GUI enables the user to select from preexisting ob-

ject appearances, as well as copying the appearance vec-

tor ai from another image. The existing object appearances

are given as 100 archetypes per object class. These are ob-

tained, by applying the learned network A to all objects in a

given class in the training set and employing k-means clus-

tering, in order to obtain 100 class means.

In the GUI, the archetypes are presented linearly along a

slider. The order along the slider is obtained by applying a

1-D t-SNE [23] embedding to the 100 archetypes.

3.3. Inferring the scene graph from the layout panel

The GUI lets the users place objects on a schematic lay-

out, see Fig. 1. Each object is depicted as a string in one

of ten different font sizes, in order to capture the size ele-

ment of li. The location in the layout determines the 5 × 5

grid placement, which is encoded in the other part of li.

Note, however, that the locations and sizes are provided as

indications of the structure of the graph layout and not as

absolute locations (or scene layout). The generating net-

work maintains freedom in the object placements to match

the semantic properties of the objects in the scene.

The coarse placement by the user is more intuitive and

less laborious than specifying a scene graph. To avoid

adding unwanted work for the users, the edge labels are in-

ferred, based on the relative position and size of the objects.

An object which is directly to the left of another object, for

example, is labeled “left of”. The order in which objects are

inserted to the layout determines the reference directing. If

object i is inserted before object j, then “i is to the left of j”

and not ”j is to the right of i”. The inside and surrounding

relations are determined similarly, by considering objects of

different sizes, whose centers are nearby.

4565



(a) (b) (c) (d) (e) (f) (g)
Figure 5. The diversity obtained when keeping the appearance vectors fixed and sampling from the location distribution. (a) the scene

graph, (b) the ground truth image from which the layout was extracted, (c–g) generated images.

Figure 6. Duplicating an object’s appearance in the generated image. Images are created based on the scene graph, such that the appearance

is taken from one of five unrelated images. In this example, the sky’s appearance is generated from the reference image, while all other

objects use the same random appearance archetype.

3.4. Training details

All networks are trained using ADAM [11] solver with

beta1 = 0.5 for 1 million iterations. The learning rate was

set to 1e−4 for all components except LD-mask, where we set

it to a smaller learning rate of 1e−5. The different learning

rates help us to stabilize the mask network. We use batch

sizes of 32, 16, 4 in our 64× 64, 128× 128, 256× 256 res-

olutions respectively. Notice that since each image contains

up to 8 objects, each batch contains up to 8 × 32 = 256
different objects.

4. Experiments

We compare our results with the state of the art methods

of [9] and [27], using various metrics from the literature.

In addition, we perform an ablation analysis to study the

relative contribution of various aspects of our method. Our

experiments are conducted on the COCO-Stuff dataset [2],

which, using the same split as the previous works, con-

tains approximately 25,000 train images, 1000 validation,

and 2000 test images.

We employ two modes of experiments: either using the

ground truth (GT) layout or the inferred layout. The first

mode is the only one suitable for the method of [28]. When-

ever possible, we report the statistics reported in the previ-

ous work. Some of the statistics reported for [9] are com-

puted by us, based on the published model. We report re-

sults for three resolutions 642, 1282, and 2562. The liter-

ature reports numerical results only for the first resolution.

While [9] presents visual results for 128x128, our attempts

to train their method using the published code on this reso-

lution, resulted in sub-par performance, despite some effort.

We, therefore, prefer not to provide these non-competitive

baseline numbers. The code of [28] is not yet available.

We employ multiple acceptable literature evaluation

metrics for evaluating the generated images. The incep-

tion score [19] measures both the quality of the generated

images and their diversity. As has been done in previous

works, a pre-trained inception network [22] is employed in

order to obtain the network activations used to compute the

score. Larger inception scores are better. The FID [5] mea-

sures the distance between the distribution of the generated
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images and that of the real test images, both modelled as a

multivariate Gaussian. Lower FID scores are better.

Less common, but relevant to our task, is the classifica-

tion accuracy score, used by [28]. A ResNet-101 model [4]

is trained to classify the 171 objects available in the train-

ing datasets, after cropping and resizing them to a fixed size

of 224x224 pixels. On the test image, we report the accu-

racy of this classifier applied to the object images that are

generated, using the bounding box of the image’s layout. A

higher accuracy means that the method creates more realis-

tic, or at least identifiable, objects.

We also report a diversity score [26], which is based on

the perceptual similarity [10] between two images. This

score is used to measure the distance between pairs of im-

ages that are generated given the same input. Ideally, the

user would be able to obtain multiple, diverse, alternative

outputs to choose from. Specifically, the activations of

AlexNet [13] are used together with the LPIPS visual simi-

larity metric [26]. A higher diversity score is better.

In addition, we also report three scores for evaluating the

quality of the bounding boxes. The IoU score is the ratio

between the area of the ground truth bounding box that is

also covered by the generated bounding box (the intersec-

tion), and the area covered by either box (the union). We

also report recall scores at two different thresholds. R@0.5

measures the ratio of object bounding boxes with an IoU of

at least 0.5, and similarly for R@0.3.

Tab. 1 compares our method with the baselines and the

real test images using the inception, FID, and classification

accuracy scores. We make sure not to use information that

the baseline method of [9] is not using and use zero location

attributes and appearance attributes that are randomly sam-

pled (see 3.2). [28] employs bounding boxes and not masks.

However, we follow the same comparison (to masked based

methods) given in their paper.

As can be seen, our method obtains a significant lead in

all these scores over the baseline methods, whenever such a

comparison can be made. This is true both when the ground

truth layout is used and when the layout is generated. As

expected, the ground truth layout obtains better scores.

Sample results of our 256x256 model are shown in

Fig. 3, using test images from the COCO-stuff datasets.

Here, and elsewhere, the supplementary has more samples.

Each row presents the scene layout, the ground truth image

from which the layout was extracted, our method’s results,

where the object attributes present a random archetype and

the location attributes are zeroed (li = 0), our results when

using the ground truth layout of the image (including masks

and bounding boxes), our results where the appearance at-

tributes of each object are copied from the ground truth im-

age and the location vectors are zero, and our results where

the location attributes coarsely describe the objects’ loca-

tions and the appearance attributes are randomly selected

from the archetypes. In addition, we present the result of

the baseline method of [9] at the 64x64 resolution for which

a model was published.

As can be seen, our model produces realistic results

across all settings, which are more pleasing than the base-

line method. Using ground truth location and appearance

attributes, the resulting image better matches the test image.

Tab. 2 reports the diversity of our method in comparison

to the two baseline methods. The source of stochasticity

we employ (the random vector zi used in Eq. 2) produces a

higher diversity than the two baseline methods (which also

include a random element), even when not changing the lo-

cation vector l1 or appearance attributes ai. Varying either

one of these factors adds a sizable amount of diversity. In

the experiments of the table, the location attributes, when

varied, are sampled using per-class Gaussian distribution

that fit to the location vectors of the training set images.

Fig. 4 presents samples obtained when sampling the ap-

pearance attributes. In each case, for all i, li = 0 and the

object’s appearance embedding ai is sampled uniformly be-

tween the archetypes. This results in a considerable visual

diversity. Fig. 5 presents results in which the appearance is

fixed to the mean appearance vector for all objects of that

class and the location attribute vectors li are sampled from

the Gaussian distributions mentioned above. In almost all

cases, the generated images are visually pleasing. In some

cases, the location attributes sampled are not compatible

with a realistic image. Note, however, that in our method,

the default value for li is zero and not a random vector.

Tab. 3 presents a comparison with the method of [9],

regarding the placement accuracy of the bounding boxes.

Even when not using the location attribute vectors li, our

bounding box placement better matches the test images. As

expected, adding the location vectors improves the results.

The ability of our method to copy the appearance of an

existing image object is demonstrated in Fig. 6. In this ex-

ample, we generate the same test scene graph, while vary-

ing a single object in accordance with five different op-

tions extracted from images unseen during training. De-

spite the variability of the appearance that is presented in

the five sources, the generated images mostly maintain their

visual quality. These results are presented at a resolution

of 256x256, which is the default resolution for our GUI. At

this resolution, the system processes a graph in 16.3ms.

User study Following [9], we perform a user study to com-

pare with the baseline method the realism of the generated

image, the adherence to the scene graph, as well as to ver-

ify that the objects in the scene graph appear in the output

image. The user study involved n = 20 computer graph-

ics and computer vision students. Each student was shown

the output images for 30 random test scene-graphs from the

COCO-stuff dataset and was asked to select the preferable

method, according to two criteria: “which image is more re-
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Reso- Method Inceptiona FID Accu-

lutionb racy

64x64

Real Images 16.3± 0.4 0 54.5

[9] GT Layout 7.3± 0.1 86.5 33.9

[27] GT Layout 9.1± 0.1 c d

Ours GT Layout 10.3± 0.1 48.7 46.1

[9] 6.7± 0.1 103.4 28.8

Ours 7.9± 0.2 65.3 43.3

128x128

Real Images 24.2± 0.9 0 59.3

Ours GT Layout 12.5± 0.3 59.5 44.6

Ours 10.4± 0.4 75.4 42.8

256x256

Real Images 30.7± 1.2 0 62.4

Ours GT Layout 16.4± 0.7 65.2 45.3

Ours 14.5± 0.7 81.0 42.2

aThe inception score of [9] for the complete pipeline is taken from their

paper. The other scores are not reported there. The inception score for [27]

is the one reported by the authors.
b[9] and [27] report numerical results only for a resolution of 64x64.
cNot reported and cannot be computed due to lack of code/results.
dThe accuracy reported by [27] is incompatible (different classifiers).

Table 1. A quantitative comparison using various image generation

scores. In order to support a fair comparison, our model does not

use location attributes and employs random appearance attributes.

alistic” and “which image better reflects the scene graph”.

In addition, the list of objects in the scene graph was pre-

sented, and the users were asked to count the number of

objects that appear in each of the images. The two images,

one for the method of [9] and one for our method, were pre-

sented in a random order. To allow for a fair comparison,

the appearance archetypes were selected at random, the lo-

cation vectors were set to zero for all objects, and we have

used images from our 64 × 64 resolution model. The re-

sults, listed in Tab. 4, show that our method significantly

outperforms the baseline method in all aspects tested.

Ablation analysis The relative importance of the various

losses is approximated, by removing it from the method and

training the 128x128 model. For this study, we use both the

inception and the FID scores. The results are reported in

Tab. 5. As can be seen, removing each of the losses results

in a noticeable degradation. Removing the perceptual loss is

extremely detrimental. Out of the three discriminators, re-

moving the mask discriminator is the most damaging, since,

due to the random component zi, we do not have a direct

loss on the mask. Finally, replacing our image discrimina-

tor with the one in [9], results in some loss of accuracy.

5. Conclusion

We present an image generation tool in which the input

consists of a scene graph with the potential addition of loca-

tion information. Each object is associated both with a lo-

cation embedding and with an appearance embedding. The

latter can be extracted from another image, allowing for a

Res Method Diversity

64x64 Johnson et al. [9] 0.15± 0.08

Zhao et al. [27] GT layout 0.15± 0.06

Ours fixed appearance attributes 0.23± 0.01

and zeroed location attributes

Ours zeroed location attributes 0.35± 0.01

Ours fixed appearance attributes 0.37± 0.01

Our full method 0.43± 0.07

256x256 Ours fixed appearance attributes 0.48± 0.09

and zeroed location attributes

Ours zeroed location attributes 0.61± 0.07

Ours fixed appearance attributes 0.62± 0.05

Our full method 0.67± 0.05

Table 2. The diversity score of [26]. The results of [9] are com-

puted by us and are considerably higher than those reported for the

same method by [27]. The results of [27] are from their paper.

IoU R@0.5 R@0.3

Johnson et al. [9]a 0.44 0.32 0.52

Ours (w/o location attributes) 0.48 0.45 0.66

Ours (w/ location attributes) 0.65 0.68 0.87

aTaken from the paper itself

Table 3. Comparison of predicted bounding boxes

User Study [9] Ours

More realistic output 16.7% 83.3%

Better adherence to scene graph 19.3% 80.7%

Ratio of observed objects 27.31% 45.38%

among all COCO objects

Ratio of observed objects 46.49% 65.23%

among all COCO stuff

Table 4. User study results

Model Inception FID

Full method 10.4± 0.4 75.4

No Lperceptual 6.2± 0.1 125.1

No LD-mask 5.2± 0.1 183.6

No LD-image 7.4± 0.2 122.5

No LD-object 8.7± 0.1 94.5

Using Dimage of [9] 8.1± 0.3 114.2

Table 5. Ablation Study

duplication of existing objects to a new image, where their

layout is drastically changed. In addition to the dual encod-

ing, our method presents both a new architecture and new

loss terms, which leads to an improved performance over

the existing baselines.
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