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Figure 1: From a 3D scan and a set of CAD models, our method learns to predict 9DoF CAD model alignments to the objects

of the scan in a fully-convolutional, end-to-end fashion. Our proposed 3D CNN first detects objects in the scan, then uses

the regressed object bounding boxes to establish symmetry-aware object correspondences between a scan object and CAD

model, which inform our differentiable Procrustes alignment loss, enabling learning of alignment-informed correspondences

and producing CAD model alignment to a scan in a single forward pass.

Abstract

We present a novel, end-to-end approach to align CAD

models to an 3D scan of a scene, enabling transformation of

a noisy, incomplete 3D scan to a compact, CAD reconstruc-

tion with clean, complete object geometry. Our main contri-

bution lies in formulating a differentiable Procrustes align-

ment that is paired with a symmetry-aware dense object cor-

respondence prediction. To simultaneously align CAD mod-

els to all the objects of a scanned scene, our approach de-

tects object locations, then predicts symmetry-aware dense

object correspondences between scan and CAD geometry in

a unified object space, as well as a nearest neighbor CAD

model, both of which are then used to inform a differentiable

Procrustes alignment. Our approach operates in a fully-

convolutional fashion, enabling alignment of CAD models

to the objects of a scan in a single forward pass. This en-

ables our method to outperform state-of-the-art approaches

by 19.04% for CAD model alignment to scans, with ≈ 250×
faster runtime than previous data-driven approaches.

1. Introduction

In recent years, RGB-D scanning and reconstruction has

seen significant advances, driven by the increasing avail-

ability of commodity range sensors such as the Microsoft

Kinect, Intel RealSense, or Google Tango. State-of-the-

art 3D reconstruction approaches can now achieve im-

pressive capture and reconstruction of real-world environ-

ments [19, 26, 27, 38, 38, 5, 8], spurring forth many po-

tential applications of this digitization, such as content cre-

ation, or augmented or virtual reality.

Such advances in 3D scan reconstruction have nonethe-

less remained limited towards these use scenarios, due to

geometric incompleteness, noise and oversmoothing, and

lack of fine-scale sharp detail. In particular, there is a no-

table contrast in such reconstructed scan geometry in com-

parison to the clean, sharp 3D models created by artists for

visual and graphics applications.

With the increasing availability of synthetic CAD mod-

els [4], we have the opportunity to reconstruct a 3D scan
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through CAD model shape primitives; that is, finding and

aligning similar CAD models from a database to each ob-

ject in a scan. Such a scan-to-CAD transformation en-

ables construction of a clean, compact representation of a

scene, more akin to artist-created 3D models to be con-

sumed by mixed reality or design applications. Here, a key

challenge lies in finding and aligning similar CAD mod-

els to scanned objects, due to strong low-level differences

between CAD model geometry (clean, complete) and scan

geometry (noisy, incomplete). Current approaches towards

this problem thus often operate in a sparse correspondence-

based fashion [22, 1] in order to establish reasonable robust-

ness under such differences.

Unfortunately, such approaches, in order to find and

align CAD models to an input scan, thus involve several in-

dependent steps of correspondence finding, correspondence

matching, and finally an optimization over potential match-

ing correspondences for each candidate CAD model. With

such decoupled steps, there is a lack of feedback through

the pipeline; e.g., correspondences can be learned, but they

are not informed by the final alignment task. In contrast, we

propose to predict symmetry-aware dense object correspon-

dences between scan and CADs in a global fashion. For

an input scan, we leverage a fully-convolutional 3D neu-

ral network to first detect object locations, and then from

each object location predict a uniform set of dense object

correspondences and object symmetry are predicted, along

with a nearest neighbor CAD model; from these, we intro-

duce a differentiable Procrustes alignment, producing a fi-

nal set of CAD models and 9DoF alignments to the scan in

an end-to-end fashion. Our approach outperforms state-of-

the-art methods for CAD model alignment by 19.04% for

real-world 3D scans.

Our approach is the first, to the best of our knowledge, to

present an end-to-end scan-to-CAD alignment, constructing

a CAD model reconstruction of a scene in a single forward

pass. In summary, we propose an end-to-end approach for

scan-to-CAD alignment featuring:

• a novel differentiable Procrustes alignment loss, en-

abling end-to-end CAD model alignment to a 3D scan,

• symmetry-aware dense object correspondence predic-

tion, enabling robust alignment even under various ob-

ject symmetries, and

• CAD model alignment for a scan of a scene in a single

forward pass, enabling very efficient runtime (< 3s on

real-world scan evaluation)

2. Related work

RGB-D Scanning and Reconstruction 3D scanning

methods have a long research history across several com-

munities, ranging from offline to real-time techniques. In

particular, RGB-D scanning has become increasingly pop-

ular, due to the increasing availability of commodity range

sensors. A very popular reconstruction technique is the vol-

umetric fusion approach by Curless and Levoy [6], which

has been materialized in many real-time reconstruction

frameworks such as KinectFusion [19, 26], Voxel Hash-

ing [27] or BundleFusion [8], as well as in the context of

state-of-the-art offline reconstruction methods [5]. An al-

ternative to these voxel-based scene representations is based

on surfels [21], which has been used by ElasticFusion [38]

to realize loop closure updates. These works have led to

RGB-D scanning methods that feature robust, global track-

ing and can capture very large 3D environments. However,

though these methods can achieve stunning results in RGB-

D capture and tracking, the quality of reconstructed 3D ge-

ometry nonetheless remains far from from artist-created 3D

content, as the reconstructed scans are partial, and contain

noise or oversmoothing from sensor quality or small camera

tracking errors.

3D Features for Shape Alignment and Retrieval An

alternative to bottom-up 3D reconstruction from RGB-D

scanning techniques is to find high-quality CAD models

that can replace the noisy and incomplete geometry from

a 3D scan. Finding and aligning these CAD models in-

evitably requires 3D feature descriptors to find geometric

matches between the scan and the CAD models. Tradition-

ally, these descriptors were hand-crafted, and often based

on a computation of histograms (e.g., point normals), such

as FPFH [30], SHOT [36], or point-pair features [12].

More recently, with advances in deep neural networks,

these descriptors can be learned, for instance based on an

implicit signed distance field representation [41, 10, 11].

A typical pipeline for CAD-to-scan alignments builds on

these descriptors; i.e., the first step is to find 3D feature

matches and then use a variant of RANSAC or PnP to com-

pute 6DoF or 9Dof CAD alignments. This two-step strat-

egy has been used by Slam++ [31], Li et al. [22], Shao et

al. [32], the data-driven work by Nan et al. [25] and the

recent Scan2CAD approach [1]. One potential approach

to combine correspondence prediction and alignment is

through differentiable RANSAC [3], which has been ap-

plied for camera localization. Our approach is designed to

learn robust dense correspondences through a differentiable

Procrustes alignment where correspondences and their rel-

ative weights are jointly optimized together without requir-

ing multiple hypothesis generation. Other approaches rely

only on single RGB(-D) frame input, but use a similar two-

step alignment strategy [23, 20, 34, 18, 13, 42]. While these

methods are related, their focus is different as we address

geometric alignment independent of RGB information.

While promising results have been achieved by these

two-step approaches, there remains a fundamental limita-
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tion in the decoupled nature of feature matching and align-

ment computation. This inherently limits the ability of data-

driven descriptors, as they remain unaware of the used opti-

mization algorithm.

In our work, we propose an end-to-end alignment algo-

rithm where correspondences are trained through gradients

from an differentiable Procrustes optimizer.

Shape Retrieval Challenges and RGB-D Datasets In

the context of 2D object alignment methods several datasets

provide alignment annotations between RGB images and

CAD models, including the PASCAL 3D+ [40], Object-

Net3D [39], the IKEA objects [23], and Pix3D [34]; how-

ever, no geometric information is given in the query im-

ages. SHREC provides a very popular series of 3D shape

retrieval challenges, organized as part of Eurographics

3DOR [17, 29]; the tasks include matching objects from

ScanNet [7] and SceneNN [16] to ShapeNet models [4].

More recently, Scan2CAD [1] provides accurate CAD

alignment annotations on top of ScanNet [7] using

ShapeNet models [4], based on roughly 100k manually

annotated correspondences. In addition to evaluating our

method on the Scan2CAD test dataset, we also evaluate on

the synthetic SUNCG [33] dataset.

3. Overview

For an input 3D scan along with a set of candidate CAD

models, our method aims to align similar CAD models to

each object instance in the scan. Object locations in the scan

are detected, and for each detected object, a similar CAD

model is retrieved and a 9DoF transformation (3 degrees

each for translation, rotation, and scale) computed to align

it to the scan geometry. Thus we can transform a noisy,

incomplete 3D scan into a compact, CAD-based represen-

tation with clean, complete geometry, as shown in Figure 1.

To this end, we propose an end-to-end 3D CNN-based

approach to simultaneously retrieve and align CAD mod-

els to the objects of a scan in a single pass, for scans of

varying sizes. This end-to-end formulation enables the final

alignment process to inform learning of scan-CAD corre-

spondences. To enable effective learning of scan-CAD ob-

ject correspondences, we propose to use symmetry-aware

object correspondences (SOCs), which establish dense cor-

respondences between scan objects and CAD models, and

are trained by our differentiable Procrustes alignment loss.

Then for an input scan S represented by volumetric grid

encoding a truncated signed distance field, our model first

detects object center locations as heatmap predictions over

the volumetric grid and corresponding bounding box sizes

for each object location. The bounding box represents the

extent of the underlying object. From these detected object

locations, we use the estimated bounding box size to crop

out the neighborhood region around the object center from

the learned feature space in order to predict our SOC corre-

spondences to CAD models.

From this neighborhood of feature information, we then

predict SOCs. These densely establish correspondences

for each voxel in the object neighborhood to CAD model

space. In order to be invariant to potential reflection and

rotational symmetries, which could induce ambiguity in the

correspondences, we simultaneously estimate the symmetry

type of the object. We additionally predict a binary mask to

segment the object instance from background clutter in the

neighborhood, thus informing the set of correspondences

to be used for the final alignment. To find a CAD model

corresponding to the scan object, we jointly learn an object

descriptor which is used to retrieve a semantically similar

CAD model from a database.

Finally, we introduce a differentiable Procrustes align-

ment, enabling a fully end-to-end formulation, where

learned scan object-CAD SOC correspondences can be in-

formed by the final alignment process, achieving efficient

and accurate 9DoF CAD model alignment for 3D scans.

4. Method

4.1. Network Architecture

Our network architecture is shown in Figure 2. It is de-

signed to operate on 3D scans of varying sizes, in a fully-

convolutional manner. An input scan is given by a volu-

metric grid encoding a truncated signed distance field, rep-

resenting the scan geometry. We design our network back-

bone to learn features for detecting objects in a scan, es-

tablishing SOCs, and aligning CAD models to them. The

end-to-end formulation enables the learned SOCs to be in-

formed by the alignment performance.

The network backbone is structured in an encoder-

decoder fashion, and composed of a series of ResNet

blocks [14]. The bottleneck volume is spatially reduced

by a factor of 16 from the input volume, and is decoded

to the original resolution through transpose convolutions.

The decoder is structured symmetrically to the encoder, but

with half the feature channels, which we empirically found

to produce faster convergence and more accurate perfor-

mance. The output of the decoder is used to predict an

objectness heatmap, identifying potential object locations,

which is employed to inform bounding box regression for

object detection. The predicted object bounding boxes are

used to crop and extract features from the output of the sec-

ond decoder layer, which then inform the SOC predictions.

The features used to inform the SOC correspondence are

extracted from the second block of the decoder, whose fea-

ture map spatial dimensions are 1/4 of the original input

dimension.
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Figure 2: Network architecture for our end-to-end approach for CAD model alignment. An input TSDF scan represented in

a volumetric grid is input to an encoder-decoder backbone constructed with residual blocks. Objects are detected through

objectness prediction and bounding box regression; these predicted object boxes are then used to crop features from the

decoder to inform CAD model alignment to a detected object. The cropped features are processed to simultaneously predict

an object descriptor constrained to be similar to a corresponding CAD object descriptor (used for retrieving CAD models) and

a 3-dimensional scale. Our symmetry-aware object correspondences (SOCs) informs directly our differentiable Procrustes

alignment loss.

Object Detection We first detect objects, predicting

bounding boxes for the objects in a scan, which then inform

the SOC predictions. The output of the backbone decoder

predicts heatmaps representing objectness probability over

the full volumetric grid (whether a voxel is a center of an

object). We then regress object bounding boxes correspond-

ing to these potential object centers. For object bounding

boxes predictions, we regress a 3-channel feature map, with

each 3-dimensional vector corresponding to the bounding

box extent size, and regressed using an ℓ2 loss.

Objectness is predicted as a heatmap, encoding voxel-

wise probabilities as to whether each voxel is a center of an

object. Note that Ω ⊂ N
3 is the discretized space (i.e. voxel

grid). To predict a location heatmap H1, we additionally

employ two proxy losses, using a second heatmap predic-

tion H2 as well as a predicted offset field O. H1 and H2

are two 1-channel heatmaps designed to encourage high re-

call and precision, respectively, and O is a 3-channel grid

representing an offset field to the nearest object center. The

objectness heatmap loss is:

LOD = 2.0 · Lrecall + 10.0 · Lprecision + 10.0 · Loffset

The weights for each component in the loss are designed

to bring the losses numerically to approximately the same

order of magnitude. Here, Lrecall and Lprecision are inspired

from the conditional keypoint correspondence heatmap pre-

dictions of Scan2CAD [1].

Lrecall aims to achieve high recall. It operates on the pre-

diction H1, on which we apply a sigmoid and calculate the

loss via binary-cross entropy (BCE). This loss on its own

tends to establish a high recall, but also blurry predictions.

Lrecall =
∑

x∈Ω

BCE(σ(H1(x)), HGT(x)) (1)

H1 : Ω → [0, 1], σ : sigmoid (2)

Lprecision aims to achieve high precision. It operates on

the prediction H2, on which we apply a softmax and calcu-

late the loss via negative log-likelihood (NLL). Due to the

softmax, this loss encourages highly localized predictions

in the output volume, which helps to attain high precision.

Lprecision =
∑

x∈Ω

NLL(σ(H2(x)), HGT(x)) (3)

H2 : Ω → [0, 1], σ : softmax (4)

Loffset is a regression loss on the predicted 3D offset

field O, following [28]. Each voxel of O represents a 3-

dimensional vector that points to the nearest object center.

This regression loss is used as a proxy loss to support the

other two classification losses.

Loffset =
∑

x∈Ω

‖O(x)−OGT(x)‖
2

2 (5)

O : Ω → R
3

Predicting SOCs SOCs are dense, voxel-wise correspon-

dences from scan geometry to CAD models. They are de-
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fined as SOC : Ω → [−0.5, 0.5]3, the normalized space of

the CAD models.

In order to account for symmetry ambiguities, ground

truth SOCs are generated such that the front-facing axis of

the CAD model maintains minimal angle with the x-axis of

the scan voxel grid. Thus for symmetric objects, the SOCs

are generated in a consistent fashion, i.e., always aligned

with the x-axis of the scan coordinate system.

SOCs are predicted using features cropped from the net-

work backbone. For each detected object, we crop a region

with the extend of the predicted bounding box volume F
from the feature map of the second upsampling layer to in-

form our dense, symmetry-aware object correspondences.

This feature volume F is first fitted through tri-linear inter-

polation into a uniform voxel grid of size 483 before stream-

ing into different prediction heads. SOCs incorporate sev-

eral output predictions: a volume of dense correspondences

from scan space to CAD object space, an instance segmen-

tation mask, and a symmetry classification.

The dense correspondences, which map to CAD object

space, implicitly contain CAD model alignment informa-

tion. These correspondences are regressed as CAD object

space coordinates, similar to [37], with the CAD object

space defined as a uniform grid centered around the object,

with coordinates normalized to [−0.5, 0.5]. These coordi-

nates are regressed using an ℓ2 loss.

We also introduce a proxy symmetry loss to encourage

correct SOC prediction by predicting the symmetry class

of the object for common symmetry classes for furniture

objects: two-fold rotational symmetry, four-fold rotational

symmetry, infinite rotational symmetry, and no symmetry.

Retrieval To retrieve a similar CAD model to the de-

tected object, we use the cropped feature neighborhood F
to train an object descriptor for the scan region, using a se-

ries of 3D convolutions to reduce the feature dimension-

ality. This resulting 512-dimensional object descriptor is

then constrained to match the latent vector of an autoen-

coder trained on the CAD model dataset, with latent spaces

constrained by an ℓ2 loss. This enables retrieval of a se-

mantically similar CAD model at test time through a nearest

neighbor search using the object descriptor.

Scale Similarly to the retrieval head, the scale is predicted

per detected object (i.e. per crop). We regress the R
3 scale

vector with an ℓ2 loss. At train and test time this estimate is

used as final scale estimate with further post processing.

9DoF Alignment Our differentiable 9DoF alignment en-

ables training for CAD model alignment in an end-to-end

fashion, thereby informing learned correspondences of the

final alignment objective. To this end, we leverage a dif-

ferentiable Procrustes loss on the masked correspondences

given by the SOC predictions to find the rotation alignment.

That is, we aim to find a rotation matrix R which brings

together the CAD and scan correspondence points Pc, Ps:

R∗ = argmin
R
||RPc − Ps||F , R ∈ SO3

This is solved through a differentiable SVD of PsP
T
c =

UΣV T , with R = U
[

1
1

d

]

V T , d = det(V UT ). Here,

the SVD is computed by solving the non-linear character-

istic polynomial of the 3 × 3 matrix PsP
T
c iteratively, giv-

ing the final rotation. For scale and translation, we directly

regress the scale using two 3D downsampling convolutions

on F , and the translation is predicted from the detected ob-

ject centers. Note that an object center is the geometric cen-

ter of the bounding box.

4.2. Training

Data Input scan data is represented by its truncated signed

distance field (TSDF) encoded in a volumetric grid and gen-

erated through volumetric fusion [6] (we use voxel size =

3cm, truncation = 15cm). The CAD models used to train

the autoencoder to produce a latent space for scan object de-

scriptor training are represented as unsigned distance fields

(DF), using the level-set generation toolkit by Batty [2].

To train our model for CAD model alignment for real

scan data, we use the Scan2CAD dataset introduced by

[1]. These Scan2CAD annotations provide 1506 scenes for

training. Using upright rotation augmentation, we augment

the number of training samples by 4 (90◦ increments with

20◦ random jitter). We train our network using full scenes

as input, with batch size of 1. For SOC prediction at train

time the batch size is equal to the number of groundtruth ob-

jects in the given scene as crops are only performed around

groundtruth object centers. Only large scenes during train-

ing are randomly cropped to 400× 400× 64 to meet mem-

ory requirements. We found that training using 1 scene per

batch generally yields stable convergence behavior.

For CAD model alignment to synthetic scan data, we use

the SUNCG dataset [33], where we virtually scan the scenes

following [9, 15] to produce input partial TSDF scans. The

training process for synthetic SUNCG scan data is identical

to training with real data. See supplemental material for

further details.

Optimization We use an SGD optimizer with a batch size

of 1 scene and an initial learning rate of 0.002, which is

decayed by 0.5 every 20K iterations. We train for 50K
iterations until convergence, which takes ≈ 48 hours.

We train our model from scratch with the exception of

the object retrieval descriptors. For object retrieval, we pre-

train an autoencoder on all ShapeNetCore CAD models,

trained to reconstruct their distance fields at 323. This CAD

autoencoder is trained with a batch size of 16 for 30K iter-

ations. We then train the full model with pre-trained object
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bath bookshelf cabinet chair display sofa table trash bin other class avg. avg.

FPFH (Rusu et al. [30]) 0.00 1.92 0.00 10.00 0.00 5.41 2.04 1.75 2.00 2.57 4.45

SHOT (Tombari et al. [35]) 0.00 1.43 1.16 7.08 0.59 3.57 1.47 0.44 0.75 1.83 3.14

Li et al. [22] 0.85 0.95 1.17 14.08 0.59 6.25 2.95 1.32 1.50 3.30 6.03

3DMatch (Zeng et al. [41]) 0.00 5.67 2.86 21.25 2.41 10.91 6.98 3.62 4.65 6.48 10.29

Scan2CAD (Avetisyan et al. [1]) 36.20 36.40 34.00 44.26 17.89 70.63 30.66 30.11 20.60 35.64 31.68

Direct 9DoF 5.88 13.89 13.48 21.94 2.78 8.04 10.53 13.01 17.65 11.91 15.12

Ours (no symmetry) 11.11 29.27 29.29 68.26 20.41 16.26 41.03 40.12 14.29 30 40.51

Ours (no SOCs) 11.11 21.95 7.07 61.77 8.16 9.76 28.21 17.9 19.48 20.6 29.97

Ours (no anchor) 45.24 45.85 47.16 61.55 27.65 51.92 41.21 31.13 29.62 42.37 47.64

Ours (no Procrustes) 33.33 36.59 28.28 50.51 14.29 13.01 58.97 35.19 28.57 33.19 35.74

Ours (final) 38.89 41.46 51.52 73.04 26.53 26.83 76.92 48.15 18.18 44.61 50.72

Table 1: Accuracy comparison (%) on Scan2CAD [1]. We compare to state-of-the-art handcrafted feature descriptors

(FPFH [30], SHOT [35], Li et al. [22]) as well as learned descriptors (3DMatch [41], Scan2CAD [1]) for CAD model

alignment. These approaches consider correspondence finding and pose alignment optimization independently, while our

end-to-end formulation can learn correspondences informed by alignment, achieving significantly higher CAD model align-

ment accuracy.

Scene size small medium large

Scene dim 128× 96× 48 144× 128× 64 256× 320× 64
# objects 7 16 20

Scan2CAD [1] 288.60s 565.86s 740.34s

Ours 0.62s 1.11s 2.60s

Table 2: Runtime (seconds) of our approach on varying-

sized scenes. Our end-to-end approach predicts CAD model

alignment in a single forward pass, enabling very efficient

CAD model alignment – several hundred times faster than

previous data-driven approaches.

descriptors for all ShapeNet models for CAD model align-

ment, with the CAD autoencoder latent space constraining

the object descriptor training for retrieval.

5. Results

We evaluate our proposed end-to-end approach for CAD

model alignment in comparison to the state of the art as well

as with an ablation study analyzing our differentiable Pro-

crustes alignment loss and various design choices. We eval-

uate on real-world scans using the Scan2CAD dataset [1].

We use the evaluation metric proposed by Scan2CAD [1];

that is, the ground truth CAD model pool is available as

input, and a CAD model alignment is considered to be suc-

cessful if the category of the CAD model matches that of

the scan object and the alignment falls within 20cm, 20◦,

and 20% for translation, rotation, and scale, respectively.

For further evaluation on synthetic scans, we refer to the

supplemental material.

In addition to evaluating CAD model alignment using

the Scan2CAD [1] evaluation metrics, we also evaluate our

approach on an unconstrained scenario with 3000 random

CAD models as a candidate pool, shown in Figure 4. In this

scenario, we maintain robust CAD model alignment accu-

racy with a much larger set of possible CAD models.

Comparison to state of the art. Table 1 evaluates our

approach against several state-of-the-art methods for CAD

model alignment, which establish correspondences and

alignment independently of each other. In particular, we

compare to several approaches leveraging handcrafted fea-

ture descriptors: FPFH [30], SHOT [36], Li et al. [22],

as well as learned feature descriptors: 3DMatch [41],

Scan2CAD [1]. We follow these descriptors with RANSAC

to obtain final alignment estimation, except for Scan2CAD,

where we use the proposed alignment optimization. Our

end-to-end formulation, where correspondence learning can

be informed by the alignment, outperforms these decoupled

approaches by over 19.04%. Figure 3 shows qualitative vi-

sualizations of our approach in comparison to these meth-

ods.

How much does the differentiable Procrustes alignment

loss help? We additionally analyze the effect of our differ-

entiable Procrustes loss. In Table 1, we compare several dif-

ferent alignment losses. As a baseline, we train our model to

directly regress the 9DoF alignment parameters with an ℓ2
loss. We then evaluate our approach with (final) and without

(no Procrustes) our differentiable Procrustes loss. For CAD

model alignment to 3D scans, our differentiable Procrustes

alignment notably improves performance, by over 14.98%.

How much does SOC prediction help? We evaluate our

SOC prediction on CAD model alignment in Table 1. We

train our model with (final) and without (no SOCs) SOC

prediction as well as with coordinate correspondence pre-

diction but without symmetry (no symmetry). We ob-

serve that our SOC prediction significantly improves per-

formance, by over 20.75%. Establishing SOCs is funda-

mental to our approach, as dense correspondences can pro-

duce more reliable alignment, and unresolved symmetries

can lead to ambiguities and inconsistencies in finding ob-
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Figure 3: Qualitative comparison of CAD model alignment to ScanNet [7] scans. Our joint formulation of SOC corre-

spondence prediction and differentiable Procrustes alignment enable both more accurate and robust CAD model alignment

estimation across varying scene types and sizes.
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ject correspondences. In particular, we also evaluate the

effect of symmetry classification in our SOCs; explicitly

predicting symmetry yields a performance improvement of

10.21%.

What is the effect of using an anchor mechanism for ob-

ject detection? In Table 1, we also compare our CAD

model alignment approach with (final) and without (no an-

chor) using anchors for object detection, where without an-

chors we predict only object center locations as a probabil-

ity heatmap over the volumetric grid of the scan, but do not

regress bounding boxes, and thus only crop a fixed neigh-

borhood for the following SOCs and alignment. We ob-

serve that by employing bounding box regression, we can

improve CAD model alignment performance, as this facil-

itates scale estimation and allows correspondence features

to encompass the full object region.

5.1. Limitations

Although our approach shows significant improvements

compared to state of the art, we believe there are direc-

tions for improvement. Currently, we focus on the objects

in a scan, but do not consider structural components such

as walls and floors. We believe, however, that our method

could be expanded to detect and match plane segments in

the spirit of structural layout detection such as PlaneR-

CNN [24]. In addition, we currently only consider the ge-

ometry of the scan or CAD; however, it is an interesting

direction to consider finding matching textures in order to

better visually match the appearance of a scan. Finally, we

hope to incorporate our alignment algorithm in an online

system that can work at interactive rates and give immedi-

ate feedback to the scanning operator.

6. Conclusion

We have presented an end-to-end approach that automat-

ically aligns CAD models with commodity 3D scans, which

is facilitated with symmetry-aware correspondences and a

differentiable Procrustes algorithm. We show that by jointly

training the correspondence prediction with direct, end-to-

end alignment, our method is able to outperform existing

state of the art by over 19.04% in alignment accuracy. In

addition, our approach is roughly 250× faster than previous

data-driven approaches and thus could be easily incorpo-

rated into an online scanning system. Overall, we believe

that this is an important step towards obtaining clean and

compact representations from 3D scans, and we hope it will

open up future research in this direction.
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Figure 4: Our end-to-end CAD model alignment approach applied to an unconstrained set of candidate CAD models; here,

we use a set of 3000 randomly selected CAD models from ShapeNetCore [4]. The results of our approach (bottom) show

robust CAD model alignment performance in a scenario which is often reflected in real-world applications.
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