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Abstract

This paper proposes a geometric interpretation of the an-

gles and scales which the orientation- and scale-covariant

feature detectors, e.g. SIFT, provide. Two new general con-

straints are derived on the scales and rotations which can be

used in any geometric model estimation tasks. Using these

formulas, two new constraints on homography estimation

are introduced. Exploiting the derived equations, a solver

for estimating the homography from the minimal number of

two correspondences is proposed. Also, it is shown how

the normalization of the point correspondences affects the

rotation and scale parameters, thus achieving numerically

stable results. Due to requiring merely two feature pairs,

robust estimators, e.g. RANSAC, do significantly fewer it-

erations than by using the four-point algorithm. When us-

ing covariant features, e.g. SIFT, the information about the

scale and orientation is given at no cost. The proposed ho-

mography estimation method is tested in a synthetic envi-

ronment and on publicly available real-world datasets.

1. Introduction

This paper addresses the problem of interpreting, in a ge-

ometrically justifiable manner, the rotation and scale which

the orientation- and scale-covariant feature detectors, e.g.

SIFT [22] or SURF [10], provide. Then, by exploiting

these new constraints, we involve all the obtained param-

eters of the SIFT features (i.e. the point coordinates, angle,

and scale) into the homography estimation procedure. In

particular, we are interested in the minimal case, to estimate

a homography from solely two correspondences.

Nowadays, a number of algorithms exist for estimating

or approximating geometric models, e.g. homographies, us-

ing affine-covariant features. A technique, proposed by Per-

doch et al. [29], approximates the epipolar geometry from

one or two affine correspondences by converting them to

point pairs. Bentolila and Francos [11] proposed a solution

for estimating the fundamental matrix using three affine fea-

tures. Raposo et al. [32, 31] and Barath et al. [6] showed that
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Figure 1: Visualization of the orientation- and scale-

covariant features. Point P and the surrounding patch pro-

jected into cameras C1 and C2. A window showing the

projected points p1 = [u1 v1 1]T and p2 = [u2 v2 1]T are

cut out and enlarged. The rotation of the feature in the ith
image is αi and the size is qi (i ∈ {1, 2}). The scaling from

the 1st to the 2nd image is calculated as q = q2/q1.

two correspondences are enough for estimating the relative

camera motion. Moreover, two feature pairs are enough for

solving the semi-calibrated case, i.e. when the objective is

to find the essential matrix and a common unknown focal

length [9]. Also, homographies can be estimated from two

affine correspondences [17], and, in case of known epipolar

geometry, from a single correspondence [5]. There is a one-

to-one relationship between local affine transformations and

surface normals [17, 8]. Pritts et al. [30] showed that

the lens distortion parameters can be retrieved using affine

features. Affine correspondences encode higher-order in-

formation about the scene geometry. This is the reason

why the previously mentioned algorithms solve geometric

estimation problems exploiting fewer features than point

correspondence-based methods. This implies nevertheless

their major drawback: obtaining affine features accurately

(e.g. by Affine SIFT [28], MODS [26], Hessian-Affine, or

Harris-Affine [24] detectors) is time-consuming and, thus,

is barely doable in time-sensitive applications.

Most of the widely-used feature detectors provide parts
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of the affine feature. For instance, there are detectors ob-

taining oriented features, e.g. ORB [33], or there are ones

providing also the scales, e.g. SIFT [22] or SURF [10].

Exploiting this additional information is a well-known ap-

proach in, for example, wide-baseline matching [23, 26].

Yet, the first papers [1, 2, 3, 25, 4] involving them into geo-

metric model estimation were published just in the last few

years. In [25], the feature orientations are involved directly

in the essential matrix estimation. In [1], the fundamental

matrix is assumed to be a priori known and an algorithm is

proposed for approximating a homography exploiting the

rotations and scales of two SIFT correspondences. The

approximative nature comes from the assumption that the

scales along the axes are equal to the SIFT scale and the

shear is zero. In general, these assumptions do not hold.

The method of [2] approximates the fundamental matrix

by enforcing the geometric constraints of affine correspon-

dences on the epipolar lines. Nevertheless, due to using the

same affine model as in [1], the estimated epipolar geometry

is solely an approximation. In [3], a two-step procedure is

proposed for estimating the epipolar geometry. First, a ho-

mography is obtained from three oriented features. Finally,

the fundamental matrix is retrieved from the homography

and two additional correspondences. Even though this tech-

nique considers the scales and shear as unknowns, thus es-

timating the epipolar geometry instead of approximating it,

the proposed decomposition of the affine matrix is not jus-

tified theoretically. Therefore, the geometric interpretation

of the feature rotations is not provably valid. A recently

published paper [4] proposes a way of recovering full affine

correspondences from the feature rotation, scale, and the

fundamental matrix. Applying this method, a homography

is estimated from a single correspondence in case of known

epipolar geometry. Still, the decomposition of the affine

matrix is ad hoc, and is, therefore, not a provably valid in-

terpretation of the SIFT rotations and scales. Moreover, in

practice, the assumption of the known epipolar geometry

restricts the applicability of the method.

The contributions of this paper are: (i) we provide a ge-

ometrically valid way of interpreting orientation- and scale-

covariant features approaching the problem by differential

geometry. (ii) Building on the derived formulas, we propose

two general constraints which hold for covariant features.

(iii) These constraints are then used to derive two new for-

mulas for homography estimation and (iv), based on these

equations, a solver is proposed for estimating a homogra-

phy matrix from two orientation- and scale-covariant fea-

ture correspondences. This additional information, i.e. the

scale and rotation, is given at no cost when using most of

the widely-used feature detectors, e.g. SIFT or SURF. It is

validated both in a synthetic environment and on more than

10 000 publicly available real image pairs that the solver ac-

curately recovers the homography matrix. Benefiting from

the number of correspondences required, robust estimation,

e.g. by GC-RANSAC [7], is two orders of magnitude faster

than by combining it with the standard techniques, e.g. four-

point algorithm [16].

2. Theoretical background

Affine correspondence (p1,p2,A) is a triplet, where p1 =
[u1 v1 1]T and p2 = [u2 v2 1]T are a corresponding homo-

geneous point pair in two images and A is a 2 × 2 linear

transformation which is called local affine transformation.

Its elements in a row-major order are: a1, a2, a3, and a4. To

define A, we use the definition provided in [27] as it is given

as the first-order Taylor-approximation of the 3D → 2D

projection functions. For perspective cameras, the formula

for A is the first-order approximation of the related homog-

raphy matrix as follows:

a1 = ∂u2

∂u1

= h1−h7u2

s
, a2 = ∂u2

∂v1

= h2−h8u2

s
,

a3 = ∂v2

∂u1

= h4−h7v2

s
, a4 = ∂v2

∂v1
= h5−h8v2

s
,

(1)

where ui and vi are the directions in the ith image (i ∈
{1, 2}) and s = u1h7 + v1h8 + h9 is the projective depth.

The elements of H in a row-major order are: h1, h2, ..., h9.

The relationship of an affine correspondence and a homog-

raphy is described by six linear equations. Since an affine

correspondence involves a point pair, the well-known equa-

tions (from Hp1 ∼ p2) hold [16]. They are as follows:

u1h1 + v1h2 + h3 − u1u2h7 − v1u2h8 − u2h9 = 0,

u1h4 + v1h5 + h6 − u1v2h7 − v1v2h8 − v2h9 = 0.
(2)

After re-arranging (1), four additional linear constraints are

obtained from A which are the following.

h1 − (u2 + a1u1)h7 − a1v1h8 − a1h9 = 0,

h2 − (u2 + a2v1)h8 − a2u1h7 − a2h9 = 0,

h4 − (v2 + a3u1)h7 − a3v1h8 − a3h9 = 0,

h5 − (v2 + a4v1)h8 − a4u1h7 − a4h9 = 0.

(3)

Consequently, an affine correspondence provides six linear

equations for the elements of the related homography.

3. Affine transformation model

In this section, the interpretation of the feature scales

and rotations are discussed. Two new constraints that re-

late the elements of the affine transformation to the feature

scale and rotation are derived. These constraints are gen-

eral, and they can be used for estimating different geometric

models, e.g. homographies or fundamental matrices, using

orientation- and scale-covariant features. In this paper, the

two constraints are used to derive a solver for homography

estimation from two correspondences. For the sake of sim-

plicity, we use SIFT as an alias for all the orientation- and

scale-covariant detectors. The formulas hold for all of them.
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3.1. Interpretation of the SIFT output

Reflecting the fact that we are given a scale qi ∈ R

and rotation αi ∈ [0, 2π) independently in each image

(i ∈ {1, 2}; see Fig. 1), the objective is to define affine

correspondence A as a function of them. For this problem,

approaches were proposed in the recent past [3, 4]. None of

them were nevertheless proven to be a valid interpretation.

To understand the SIFT output, we exploit the definition

of affine correspondences proposed in [8]. In [8], A is de-

fined as the multiplication of the Jacobians of the projection

functions in the two images as follows:

A = J2J
−1
1 , (4)

where J1 and J2 are the Jacobians of the 3D → 2D projec-

tion functions. Proof is in Appendix A. For the ith Jacobian,

the following is a possible decomposition:

Ji = RiUi =

[

cos(αi) − sin(αi)
sin(αi) cos(αi)

] [

qu,i wi

0 qv,i

]

, (5)

where angle αi is the rotation in the ith image, qu,i and qv,i
are the scales along axes u and v, and wi is the shear (i ∈
{1, 2}). Let us use the following notation: ci = cos(αi) and

si = sin(αi). The equation for the inverse matrix becomes

J
−1
i =

1

c2i qu,iqv,i + s2i qu,iqv,i

[
siwi + ciqv,i siqv,i − ciwi

−siqu,i ciqu,i

]
.

The denominator can be formulated as follows: (c2i +
s2i )qu,iqv,i, where c2i + s2i is a trigonometric identity and

equals to one. After multiplying the matrices in (4), the fol-

lowing equations are given for the affine elements:

a1 =
c2qu,2(s1w1 + c1qv,1)− s1qu,1(c2w2 − s2qv,2)

qu,1qv,1
(6)

a2 =
c2qu,2(s1qv,1 − c1w1) + c1qu,1(c2w2 − s2qv,2)

qu,1qv,1
(7)

a3 =
s2qu,2(s1w1 + c1qv,1)− s1qu,1(s2w2 + c2qv,2)

qu,1qv,1
(8)

a4 =
s2qu,2(s1qv,1 − c1w1) + c1qu,1(s2w2 + c2qv,2)

qu,1qv,1
(9)

These formulas show how the affine elements relate to αi,

the scales along axes u and v and shears wi.

In case of having orientation- and scale-covariant fea-

tures, e.g. SIFT, the known parameters are the rotation αi

of the feature in the ith image and a uniform scale qi. It can

be easily seen that the scale qi is interpreted as follows:

qi = detJi = qu,iqv,i. (10)

Therefore, our goal is to derive constraints that relate affine

elements of A to the orientations αi and scales qi of the

features in the first and second images. We will derive such

constraints by eliminating the scales along axes qu,i and qv,i

and the shears wi from equations (6)-(9). To do this, we

use an approach based on the elimination ideal theory [13].

Elimination ideal theory is a classical algebraic method for

eliminating variables from polynomials of several variables.

This method was recently used in [21] for eliminating un-

knowns from equations that are not dependent on input

measurements. Here, we use the method in a slightly differ-

ent way. We first create the ideal I [13] generated by poly-

nomials (6)-(9), polynomial (10) and trigonometric identi-

ties c2i + s2i = 1 for i ∈ {1, 2}. Note that here we consider

all elements of these polynomials, including ci and si, as

unknowns. Then we compute generators of the elimination

ideal I1 = I ∩ C[a1, a2, a3, a4, q1, q2, s1, c1, s2, c2] [13].

The generators of I1 do not contain qu,i, qv,i and wi. The

elimination ideal I1 is generated by two polynomials:

q21a2a3 − q21a1a4 + q1q2 = 0, (11)

c1s2q1a1 + s1s2q1a2 − c1c2q1a3 − c2s1q1a4 = 0. (12)

Generators (11)-(12) can be computed using a computer al-

gebra system, e.g. Macaulay2 [14]. The new constraints

relate the elements of A to the scales and rotations of the

features in both images. Note that both these equations can

be divided by q1 6= 0. After this simplification, (11) corre-

sponds to detA = q2/q1 = q and equation (12) relates the

rotations of the features to the elements of A. The two new

constraints are general, and they can be used for estimat-

ing different geometric models, e.g. homographies or fun-

damental matrices, using orientation- and scale-covariant

detectors. Next, we use (11)-(12) to derive new constraints

on a homography.

4. Homography from two correspondences

In this section, we derive new constraints that relate H

to the feature scales and rotations in the two images. Then

a solver is proposed to estimate H from two SIFT corre-

spondences based on these new constraints. Finally, we dis-

cuss how the widely-used normalization of the point corre-

spondences [15] affects the output of orientation- and scale-

covariant detectors and subsequently the new constraints.

4.1. Homography and covariant features

First, we derive constraints that relate the homography

H to the scales and rotations of the features in the first and

second images. To do this, we combine constraints (11)

and (12) derived in previous section with the constraints on

the homography matrix (3).

Constraints (11) and (12) cannot be directly substituted

into (3). However, we can use a similar approach as in

the previous section for deriving (11) and (12). First,

ideal J generated by six polynomials (3), (11) and (12)

is constructed. Then the unknown elements of the affine

transformation A are eliminated from the generators of J .

We do this by computing the generators of J1 = J ∩
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(a) 553 iterations by 2SIFT and

8 615 by 4PT. Inlier ratio 0.38.

(b) 720 iterations by 2SIFT and

78 450 by 4PT. Inlier ratio

0.06.

(c) 169 iterations by 2SIFT and

573 by 4PT. Inlier ratio 0.22.

(d) 65 iterations by 2SIFT and

14 139 by 4PT. Inlier ratio

0.23.

Figure 2: Inliers of the estimated homographies (by 2SIFT) drawn to example image pairs. The numbers of iterations of

GC-RANSAC [7] using the 4PT and proposed 2SIFT solvers; and the ground truth inlier ratios are reported in the captions.

C[h1, . . . , h9, u1, v1, u2, v2, q1, q2, s1, c1, s2, c2]. The elim-

ination ideal J1 is generated by two polynomials:

h8u2s1s2 + h7u2s2c1 − h8v2s1c2 − h7v2c1c2 + (13)

−h2s1s2 − h1s2c1 + h5s1c2 + h4c1c2 = 0,

h2
7u

2
1q2 + 2h7h8u1v1q2 + h2

8v
2
1q2 + h5h7u2q1 + (14)

−h4h8u2q1 − h2h7v2q1 + h1h8v2q1 + 2h7h9u1q2 +

2h8h9v1q2 + h2h4q1 − h1h5q1 + h2
9q2 = 0.

Polynomials (13) and (14) are new constraints that relate

the homography matrix to the scales and rotations of the

features in the first and second images. These constraints

will help us for recovering H from two orientation- and

scale-covariant feature correspondences.

4.2. 2­SIFT solver

Constraint (13) is linear in the elements of H. For

two SIFT correspondences, two such equations are given,

which, together with the four equations for point correspon-

dences (2), result in six homogeneous linear equations in

the nine elements of H. In matrix form, these equations

are: Mh = 0, where M is a 6× 9 coefficient matrix and h

contains the unknown homography elements. For two SIFT

correspondences in two views, coefficient matrix M has a

three-dimensional null space. Therefore, the homography

matrix can be parameterized by two unknowns as

H = xH1 + yH2 +H3, (15)

where H1,H2,H3 are created from the 3D null space of

M and x and y are new unknowns. Now we can plug the

parameterization (15) into constraint (14). For two SIFT

correspondences, this results in two quadratic equations in

two unknowns. Such equations have four solutions and they

can be easily solved using e.g. the Gröbner basis or the re-

sultant based method [13]. Here, we use the solver based

on Gröbner basis method that can be created using the au-

tomatic generator [19]. This solver performs Gauss-Jordan

elimination of a 6× 10 template matrix which contains just

monomial multiples of the two input equations. Then the

solver extracts solutions to x and y from the eigenvectors

of a 4 × 4 multiplication matrix that is extracted from the

template matrix. Finally, up to four real solutions to H are

computed by substituting solutions for x and y to (15).

Note that we do not know any degeneracies of the pro-

posed solver which can occur in real life. For instance, the

degeneracy of the four-point algorithm, i.e. the points are

co-linear, is not a degenerate case for the 2SIFT solver.

4.3. Normalization of the affine parameters

The normalization of the point coordinates is a crucial

step to increase the numerical stability of H estimation [15].

Suppose that we are given a 3× 3 normalizing transforma-

tion Ti transforming the center of gravity of the point cloud

in the ith image to the origin and its average distance from

it to
√
2. The formula for normalizing A is as follows [6]:

Â = T2

[
A 0
0 1

]
T−1

1 , (16)

where Â is the normalized affinity. Matrix Ti transforms

the points by translating them (last column) and applying

a uniform scaling (diagonal). Due to the fact that the last

column of Ti has no effect on the top-left 2× 2 sub-matrix

of the normalized affinity, the equation can be rewritten as

follows: Â = diag(t2, t2) A diag(1/t1, 1/t1) = t2/t1A,

41094



-16 -14 -12 -10 -8 -6 -4 -2

log
10

 avg. transfer error

0

1

2

3

4

5

F
re

q
u

e
n

c
y

10
4

 2SIFT

 4PT

 3ORB

Figure 3: Stability study. The frequencies (100 000 runs;

vertical axis) of log10 errors (horizontal) in the estimated

homographies by the proposed (red), 4PT (green) and 3ORI

(blue) methods.

where t1 and t2 are the scales of the normalizing transfor-

mations in the two images. Thus, for normalizing the affine

transformation, it has to be multiplied by t2/t1.

The scaling factor affects constraint (11) which, for Â,

has the form

t2q21 â2â3 − t2q21 â1â4 + q1q2 = 0, (17)

where t = t1/t2 and âi are elements of Â. Consequently

constraint (14) for the normalized coordinates has the form

h2
7u

2
1q2t

2 + 2h7h8u1v1q2t
2 + h2

8v
2
1q2t

2 + h5h7u2q1 + (18)

−h4h8u2q1 − h2h7v2q1 + h1h8v2q1 + 2h7h9u1q2t
2 +

2h8h9v1q2t
2 + h2h4q1 − h1h5q1 + h2

9q2t
2 = 0.

Note that this normalization does not affect the structure of

the derived 2SIFT solver. The only difference is that, for

the normalized coordinates, the coefficients in the template

matrix are multiplied by scale factor t as in (18).

5. Experimental results

In this section, we compare the proposed solver (2SIFT)

with the widely-used normalized four-point (4PT) algo-

rithm [16] and a method using three oriented features [3]

(3ORI) for estimating the homography.

5.1. Computational complexity

First, we compare the computational complexity of the

competitor algorithms, see Table 1. The first row consists

of the major steps of each solver. For instance, 6 × 9 SVD

+ 6 × 6 QR + 4 × 4 EIG means, that the major steps are:

the SVD decomposition of a 6 × 9 matrix, the QR decom-

position of a 6× 6 matrix and the eigendecomposition of a

4× 4 matrix. In the second row, the implied computational

complexities are summed. In the third one, the number of

correspondences required for the solvers are written. The

fourth row lists example outlier ratios in the data. In the fifth

one, the theoretical number of iterations of RANSAC [16]

is written for each outlier ratio with confidence set to 0.99.

The last row shows the computational complexity, i.e. the

complexity of one iteration multiplied by the number of it-

eration, of RANSAC combined with the minimal methods.

It can be seen that the proposed method leads to signifi-

cantly smaller computational complexity. Moreover, we be-

lieve that by designing a specific solver to our two quadratic

equations in two unknowns, similarly as in [20], the com-

putational complexity of our solver can be even reduced.

5.2. Synthesized tests

To test the accuracy of the homographies obtained by the

proposed method, first, we created a synthetic scene con-

sisting of two cameras represented by their 3 × 4 projec-

tion matrices P1 and P2. They were located randomly on

a center-aligned sphere. A plane with random normal was

generated in the origin and ten random points, lying on the

plane, were projected into both cameras. The points were

at most one unit far from the origin. To get the ground truth

affine transformations, we calculated homography H by

projecting four random points from the plane to the cameras

and applying the normalized DLT [16] algorithm. The lo-

cal affine transformation of each correspondence was com-

puted from the ground truth homography by (1). Note that

H could have been calculated directly from the plane pa-

rameters. However, using four points promised an indirect

but geometrically interpretable way of noising the affine pa-

rameters: adding noise to the coordinates of the four pro-

jected points. To simulate the SIFT orientations and scales,

A was decomposed to J1, J2. Since the decomposition is

ambiguous, α1, qu,1, qv,1, w1 were set to random values.

J1 was calculated from them. Finally, J2 was calculated as

J2 = AJ1. Zero-mean Gaussian-noise was added to the

point coordinates, and, also, to the coordinates which were

used to estimate the affine transformations.

Fig. 3 reports the numerical stability of the methods in

the noise-free case. The frequencies (vertical axis), i.e. the

number of occurrences in 100 000 runs, are plotted as the

function of the log10 average transfer error (in px; horizon-

tal) computed from the estimated homography and the not

used correspondences. It can be seen that all tested solvers

are numerically stable. Fig. 4 plots the ||Hest −Hgt||F errors

as the function of image noise level σ (vertical axis) and

the ratio (horizontal) of the camera distance, i.e. the radius

of the sphere on which the cameras lie, and the object size.

The homographies were normalized. The proposed 2SIFT

algorithm (left) is less sensitive to the choice of both param-

eters than the 3ORI (middle) and 4PT (right) methods.

Fig. 5 reports the re-projection error (vertical; in pixels)

as the function of the image noise σ with additional noise

added to the SIFT orientations (left) and scales (right) be-

sides the noise coming from the noisy affine transforma-

tions. In the top row, the error is plotted as the function of

the image noise σ. The curves show the results on differ-

ent noise levels in the orientations and scales. In the bottom
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2SIFT 3ORI [3] 4PT [16]

steps 6× 9 SVD + 6× 6 QR + 4× 4 EIG 6× 9 SVD 8× 9 SVD

1 iter 6 ∗ 92 + 63 + 43 = 766 6 ∗ 92 = 486 8 ∗ 92 = 649
m 2 3 4

1 - µ 0.25 0.50 0.75 0.90 0.25 0.50 0.75 0.90 0.25 0.50 0.75 0.90

# iters 6 16 71 458 8 34 292 4603 12 71 1177 46 049

# comps 4 596 12 256 54 386 350 828 3 888 16 524 141 912 2 237 058 7 788 46 079 763 873 29 885 801

Table 1: The theoretical computational complexity of the solvers. The operations in the solvers (1st row – steps), the

computational complexity of one estimation (2nd – 1 iter), the correspondence number required for the estimation (3rd – m),

possible outlier ratios (4th – 1−µ), the iteration number required for RANSAC with the confidence set to 0.95 (5th – # iters),

and computation complexity of the full procedure (6th – # comps).

Figure 4: The average (of 10 000 runs on each noise σ) re-projection error of homography fitting to synthesized data by the

proposed (2SIFT), normalized 4PT [16] and 3ORI [3] methods. Each camera is located randomly on a center-aligned sphere.

Ten points from the object are projected into the cameras, and zero-mean Gaussian-noise is added to the coordinates. The

affine parameters are calculated from the noisy coordinates. The re-projection error (in px; shown by color) is plotted as the

function of the ”camera distance from the object / object size” ratio (horizontal) and the noise σ (in px; vertical).

row, the error is plotted as the function of the orientation

(left plot) and scale (right) noise. The noise in the point co-

ordinates was set to 1.0 px. The scale noise for the left plot

was set to 1%. The orientation noise for the right one was

set to 1◦. It can be seen that, even for large noise in the scale

and orientation, the new solver performs reasonably well.

5.3. Real world tests

To test the proposed method on real-world data, we

downloaded the AdelaideRMF1, Multi-H2, Malaga3 and

Strecha4 datasets. AdelaideRMF and Multi-H consist of

image pairs of resolution from 455 × 341 to 2592 × 1944
and manually annotated (assigned to a homography or to

the outlier class) correspondences. Since the reference point

sets do not contain rotations and scales, we detected points

applying the SIFT detector. The correspondences provided

in the datasets were used to estimate ground truth homogra-

phies. For each homography, we selected the points out of

the detected SIFT correspondences which are closer than a

manually set inlier-outlier threshold, i.e. 2 pixels. As robust

estimator, we chose GC-RANSAC [7] since it is state-of-

1cs.adelaide.edu.au/˜hwong/doku.php?id=data
2web.eee.sztaki.hu/˜dbarath
3www.mrpt.org/MalagaUrbanDataset
4https://cvlab.epfl.ch/

the-art and its implementation is available5. GC-RANSAC

is a locally optimized RANSAC with PROSAC [12] sam-

pling. For fitting to a minimal sample, GC-RANSAC used

one of the compared methods, e.g. the proposed one. For

fitting to a non-minimal sample, the normalized 4PT algo-

rithm was applied.

Given an image pair, the procedure to evaluate the esti-

mators on AdelaideRMF and Multi-H is as follows: first,

the ground truth homographies, estimated from the manu-

ally annotated correspondence sets, were selected one by

one. For each homography: (i) The correspondences which

did not belong to the selected homography were replaced

by completely random correspondences to reduce the prob-

ability of finding a different plane than what was currently

tested. (ii) GC-RANSAC was applied to the point set con-

sisting of the inliers of the homography and outliers. (iii)

The estimated homography is compared to the ground truth

one estimated from the manually selected inliers.

The Strecha dataset consists of image sequences of

buildings. All images are of size 3072×2048. The methods

were applied to all possible image pairs in each sequence.

The Malaga dataset was gathered entirely in urban scenar-

ios with a car equipped with several sensors, including a

5https://github.com/danini/graph-cut-ransac
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Figure 5: The average (10 000 runs on each noise σ) re-

projection error of homography fitting to synthesized data

by the 2SIFT, normalized 4PT [16] and 3ORI [3] methods.

The same test scene is used as in Figure 4. For each plot,

additional noise was added to the orientations or the scales

besides the noise coming from the noisy affine transforma-

tions. (Top) The error is plotted as the function of the im-

age noise σ. The curves show the results on different noise

levels in the orientations and scales. (Bottom) The error is

plotted as the function of the orientation (left plot) and scale

(right) noise. The noise in the point coordinates was set to

1.0 px. The scale noise for the left plot was set to 1%. The

orientation noise for the right one was set to 1◦.

2SIFT 3ORI [3] 4PT [16]

ǫ (px) 1.57 1.97 1.61

AdelaideRMF # iters. 877 9 772 26 082

(43#) time (s) 0.092 0.918 2.989

ǫ (px) 1.90 3.41 1.87

Multi-H # iters. 80 031 458 800 410 781

(33#) time (s) 57.921 213.900 300.645

ǫ (px) 1.42 1.51 1.25

Strecha # iters. 4 718 17 414 60 973

(852#) time (s) 1.435 3.180 10.246

Table 2: Homography estimation on the AdelaideRMF (18
pairs; 43 planes) and Multi-H (4 pairs; 33 planes) and

Strecha datasets (852 planes) by GC-RANSAC [7] com-

bined with minimal methods. Each column reports the re-

sults of a method. The required confidence was set to 0.95.

The reported properties are the mean re-projection error (ǫ,
in pixels); the number of samples drawn by GC-RANSAC

(# iters.); and the processing time in seconds. Average of

100 runs on each image pair.

high-resolution camera and five laser scanners. 15 video se-

quences are provided and we used every 10th image from

each sequence. The ground truth projection matrices are

provided for both datasets. To get a reference correspon-

dence set for each image pair in the Strecha and Malaga

datasets, first, calculated the fundamental matrix from the

ground truth camera poses provided in the datasets. SIFT

detector was applied. Correspondences were selected for

which the symmetric epipolar distance was smaller than 1.0
pixel. RANSAC was applied to the filtered correspondences

finding the most dominant homography with a threshold set

to 1.0 pixel and confidence to 0.9999. The inliers of this

homography were considered as a reference set. In case of

having less then 50 reference points, the pair was discarded

from the evaluation. In total, 852 image pairs were tested in

the Strecha dataset and 9 064 pairs in the Malaga dataset.

Example results are shown in Fig. 2. The inliers of the

homography estimated by 2SIFT are drawn. Also, the num-

ber of iteration required for 2SIFT and 4PT and the ground

truth inlier ratios are reported. In all cases, 2SIFT made

significantly fewer iterations than 4PT.

Table 2 reports the results on the AdelaideRMF (rows

2–4), Multi-H (5–7) and Strecha (8–10) datasets. The

names of the datasets are written into the first column and

the numbers of planes are in brackets. The names of the

tested techniques are written in the first row. Each block,

consisting of three rows, shows the mean re-projection er-

ror computed from the manually annotated correspondences

and the estimated homographies (ǫ; in pixels; avg. of 100
runs on each pair); the number of samples drawn by the

outer loop of GC-RANSAC (# iters.); and the processing

time (in secs). The RANSAC confidence was set to 0.95
and the inlier-outlier threshold to 2 pixels. It can be seen

that the proposed method has similar errors to that of the

4PT algorithm, but 2SIFT leads to 1–2 orders of magnitude

speedup compared to 4PT.

The results on the Malaga dataset are shown in Figure 6.

The confidence of GC-RANSAC was set to 0.95 and the

inlier-outlier threshold to 2.0 pixels. The reported proper-

ties are the average re-projection error (left; in pixels), pro-

cessing time (middle; in seconds) and the average number

of iterations (right). It can be seen that the re-projection er-

rors of 4PT and 2SIFT are fairly similar However, 2SIFT is

significantly faster in all cases due to making much fewer

iterations than 4PT.

6. Conclusion

We proposed a theoretically justifiable interpretation of

the angles and scales which the orientation- and scale-

covariant feature detectors, e.g. SIFT or SURF, provide.

Building on this, two new general constraints are proposed

for covariant features. These constraints are then exploited

to derive two new formulas for homography estimation. Us-

ing the derived equations, a solver is proposed for estimat-

ing the homography from two correspondences. The new

solver is numerically stable and easy to implement. More-
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Figure 6: The results on 15 sequences (9 064 image pairs) of the Malaga dataset using GC-RANSAC [7] as a robust

estimator and different minimal solvers (2SIFT, 3ORI, 4PT). The confidence of RANSAC was set to 0.95 and the inlier-

outlier threshold to 2.0 pixels. The re-projection error (left; in pixels), average processing time (middle; in seconds) and

average iteration number (right) are reported.

over, it leads to results superior in terms of geometric accu-

racy in many cases. Also, it is shown how the normalization

of the point correspondences affects the rotation and scale

parameters. Due to requiring merely two feature pairs, ro-

bust estimators, e.g. RANSAC, do significantly fewer itera-

tions than by using the four-point algorithm. The method is

tested in a synthetic environment and on publicly available

real-world datasets consisting of thousands of image pairs.

The source code is available at https://github.com/

danini/homography-from-sift-features.
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A. Proof the affine decomposition

We prove that decomposition A = J2J
−1
1 , where Ji

is the Jacobian of the projection function w.r.t. the direc-

tions in the ith image, is geometrically valid. Suppose that

a three-dimensional point P =
[
x y z

]T
lying on a con-

tinuous surface S is given. Its projection in the ith image is

pi =
[
ui vi

]T
. The projected coordinates, ui and vi, are

determined by the projection functions Πu,Πv : R3 → R

as follows: ui = Πi
u(x, y, z), vi = Πi

v(x, y, z), where the

coordinates of the surface point are written in parametric

form as x = X (u, v), y = Y(u, v), z = Z(u, v). It is

well-known in differential geometry [18] that the basis of

the tangent plane at point P is written by the partial deriva-

tives of S w.r.t. the spatial coordinates. The surface normal

n is expressed by the cross product of the tangent vectors

su and sv where su =
[
∂X (u,v)

∂u

∂Y(u,v)
∂u

∂Z(u,v)
∂u

]T

, and

sv is calculated similarly. Finally, n = su × sv . Locally,

around point P, the surface can be approximated by the tan-

gent plane, therefore, the neighboring points in the ith im-

age are written as the first-order Taylor-series as follows:

pi ≈ ∆

[
Πx(x, y, z)
Πy(x, y, z)

]
+

[
∂Πi

x(x,y,z)

∂u

∂Πi
x(x,y,z)

∂v
∂Πi

y(x,y,z)

∂u

∂Πi
y(x,y,z)

∂v

] [
∆u

∆v

]
,

where [∆v,∆u]T is the translation on surface S, and ∆x,

∆y are the coordinates of the implied translation added

to pi. It can be seen that transformation Ji mapping

the infinitely close vicinity around point pi in the ith

image is given as Ji =

[
∂Πi

x(x,y,z)
∂u

∂Πi
x(x,y,z)
∂v

∂Πi
y(x,y,z)

∂u

∂Πi
y(x,y,z)

∂v

]
, thus

[
∆x ∆y

]T ≈ Ji
[
∆u ∆v

]T
. The partial derivatives are

reformulated using the chain rule. As an example, the first

element it is as

∂Πi
x(x, y, z)

∂u
=

∂Πi
x(x, y, z)

∂x

x

∂u
+

∂Πi
x(x, y, z)

∂x

y

∂u
+

∂Πi
x(x, y, z)

∂x

z

∂u
= ∇(Πi

x)
Tsu,

where ∇Πi
x is the gradient vector of Πx w.r.t. coordinates

x, y and z. Similarly,

∂Πi
x

∂v
= ∇(Πi

x)
T

sv,
∂Πi

y

∂u
= ∇(Πi

y)
T

su,
∂Πi

y

∂v
= ∇(Πi

y)
T

sv,

Therefore, Ji can be written as Ji =

[
∇(Πi

x)
T

∇(Πi
y)

T

] [
su sv

]
.

Local affine transformation A transforming the infinitely

close vicinity of point p1 in the first image to that of p2

in the second one is as follows:

[
∆x2

∆y2

]
= J2J

−1
1

[
∆x1

∆y1

]
= A

[
∆x1

∆y1

]
.
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