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Abstract

Much of the recent improvement in neural networks for

computer vision has resulted from discovery of new net-

works architectures. Most prior work has used the per-

formance of candidate models following limited training to

automatically guide the search in a feasible way. Could fur-

ther gains in computational efficiency be achieved by guid-

ing the search via measurements of a high performing net-

work with unknown detailed architecture (e.g. the primate

visual system)? As one step toward this goal, we use rep-

resentational similarity analysis to evaluate the similarity

of internal activations of candidate networks with those of

a (fixed, high performing) teacher network. We show that

adopting this evaluation metric could produce up to an or-

der of magnitude in search efficiency over performance-

guided methods. Our approach finds a convolutional cell

structure with similar performance as was previously found

using other methods but at a total computational cost that

is two orders of magnitude lower than Neural Architecture

Search (NAS) and more than four times lower than progres-

sive neural architecture search (PNAS). We further show

that measurements from only ∼300 neurons from primate

visual system provides enough signal to find a network with

an Imagenet top-1 error that is significantly lower than that

achieved by performance-guided architecture search alone.

These results suggest that representational matching can

be used to accelerate network architecture search in cases

where one has access to some or all of the internal represen-

tations of a teacher network of interest, such as the brain’s

sensory processing networks.

1. Introduction

The accuracy of deep convolutional neural networks

(CNNs) for visual categorization has advanced substantially

from 2012 levels (AlexNet [25]) to current state-of-the-art

CNNs like ResNet [19], Inception [41], DenseNet [21].

This progress is mostly due to discovery of new network

architectures. Yet, even the space of feedforward neural net-

work architectures is essentially infinite and given this com-

plexity, the design of better architectures remains a chal-

lenging and time consuming task.

Many approaches have been proposed in recent years

to automate the discovery of neural network architectures,

including random search [32], reinforcement learning [44,

45], evolution [37, 36], and sequential model based opti-

mization (SMBO) [28, 8]. These methods operate by itera-

tively sampling from the hyperparameter space, training the

corresponding architecture, evaluating it on a validation set,

and using the search history of those scores to guide further

architecture sampling. But even with recent improvements

in search efficiency, the total cost of architecture search is

still outside the reach of many groups and thus impedes the

research in this area (e.g. some of the recent work in this

area has spent more than 20k GPU-hours for each search

experiment [36, 44]).

What drives the total computational cost of running a

search? For current architectural search procedures (above),

the parameters of each sampled architecture must be trained

before its performance can be evaluated and the amount of

such training turns out to be a key driver in the total com-

putational cost. Thus, to reduce that total cost, each ar-

chitecture is typically only partially trained to a premature

state and its premature performance is used as a proxy of
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its mature performance (i.e. the performance it would have

achieved if was actually fully trained).

Because the search goal is high mature performance in

a task of interest, the most natural choice of an architecture

evaluation score is its premature performance. However,

this may not be the best choice of evaluation score. For ex-

ample, it has been observed that, as a network is trained,

multiple sets of internal features begin to emerge over net-

work layers, and the quality of these internal features de-

termines the ultimate behavioral performance of the neural

network as a whole. Based on these observations, we rea-

soned that, if we could evaluate the quality of a network’s

internal features even in a very premature state, we might

be able to more quickly determine if a given architecture is

likely to obtain high levels of mature performance.

But without a reference set of high quality internal fea-

tures, how can we determine the quality of a network’s in-

ternal features? The main idea proposed here is to use fea-

tures of a high performing “teacher” network as a reference

to identify promising sample architectures at a much ear-

lier premature state. Our proposed method is inspired by

prior work showing that the internal representations of a

high-performing teacher network can be used to optimize

the parameters of smaller, shallower, or thinner student net-

works [3, 20, 38, 13]. It is also inspired by the fact that

such internal representation measures can potentially be ob-

tained from primate brains and thus could be used as an ul-

timate teacher. While our ability to simultaneously record

from large populations of neurons is fast growing [40], these

measurements have already been shown to have remarkable

similarities to internal activations of CNNs [43, 39].

One challenge in comparing representations across mod-

els or between models and brains is the lack of one-to-one

mapping between the features (or neurons in the brain).

Representational Similarity Analysis (RSA) is a tool that

summarizes the representational behavior into a matrix

called Representational Dissimilarity Matrix (RDM) that

embeds the distance between activation in response to dif-

ferent inputs. In doing so it abstracts away from individual

features (i.e. activations) and therefore enables us to com-

pare the representations originating from different models

or even between models and biological organisms.

Based on the RDM metric, we propose a method for ar-

chitecture search termed “Teacher Guided Search for Ar-

chitectures by Generation and Evaluation” (TG-SAGE).

Specifically, TG-SAGE guides each step of an architec-

ture search by evaluating the similarity between represen-

tations in the candidate network and those in a fixed, high-

performing teacher network with unknown architectural pa-

rameters but observable internal states. We found that when

this evaluation is combined with the usual performance

evaluation (above), we can predict the mature performance

of sampled architectures with an order of magnitude less

premature training and thus an order of magnitude less to-

tal computational cost. We then used this observation to

execute multiple runs of TG-SAGE for different architec-

ture search spaces to confirm that TG-SAGE can indeed

discover network architectures of comparable mature per-

formance to those discovered with performance-only search

methods, but with far less total computational cost. More

importantly, when considering the primate visual system

as the teacher network with measurements of neural ac-

tivity from only several hundred neural sites, TG-SAGE

finds a network with an Imagenet top-1 error that was 5%

lower than that achieved by performance-guided architec-

ture search.

In section 2 we review some of the previous studies in

neural networks architecture search and the use of RSA to

compare artificial and biological neural networks. In sec-

tion 3 we describe representational dissimilarity matrix and

how we use this metric in TG-SAGE to compare represen-

tations. In section 4 we show the effectiveness of TG-SAGE

in comparison to performance-guided search methods by

using two search methods in different architectural spaces

of increasing size. We then show that in the absence of

a teacher model, how we can use measurements from the

brain as a teacher to guide the architecture search.

2. Previous Work

There have been several recent studies on using rein-

forcement learning to design high performing neural net-

work architectures [4, 44, 45]. Neural Architecture Search

(NAS) [44, 45] utilizes a long short-term memory network

(LSTM) trained using REINFORCE to learn to design neu-

ral network architectures for object recognition and natural

language processing tasks. Real et al. [37, 36] used evolu-

tionary approaches in which samples taken from a pool of

networks were engaged in a pairwise competition game.

While most of these works have focused on discovering

higher performing architectures, there has been a number

of efforts emphasizing the computational efficiency in hy-

perparameter search. In order to reduce the computational

cost of architecture search, Brock et al. [10] proposed to

use a hypernetwork [18] to predict the layer weights for any

arbitrary candidate architecture instead of retraining from

random initial values. Hyperband [27] formulated hyper-

parameter search as a resource allocation problem and im-

proved the efficiency by controlling the amount of resources

(e.g. training) allocated to each sample. Similarly, several

other methods proposed to increase the search efficiency by

introducing early-stopping criteria during training [5] or by

extrapolating the learning curve [14]. These approaches are

closely related to our proposed method in that, their main

focus is to reduce the per-sample training cost.

Several more recent methods [31, 29, 42, 1, 17] proposed

to share the trainable parameters across all candidate net-
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works and to jointly optimize for the hyperparameters and

the network weights during the search. While these ap-

proaches led to significant reduction in total search cost,

they can only be applied to the spaces of network archi-

tectures in which the number of trainable weights do not

change as a result of hyperparameter choices (e.g. when the

number of filters in a CNN is fixed).

On the other hand, there is a growing body of literature

demonstrating the remarkable ability of deep neural net-

works trained on various categorization tasks in predicting

neural and behavioral response patterns in primates. These

models are able to predict the neural responses in parts of

the primate visual [43, 12, 11] and auditory cortices [23],

explain patterns of object similarity judgements [35, 22],

shape sensitivity in primates [26], and even to control the

neural activity in a mid-level visual cortical area [6]. More-

over, it has been shown that the categorization performance

of deep artificial neural networks is strongly correlated with

their ability to predict the neural responses along the ventral

visual pathway [43, 2].

Nevertheless, while these networks have largely pro-

gressed our understanding of neural computations in many

parts of the primate brain, there are still significant differ-

ences between the two [16, 34]. Inspired by these observa-

tions, some recent studies have utilized brain measurements

as constraints to alter the artificial neural networks behavior

to be more similar to the brain [15, 9].

3. Methods

3.1. Representational Dissimilarity Matrix

Representational Dissimilarity Matrix (RDM) [24] is an

embedding computed for a representation that quantifies the

dissimilarity between activation patterns in that representa-

tional space in response to a set of inputs or input categories.

For a given input i, the na network activations at one layer

can be represented as a vector ~V = f(i) ∈ R
na . Similarly,

the collection of activations in response to a set of ni inputs

can be represented in a matrix F ∈ R
ni×na which contains

na activations measured in response to ni inputs.

For a given activation matrix F , we derive RDM (MF )

by computing the pairwise distances between each pair of

activation vectors (i.e. Fi and Fj which correspond to rows

i and j in activation matrix F ) using a distance measure like

the correlation residual.

MF
∈ R

ni×ni ,MF
i,j = 1− corr(Fi, Fj) (1)

When calculating RDM for different categories (instead

of individual inputs) we substitute the matrix F with F c

in which each row c contains the average activation pattern

across all inputs in category c.

RDM constitutes an embedding of the representational

space that abstracts away from individual activations. Be-

cause of this, it allows us to compare the representations

in different models or even between models and biologi-

cal organisms [43, 12]. Once RDM is calculated for two

representational spaces (e.g. for a layer in each of the stu-

dent and teacher networks), we can evaluate the similarity

of those representations by calculating the correlation coef-

ficient (e.g. Pearson’s r) between the values in the upper

triangle of the two RDM matrices.

3.2. Teacher Representational Similarity as Perfor­
mance Surrogate

The largest portion of cost associated with neural net-

work architecture search comes from training the sampled

networks, which is proportional to the number of training

steps (SGD updates) performed on the network. Due to the

high cost of fully training each sampled network, in most

cases a surrogate score is used as a proxy for the mature

performance. Correlation between the surrogate and ma-

ture score may affect the architecture search performance

as poor proxy values could guide the search algorithm to-

wards suboptimal regions of the space. Previous work on ar-

chitecture search in the space of Convolutional Neural Net-

works (CNN) have concurred with the empirical surrogate

measure of premature performance after about 20 epochs

of training. While 20 epochs is much lower than the usual

number of epochs used to fully train a CNN network (300-

900 epochs), it still forces a large cost on conducing archi-

tecture searches. We propose that evaluating the internal

representations of a network would be a more reliable mea-

sure of architecture quality during the early phase of train-

ing (e.g. after several hundreds of SGD iterations), when

the features are starting to be formed but the network is not

yet performing reliably on the task.

An overview of the procedure is illustrated in Figure-

1. We evaluate each sampled candidate model by measur-

ing the similarity between its RDMs at different layers (e.g.

MC1−C4) to those extracted from the teacher network (e.g.

MT1−T3). To this end, we compute RDM for all layers in

the network and then compute the correlation between all

pairs of student and teacher RDMs. To score a candidate

network against a given layer in the teacher network, we

consider the highest RDM similarity to teacher layer calcu-

lated over all layers of the student network (i.e. S1 − S3;

Si = maxj(corr(M
Ti,MCj))).

We then construct an overall teacher similarity score

by taking the mean of the RDM scores which we call

“Teacher Guidance” (TG). Finally, we define the combined

Performance and TG score (P+TG) which is formulated as

weighted sum of premature performance and TG score in

the form of P + αTG. The combined score guides the ar-

chitecture search to maximize performance as well as rep-
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Figure 1. Left – Illustration of an exemplar RDM matrix for a dataset with 8 object categories and 8 object instances per category. Right

– Overview of TG-SAGE method. Correlation between RDMs of candidate and teacher networks, are combined with candidate network

premature performance to form P+TG score for guiding the architecture search.

resentational similarity with the teacher architecture. The α
parameter can be used to tune the relative weight assigned

to TG score compared to the performance score. We con-

sider the teacher architecture as any high-performing net-

work with unknown architecture but observable activations.

We can have one or several measured endpoints from the

teacher network that each could potentially be used to gen-

erate a similarity score.

4. Experiments and Results

4.1. Performance Predictability from Teacher Rep­
resentational Similarity

We first investigated if the teacher similarity evaluation

measure (P+TG) of premature networks improves the pre-

diction of mature performance (compared to evaluation of

only premature performance, P). To do this, we made a pool

of CNN architectures for which we computed the premature

and mature performances as well as the premature RDMs

(a measure of the internal feature representation, see 3.1) at

every model layer. To select the CNN architectures in the

pool we first ran several performance-guided architecture

searches with 20 epoch/sample training (see section 4.2 and

supplementary material) and then selected 116 architectures

found at different stages of the search. These networks had a

wide range of mature performance levels that also included

the best network architectures found during each search.

In experiments carried out in sections 4.1 to 4.3, we used

a variant of ResNet [19] with 54 convolutional layers (n=9)

as the teacher network. This architecture was selected as

the teacher because it is high performing (top-1 accuracy of

94.75% and 75.89% on CIFAR10 and CIFAR100 datasets

respectively). Notably, the teacher architecture is not in our

search spaces (see supp. material). Layer activations af-

ter each of the three stacks of residual blocks (here named

L1-L3) were chosen as the teacher’s internal feature maps.

For each feature map, we took 10 random subsample of

features, computed the RDM for each subsample, and then

computed the average RDM across all subsamples. We did

not attempt to optimize the choice of layers in the teacher

network these were chosen simply because they sampled

approximately evenly over the full depth of the teacher.

In order to find the optimum TG weight factor, we varied

the α parameter and measured the change in correlation be-

tween the P+TG score and the mature performance (Figure

2). We observed that higher α led to larger gains in predict-

ing the mature performance when models were trained only

for few epochs (≤2.5 epochs). However, with more train-

ing, larger α values reduced the predictability. We found

that for networks trained for ∼2 epochs, a value of α = 1
is close to optimum. The combined “P+TG” score (see

3.2) composes the best predictor of mature performance

during most of the early training period (Figure 3-bottom).

This observation was consistent with previous findings that

learning in deep networks predominantly happen “bottom-

up” [33].

We further found that the earlier teacher layers (L1) are

better predictors of the mature performance compared to

other layers early on during the training (<2epochs) but

5323



as the training progresses, the later layers (L2 and L3) be-

come better predictors (∼3epochs) and with more training

(>3epochs) the premature performance becomes the best

single predictor of the mature (i.e. fully trained) perfor-

mance (Figure 3).

In addition to ResNet, we also analyzed a second teacher

network, namely NASNet (see section 2 in supp. mate-

rial) and confirmed our findings using the alternative teacher

network. We also found that NASNet activations (which

performs higher than ResNet; 82.12% compared to 75.9%)

form a better predictor of mature performance in almost all

training regimes (see supp. material).

Figure 2. Effect of TG weight α on predicting the mature perfor-

mance.

4.2. Teacher Guided Search in the Space of Convo­
lutional Networks

As outlined in the Introduction, we expected that the

(P+TG) evaluation score’s improved predictivity (Figure 3)

should enable it to support a more efficient architecture

search than performance evaluation alone (P). To test this

directly, we used the (P+TG) evaluation score in full ar-

chitectural search experiments using a range of configura-

tions. For these experiments, we searched two spaces of

convolutional neural networks similar to previous search

experiments [44] (maximum network depth of either 10 or

20 layers). These architectural search spaces are important

and interesting because they are large. In addition, because

networks in these search spaces are relatively inexpensive

to train to maturity, we could evaluate the true underlying

search progress at a range of checkpoints (below). We ran

searches in each space using four different search meth-

ods: using the (P+TG) evaluation score at 2 or 20 epochs

of premature training, and using the (P) evaluation score

at either 2 or 20 epochs of premature training. For these

experiments, we used random [32], reinforcement learning

(RL) [44], as well as TPE architecture selection algorithm

[7] (see Methods), and we halted the search after 1000 or

2000 sampled architectures (for the 10- and 20-layer search

spaces, respectively). We conducted our search experiments

on CIFAR100 instead of CIFAR10 because of larger num-

ber of classes in the dataset that provided a higher dimen-

sional RDM.

We found that, for all search configurations, the (P+TG)

driven search algorithm (i.e. TG-SAGE) consistently out-

performed the performance-only driven algorithm (P) in

that, using equal computational cost it always discovered

higher performing networks (Table 1). This gain was sub-

stantial in that TG-SAGE found network architectures with

approximately the same performance as (P) search but at

∼ 10× less computational cost (2 vs. 20 epochs; Table 1).

To assess and track the efficiency of these searches, we

measured the maximum validation set performance of the

fully trained network architectures returned by each search

at its current choice of the top-5 architectures. We repeated

each search experiment three times to estimate variance in

these measures resulting from both search sampling and

Figure 3. Comparison of performance and P+TG measures at

premature state (epochs=2) as predictors of mature performance.

(top-left) Scatter plot of premature and mature performance val-

ues. (top-right) Scatter plot of premature P+TG measure and ma-

ture performance. (bottom) Correlation between performance, sin-

gle layer RDMs, and combined P+TG measures with mature per-

formance at varying number of premature training epochs.
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Table 1. Comparison of premature performance and representational similarity measure in architecture search using RL and TPE algo-

rithms. P: premature performance as validation score; P+TG: combined premature performance and RDMs as the validation score. Values

are µ± σ across 3 search runs.

Search Algorithm RL TPE

Search Space 10 layer 20 layer 10 layer 20 layer

# Epoch/Sample 2 20 2 20 2 2

Random - Best C100 Error (%) 45.4± 2.5 41.3± 1.5 41.2± 1.8 38.3± 4.8 45.4± 2.5 41.2± 1.8

P - Best C100 Error (%) 41.0± 0.5 40.5± 0.4 37.5± 0.2 32.7± 0.9 42.5± 5.7 37.0± 3.0

P+TG - Best C100 Error (%) 38.3± 1.1 39.2± 0.9 33.2± 1.4 32.2± 0.8 37.6± 1.2 33.0± 2.4

Performance Improvement (%) 2.7 1.3 4.3 0.5 4.9 4

network initial filter weight sampling. Figure 4 shows that

the teacher guided search (P+TG) leads to finding network

architectures that were on par with performance guided

search (P) throughout the search runs while being 10× more

efficient.

4.3. Teacher Guided Search in the Space of Convo­
lutional Cells

To compare our approach with recent work on architec-

ture search, we performed a search experiment with P+TG

score on the space of convolutional cells [45, 28]. One

advantage of this search space compared to those in sec-

tion 4.2 is that convolutional cells are transferable across

datasets. After a cell structure is sampled, the full archi-

tecture is constructed by stacking the same cell multiple

times with a predefined structure (see supplementary mate-

rial). While both RL and TPE search methods led to similar

outcomes in our experiments in section 4.1, average TPE

results were slightly higher for both experiments. Hence,

we chose to conduct the search experiment in this section

using TPE algorithm with the same setup as in section 4.1

using CIFAR100 with 1000 samples.

For each sample architecture, we computed RDMs for

each cell’s output. Considering that we had N = 2 cell

repetitions in each block during search, we ended up with

8 RDMs in each sampled cell that were compared with 3

precomputed RDMs from the teacher network (24 com-

parisons over validation set of 5000 images). Due to the

imperfect correlation between the premature and mature

performances, doing a small post-search reranking step in-

creases the chance of finding slightly better cell structures.

We chose the top 10 discovered cells and trained them for

300 epochs on the training set (45k samples) and evaluated

on the validation set (5k samples). Cell structure with the

highest validation performance was then fully trained on the

complete training set (50k samples) for 600 epochs similar

to [45] and evaluated on the test set.

We compared our best found cell structure with those

found using NAS [45] and PNAS [28] methods on CIFAR-

10, CIFAR-100, and Imagenet datasets (Tables 2 and 3).

To rule out any differences in performance that might have

originated from differences in training procedure, we used

the same training pipeline to train our proposed network

(SAGENet) as well as the as well as the two baselines.

With regard to compactness, SAGENet had more param-

eters and FLOPS compared to NASNet and PNASNet due

mostly to symmetric 7× 1 and 1× 7 convolutions. But we

had not considered any costs associated with the number

of parameters or the number of FLOPS when conducting

the search experiments. For this reason, we also consid-

ered another version of SAGENet in which we replaced the

symmetric convolutions with “7×7 separable” convolutions

(SAGENet-sep). SAGENet-sep had half the number of pa-

rameters and FLOPS compared to SAGENet and slightly

higher error rates. To compare the cost and efficiency of dif-

ferent search procedures we adopted the same measures as

in [28]. Total cost of search was computed as the total num-

ber of examples that were processed with SGD throughout

the search procedure. This includes M1 sampled cell struc-

tures that were trained with E1 examples during the search

and M2 top cells trained on E2 examples post-search to find

the top performing cell structure. The total cost was then

calculated as M1E1 +M2E2.

In sum, we find that while SAGENet performed on par

to both NAS and PNAS top networks on C10, C100, and

Imagenet, the cost of search was about 100 and 4.5 times

less than NASNet and PNASNet respectively (Table 2). In-

terestingly, at mature state our top architecture performed

better than the teacher network (ResNet) on C10 and C100

datasets (96.34% and 82.58% on C10 and C100 for TG-

SAGE as compared to 94.75% and 75.89% for the ResNet).

4.4. Using Cortical Measurements as the Teacher
Network

In the absence of an already high performing teacher net-

work, the utility of TG-SAGE seems unclear (why would

one need this method if one already has a high-performing

network implemented on a computer?). But what if one

does not have that computer implementation, while has par-

tial access to the internal activations of a high performing
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Figure 4. Effect of different surrogate measures on architecture search performance. (left) shows the average C100 performance of the best

network architectures found during different stages of three runs of RL search in each case (see text). (right) same as the plot on left but

displayed with respect to the total computational cost invested (number of training images × number of epochs × number of samples).

Table 2. Performance of discovered cells on CIFAR10 and CIFAR100 datasets. *indicates error rates from retraining the network using the

same training pipeline on 2-GPUs. B: Number of operation blocks in each cell. N: number of cell repetitions in each network block. F:

number of filters in the first cell. † estimated GPU days.

Network # Params C10 Error C100 Error M1 E1 M2 E2

Cost

(Examples)

Cost

(GPU days)

AmoebaNet-A [36] 3.2M 3.34 - 20000 1.13M 100 27M 25.2B (813)

NASNet-A [45] 3.3M 3.41 (3.72∗) 17.88∗ 20000 0.9M 250 13.5M 21.4-29.3B (690)

PNASNet-5 [28] 3.2M 3.41 (4.06∗) 19.26∗ 1160 0.9M 0 0 1.0B (32)

ENAS [31] 4.6M 3.54 19.43 310 50k 0 0 15.5M 0.5

GDAS (FRC) [42] 2.5M 3.75 19.09 - - - - - 1

ASNG + cutout [1] 3.9M 2.83 - - - - - - 0.11

DARTS + cutout [29] 3.4M 2.83 - - - - - - 4

IRLAS + cutout [17] 3.4M 2.71 - - - - - - -

SAGENet 6.0M 3.66 17.42
1000 90K 10 13.5M 225M (7)

SAGENet-sep 2.7M 3.88 17.51

network? One such network is the primate ventral visual

system – it is both high performing in object categorization

tasks and is partially observable through electrophysiologi-

cal recording tools. To test the utility of this idea, we con-

ducted an additional experiment in which we used neural

spiking measurements from macaque ventral visual cortex

to guide the architecture search.

To facilitate the comparison of representations between

the brain’s ventral stream and CNNs, we needed a fixed set

of inputs that could be shown to both CNNs and the mon-

keys. For this purpose, we used a set of 5760 images that

contained 3D rendered objects placed on uncorrelated nat-

ural backgrounds and were designed to include large vari-

ations in position, size, and pose of the objects (see sup-

plementary material). We used previously published neural

measurements from 296 neural sites in two macaque mon-

keys in response to these images [43, 30]. These neural re-

sponses were measured from three anatomical regions along

the ventral visual pathway (V4, posterior-inferior temporal

(p-IT), and anterior inferior temporal (a-IT) cortex) in each

monkey – a series of cortical regions in the primate brain

that underlie visual object recognition. To allow the can-

didate networks to be more comparable to the brain mea-

surements, we conducted the experiment on the Imagenet

dataset and trained each candidate network for 1/5 epoch

using images of size 64× 64. We used the same setup as in

section 4.3 but with three RDMs generated from our neural

measurements in each area (i.e. V4, p-IT, a-IT). We held

out 50,000 of the images from the original Imagenet train-

ing set as the validation set that was used to evaluate the

premature performance for the candidate networks. To fur-

ther speed up the search, we removed the first 2 reduction

cells in the architecture during the search. Similar to ex-

periments in previous sections, we used α = 1 to weigh

the RDM similarities compared to the performance in as-

signing scores to each candidate network. After running the
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Table 3. Performance of discovered cells on Imagenet dataset in mobile settings (i.e. number of parameters ∼ 5.5M and number of

FLOPS<1.5B). Hyperparameters B, N, and F are selected so the network contains approximately 5.5M parametesrs and less than 1.5B

FLOPS. *indicates error rates from training all networks using the same training pipeline on 2-GPUs.

Network B N F # Params (M) FLOPS (B) Top-1 Err∗ Top-5 Err∗

NASNet-A 5 4 44 5.3 1.16 31.07 11.41

PNASNet-5 5 3 56 5.4 1.30 29.92 10.63

SAGENet
5 4 48

9.7 2.15 31.81 11.79

SAGENet-sep 4.9 1.03 31.9 11.99

Table 4. Comparison of best networks found with performance-guided and neurally guided architecture searches in the space of convolu-

tional cells on Imagenet.

Network B N F # Params (M) FLOPS (B) Top-1 Err Top-5 Err

P-imagenet 5 4 40 5.5 1.26 34.4 13.5

SAGENet-neuro 5 3 40 5.6 1.35 32.54 12.26

architecture search for 1000 samples, we picked the top 10

networks and fully trained them on Imagenet for 40 epochs

and picked the network with highest validation accuracy.

We then trained this network on the full Imagenet training

set and evaluated its performance on the test set. As a base-

line, we also performed a similar search but using only the

performance metric to guide the search.

We found that the best discovered network using the

combined P+TG metric (SAGENet-neuro) had a signifi-

cantly lower top-1 error (32.54%) than the best network de-

rived from performance-guided search (34.4%; P-imagenet;

see Table 4). This suggests that the approach has potential

merit. However, when searching on CIFAR-100 dataset,

the best model found by using the partially observed in-

ternal representations of the primate brain teacher network

(SAGENet-neuro) did not perform as well as the model

found by using the fully observed internal representations of

the ResNet teacher network. One critical factor that might

have affected the quality of the best discovered model was

the amount of per-sample training done during the search

(this was limited to 2000 steps (1/5epoch) in our exper-

iment). Naturally, allowing more training before evalua-

tion would potentially result in a more accurate prediction

of mature performance and discovering a higher perform-

ing model. Another important factor was the partially ob-

servations of the brain – neural recordings for construct-

ing a teacher RDM would likely be further improved with

larger population of neural responses measured in response

to more stimuli. Nevertheless, the teacher representations

constructed from only a few hundred primate neural sites

was already informative enough to produce improved guid-

ance for architecture search.

5. Discussion and Future Directions

We here demonstrate that, when the internal neural rep-

resentations of a high performing teacher neural network

are partially observable (such as the brain’s neural net-

work), that knowledge can substantially accelerate the dis-

covery of high performing artificial networks. We propose

a new method to accomplish that acceleration (TG-SAGE)

and demonstrate its utility using an existing state-of-the-

art computerized network as the teacher (ResNet) and its

potential using a partially-observed biological network as

the teacher (primate ventral visual stream). Essentially,

TG-SAGE jointly maximizes a model’s premature perfor-

mance and its internal representational similarity to those

of a partially observable teacher network. With the ar-

chitecture space and search settings tested here, we report

a computational efficiency gain of ∼ 10× in discovering

CNNs for performance on visual categorization. This gain

in search efficiency (reduced computational resource bud-

get with similar categorization performance) was achieved

without any additional constraints on the search space as in

alternative search methods like ENAS [31] or DARTS [29].

We empirically demonstrated this by performing searches

in several CNN architectural spaces.

Could this approach be applied at scale using high per-

forming biological systems? We here showed how limited

measurements from the brain (neural population patterns of

responses to many images) could be formulated as teacher

constraints to accelerate the search for higher performing

networks. It remains to be seen if larger scale neural mea-

surements – which are obtainable in the near future – could

achieve even better acceleration.
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