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Abstract

Despite the success of Generative Adversarial Networks

(GANs), mode collapse remains a serious issue during GAN

training. To date, little work has focused on understand-

ing and quantifying which modes have been dropped by a

model. In this work, we visualize mode collapse at both the

distribution level and the instance level. First, we deploy a

semantic segmentation network to compare the distribution

of segmented objects in the generated images with the tar-

get distribution in the training set. Differences in statistics

reveal object classes that are omitted by a GAN. Second,

given the identified omitted object classes, we visualize the

GAN’s omissions directly. In particular, we compare specific

differences between individual photos and their approximate

inversions by a GAN. To this end, we relax the problem

of inversion and solve the tractable problem of inverting a

GAN layer instead of the entire generator. Finally, we use

this framework to analyze several recent GANs trained on

multiple datasets and identify their typical failure cases.

1. Introduction

The remarkable ability of a Generative Adversarial Network

(GAN) to synthesize realistic images leads us to ask: How

can we know what a GAN is unable to generate? Mode-

dropping or mode collapse, where a GAN omits portions of

the target distribution, is seen as one of the biggest challenges

for GANs [14, 24], yet current analysis tools provide little

insight into this phenomenon in state-of-the-art GANs.

Our paper aims to provide detailed insights about dropped

modes. Our goal is not to measure GAN quality using a sin-

gle number: existing metrics such as Inception scores [34]

and Fréchet Inception Distance [17] focus on that problem.

While those numbers measure how far the generated and

target distributions are from each other, we instead seek to

understand what is different between real and fake images.

Existing literature typically answers the latter question by

sampling generated outputs, but such samples only visualize

what a GAN is capable of doing. We address the complemen-

tary problem: we want to see what a GAN cannot generate.

original image reconstruction original image reconstruction

Progressive GAN on LSUN Churches

(a) generated vs training object segmentation statistics

(b) real images vs. reconstructions

Figure 1. Seeing what a GAN cannot generate: (a) We compare the

distribution of object segmentations in the training set of LSUN

churches [47] to the distribution in the generated results: objects

such as people, cars, and fences are dropped by the generator. (b)

We compare pairs of a real image and its reconstruction in which

individual instances of a person and a fence cannot be generated.

In each block, we show a real photograph (top-left), a generated re-

construction (top-right), and segmentation maps for both (bottom).

In particular, we wish to know: Does a GAN deviate from

the target distribution by ignoring difficult images altogether?

Or are there specific, semantically meaningful parts and

objects that a GAN decides not to learn about? And if so,

how can we detect and visualize these missing concepts that

a GAN does not generate?
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Image generation methods are typically tested on images

of faces, objects, or scenes. Among these, scenes are an

especially fertile test domain as each image can be parsed

into clear semantic components by segmenting the scene

into objects. Therefore, we propose to directly understand

mode dropping by analyzing a scene generator at two levels:

the distribution level and instance level.

First, we characterize omissions in the distribution as

a whole, using Generated Image Segmentation Statistics:

we segment both generated and ground truth images and

compare the distributions of segmented object classes. For

example, Figure 1a shows that in a church GAN model,

object classes such as people, cars, and fences appear on

fewer pixels of the generated distribution as compared to the

training distribution.

Second, once omitted object classes are identified, we

want to visualize specific examples of failure cases. To do

so, we must find image instances where the GAN should

generate an object class but does not. We find such cases

using a new reconstruction method called Layer Inversion

which relaxes reconstruction to a tractable problem. Instead

of inverting the entire GAN, our method inverts a layer of

the generator. Unlike existing methods to invert a small gen-

erator [51, 8], our method allows us to create reconstructions

for complex, state-of-the-art GANs. Deviations between the

original image and its reconstruction reveal image features

and objects that the generator cannot draw faithfully.

We apply our framework to analyze several recent GANs

trained on different scene datasets. Surprisingly, we find that

dropped object classes are not distorted or rendered in a low

quality or as noise. Instead, they are simply not rendered at

all, as if the object was not part of the scene. For example, in

Figure 1b, we observe that large human figures are skipped

entirely, and the parallel lines in a fence are also omitted.

Thus a GAN can ignore classes that are too hard, while

at the same time producing outputs of high average visual

quality. Code, data, and additional information are available

at ganseeing.csail.mit.edu.

2. Related work

Generative Adversarial Networks [15] have enabled

many computer vision and graphics applications such as

generation [7, 21, 22], image and video manipulation [19,

20, 30, 35, 39, 41, 52], object recognition [6, 42], and text-

to-image translation [33, 45, 49]. One important issue in

this emerging topic is how to evaluate and compare different

methods [40, 43]. For example, many evaluation metrics

have been proposed to evaluate unconditional GANs such as

Inception score [34], Fréchet Inception Distance [17], and

Wasserstein Sliced Distance [21]. Though the above met-

rics can quantify different aspects of model performance,

they cannot explain what visual content the models fail to

synthesize. Our goal here is not to introduce a metric. In-

stead, we aim to provide explanations of a common failure

case of GANs: mode collapse. Our error diagnosis tools

complement existing single-number metrics and can provide

additional insights into the model’s limitations.

Network inversion. Prior work has found that inver-

sions of GAN generators are useful for photo manipula-

tion [2, 8, 31, 51] and unsupervised feature learning [10, 12].

Later work found that DCGAN left-inverses can be com-

puted to high precision [25, 46], and that inversions of a

GAN for glyphs can reveal specific strokes that the gener-

ator is unable to generate [9]. While previous work [51]

has investigated inversion of 5-layer DCGAN generators,

we find that when moving to a 15-layer Progressive GAN,

high-quality inversions are much more difficult to obtain. In

our work, we develop a layer-wise inversion method that

is more effective for these large-scale GANs. We apply a

classic layer-wise training approach [5, 18] to the problem of

training an encoder and further introduce layer-wise image-

specific optimization. Our work is also loosely related to

inversion methods for understanding CNN features and clas-

sifiers [11, 27, 28, 29]. However, we focus on understanding

generative models rather than classifiers.

Understanding and visualizing networks. Most prior

work on network visualization concerns discriminative clas-

sifiers [1, 3, 23, 26, 37, 38, 48, 50]. GANs have been visual-

ized by examining the discriminator [32] and the semantics

of internal features [4]. Different from recent work [4] that

aims to understand what a GAN has learned, our work pro-

vides a complementary perspective and focuses on what

semantic concepts a GAN fails to capture.

3. Method

Our goal is to visualize and understand the semantic concepts

that a GAN generator cannot generate, in both the entire dis-

tribution and in each image instance. We will proceed in

two steps. First, we measure Generated Image Segmentation

Statistics by segmenting both generated and target images

and identifying types of objects that a generator omits when

compared to the distribution of real images. Second, we

visualize how the dropped object classes are omitted for indi-

vidual images by finding real images that contain the omitted

classes and projecting them to their best reconstruction given

an intermediate layer of the generator. We call the second

step Layer Inversion.

3.1. Quantifying distribution­level mode collapse

The systematic errors of a GAN can be analyzed by exploit-

ing the hierarchical structure of a scene image. Each scene

has a natural decomposition into objects, so we can estimate

deviations from the true distribution of scenes by estimating

deviations of constituent object statistics. For example, a
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WGAN-GP on LSUN Bedrooms StyleGAN on LSUN Bedrooms

Figure 2. Using Generated Image Segmentation Statistics to understand the different behavior of the two models trained on LSUN

bedrooms [47]. The histograms reveal that WGAN-GP [16] (left) deviates from the true distribution much more than StyleGAN [22] (right),

identifying segmentation classes that are generated too little and others that are generated too much. For example, WGAN-GP does not

generate enough pixels containing beds, curtains, or cushions compared to the true distribution of bedroom images, while StyleGAN correctly

matches these statistics. StyleGAN is still not perfect, however, and does not generate enough doors, wardrobes, or people. Numbers above

bars indicate clipped values beyond the range of the chart.

GAN that renders bedrooms should also render some amount

of curtains. If the curtain statistics depart from what we see

in true images, we will know we can look at curtains to see

a specific flaw in the GAN.

To implement this idea, we segment all the images using

the Unified Perceptual Parsing network [44], which labels

each pixel of an image with one of 336 object classes. Over

a sample of images, we measure the total area in pixels for

each object class and collect mean and covariance statistics

for all segmented object classes. We sample these statistics

over a large set of generated images as well as training set

images. We call the statistics over all object segmentations

Generated Image Segmentation Statistics.

Figure 2 visualizes mean statistics for two networks. In

each graph, the mean segmentation frequency for each gen-

erated object class is compared to that seen in the true dis-

tribution. Since most classes do not appear on most images,

we focus on the most common classes by sorting classes by

descending frequency. The comparisons can reveal many

specific differences between recent state-of-the-art models.

Both analyzed models are trained on the same image distri-

bution (LSUN bedrooms [47]), but WGAN-GP [16] departs

from the true distribution much more than StyleGAN [22].

It is also possible to summarize statistical differences in

segmentation in a single number. To do this, we define the

Fréchet Segmentation Distance (FSD), which is an inter-

pretable analog to the popular Fréchet Inception Distance

(FID) metric [17]: FSD ≡ ||µg − µt||
2 + Tr(Σg + Σt −

2(ΣgΣt)
1/2). In our FSD formula, µt is the mean pixel

count for each object class over a sample of training images,

and Σt is the covariance of these pixel counts. Similarly,

µg and Σg reflect segmentation statistics for the generative

model. In our experiments, we compare statistics between

10,000 generated samples and 10,000 natural images.

Generated Image Segmentation Statistics measure the en-

tire distribution: for example, they reveal when a generator

omits a particular object class. However, they do not single

out specific images where an object should have been gener-

ated but was not. To gain further insight, we need a method

to visualize omissions of the generator for each image.

3.2. Quantifying instance­level mode collapse

To address the above issue, we compare image pairs (x,x′),
where x is a real image that contains a particular object class

dropped by a GAN generator G, and x
′ is a projection onto

the space of all images that can be generated by a layer of

the GAN model.

Defining a tractable inversion problem. In the ideal

case, we would like to find an image that can be per-

fectly synthesized by the generator G and stay close to

the real image x. Formally, we seek x
′ = G(z∗), where

z
∗ = argmin

z
ℓ(G(z),x) and ℓ is a distance metric in im-

age feature space. Unfortunately, as shown in Section 4.4,

previous methods [10, 51] fail to solve this full inversion

problem for recent generators due to the large number of lay-

ers in G. Therefore, we instead solve a tractable subproblem

of full inversion. We decompose the generator G into layers

G = Gf (gn(· · · ((g1(z)))), (1)

where g1, ..., gn are several early layers of the generator, and

Gf groups all the later layers of the G together.

Any image that can be generated by G can also be gen-

erated by Gf . That is, if we denote by range(G) the
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generator Gencoder E

loss

reconstruction

Gf(r*)

target x

nth layer

z0 r0

G(z0)

target x

r Gf

Step 2: initialize

z0 = E(x)

r0  = gn(…(g1(z0)))

Step 3: optimize

Gf(r) à x

r ≈ r0

+δiz0

generator G encoder E

z

synthesized

G(z)

z'

loss

Step 1: train

encoder E

E(G(z)) à z

Gf

Gf

Figure 3. Overview of our layer inversion method. First, we train

a network E to invert G; this is used to obtain an initial guess of

the latent z0 = E(x) and its intermediate representation r0 =
gn(· · · (g1(z0))). Then r0 is used to initialize a search for r∗ to

obtain a reconstruction x
′ = Gf (r

∗) close to the target x.

set of all images that can be output by G, then we have

range(G) ⊂ range(Gf ). That implies, conversely, that any

image that cannot be generated by Gf cannot be generated

by G either. Therefore any omissions we can identify in

range(Gf ) will also be omissions of range(G).
Thus for layer inversion, we visualize omissions by solv-

ing the easier problem of inverting the later layers Gf :

x
′ = Gf (r

∗), (2)

where r
∗ = argmin

r

ℓ(Gf (r),x).

Although we ultimately seek an intermediate represen-

tation r, it will be helpful to begin with an estimated z: an

initial guess for z helps us regularize our search to favor

values of r that are more likely to be generated by a z. There-

fore, we solve the inversion problem in two steps: First

we construct a neural network E that approximately inverts

the entire G and computes an estimate z0 = E(x). Sub-

sequently we solve an optimization problem to identify an

intermediate representation r
∗ ≈ r0 = gn(· · · (g1(z0))) that

generates a reconstructed image Gf (r
∗) to closely recover

x. Figure 3 illustrates our layer inversion method.

Layer-wise network inversion. A deep network can be

trained more easily by pre-training individual layers on

smaller problems [18]. Therefore, to learn the inverting

neural network E, we also proceed layer-wise. For each

layer gi ∈ {g1, ..., gn, Gf}, we train a small network ei to

approximately invert gi. That is, defining ri = gi(ri−1), our

goal is to learn a network ei that approximates the compu-

tation ri−1 ≈ ei(ri). We also want the predictions of the

network ei to well preserve the output of the layer gi, so we

want ri ≈ gi(ei(ri)). We train ei to minimize both left- and

right-inversion losses:

LL ≡ Ez[||ri−1 − e(gi(ri−1))||1]

LR ≡ Ez[||ri − gi(e(ri))||1]

ei = argmin
e

LL + λRLR, (3)

To focus on training near the manifold of representations

produced by the generator, we sample z and then use the

layers gi to compute samples of ri−1 and ri, so ri−1 =
gi−1(· · · g1(z) · · · ). Here || · ||1 denotes an L1 loss, and we

set λR = 0.01 to emphasize the reconstruction of ri−1.

Once all the layers are inverted, we can compose an in-

version network for all of G:

E∗ = e1(e2(· · · (en(ef (x))))). (4)

The results can be further improved by jointly fine-tuning

this composed network E∗ to invert G as a whole. We denote

this fine-tuned result as E.

Layer-wise image optimization. As described at the be-

ginning of Section 3.2, inverting the entire G is difficult: G

is non-convex, and optimizations over z are quickly trapped

in local minima. Therefore, after obtaining a decent initial

guess for z, we turn our attention to the more relaxed opti-

mization problem of inverting the layers Gf ; that is, starting

from r0 = gn(· · · (g1(z0))), we seek an intermediate repre-

sentation r
∗ that generates a reconstructed image Gf (r

∗) to

closely recover x.

To regularize our search to favor r that are close to the

representations computed by the early layers of the genera-

tor, we search for r that can be computed by making small

perturbations of the early layers of the generator:

z0 ≡ E(x)

r ≡ δn + gn(· · · (δ2 + g2(δ1 + g1(z0))))

r
∗ = argmin

r

(

ℓ(x, Gf (r)) + λreg

∑

i

||δi||
2

)

. (5)

That is, we begin with the guess z0 given by the neural net-

work E, and then we learn small perturbations of each layer

before the n-th layer, to obtain an r that reconstructs the

image x well. For ℓ we sum image pixel loss and VGG

perceptual loss [36], similar to existing reconstruction meth-

ods [11, 51]. The hyper-parameter λreg determines the bal-

ance between image reconstruction loss and the regulariza-

tion of r. We set λreg = 1 in our experiments.

4. Results

Implementation details. We analyze three recent models:

WGAN-GP [16], Progressive GAN [21], and StyleGAN [22],

4505



Figure 4. Sensitivity test for Generated Image Segmentation Statis-

tics. This plot compares two different random samples of 10, 000
images from the LSUN bedroom dataset. An infinite-sized sample

would show no differences; the observed differences reveal the

small measurement noise introduced by the finite sampling process.

trained on LSUN bedroom images [47]. In addition, for Pro-

gressive GAN we analyze a model trained to generate LSUN

church images. To segment images, we use the Unified Per-

ceptual Parsing network [44], which labels each pixel of an

image with one of 336 object classes. Segmentation statistics

are computed over samples of 10,000 images.

4.1. Generated Image Segmentation Statistics

We first examine whether segmentation statistics correctly

reflect the output quality of models across architectures. Fig-

ure 2 and Figure 5 show Generated Image Segmentation

Statistics for WGAN-GP [16], StyleGAN [22], and Progres-

sive GAN [21] trained on LSUN bedrooms [47]. The his-

tograms reveal that, for a variety of segmented object classes,

StyleGAN matches the true distribution of those objects bet-

ter than Progressive GAN, while WGAN-GP matches least

closely. The differences can be summarized using Fréchet

Segmentation Distance (Table 1), confirming that better mod-

els match the segmented statistics better overall.

Model FSD

WGAN-GP [16] bedrooms (Figure 2) 428.4

ProGAN [21] bedrooms (Figure 5) 85.2

StyleGAN [22] bedrooms (Figure 2) 22.6

Table 1. FSD summarizes Generated Image Segmentation Statistics

4.2. Sensitivity test

Figure 4 illustrates the sensitivity of measuring Generated

Image Segmentation Statistics over a finite sample of 10,000
images. Instead of comparing a GAN to the true distribution,

we compare two different randomly chosen subsamples of

the LSUN bedroom data set to each other. A perfect test with

infinite sample sizes would show no difference; the small

differences shown reflect the sensitivity of the test and are

due to sampling error.

original image x generated image original image x generated image

Progressive GAN on LSUN Bedrooms
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Figure 5. A visualization of the omissions of a bedroom generator;

a Progressive GAN for LSUN bedrooms is tested. On top, a com-

parison of object distributions shows that many classes of objects

are left out by the generator, including people, cushions, carpets,

lamps, and several types of furniture. On the bottom, photographs

are shown with their reconstructions G(E(x)), along with segmen-

tations. These examples directly reveal many object classes omitted

by the bedroom generator.

4.3. Identifying dropped modes

Figure 1 and Figure 5 show the results of applying our

method to analyze the generated segmentation statistics for

Progressive GAN models of churches and bedrooms. Both

the histograms and the instance visualizations provide in-

sight into the limitations of the generators.

The histograms reveal that the generators partially skip

difficult subtasks. For example, neither model renders as

many people as appear in the target distribution. We use

inversion to create reconstructions of natural images that

include many pixels of people or other under-represented

objects. Figure 1 and Figure 5 each shows two examples

on the bottom. Our inversion method reveals the way in

which the models fail. The gaps are not due to low-quality

rendering of those object classes, but due to the wholesale

omission of these classes. For example, large human figures

and certain classes of objects are not included.
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Figure 6. Comparison of methods to invert the generator of Progressive GAN trained to generate LSUN church images. Each method

is described; (a) (b) and (c) are baselines, and (d), (e), and (f) are variants of our method. The first four rows show behavior given

GAN-generated images as input. In the scatter plots, every point plots a reconstructed component versus its true value, with a point for every

RGB pixel channel or every dimension of a representation. Reconstruction accuracy is shown as mean correlation over all dimensions for z,

layer4, and image pixels, based on a sample of 100 images. Our method (f) achieves nearly perfect reconstructions of GAN-generated

images. In the bottom rows, we apply each of the methods on a natural image.

4.4. Layer­wise inversion vs other methods

We compare our layer-wise inversion method to several pre-

vious approaches; we also benchmark it against ablations of

key components of the method.

The first three columns of Figure 6 compare our method to

prior inversion methods. We test each method on a sample of

100 images produced by the generator G, where the ground

truth z is known, and the reconstruction of an example image

is shown. In this case an ideal inversion should be able to

perfectly reconstruct x′ = x. In addition, a reconstruction

of a real input image is shown at the bottom. While there is

no ground truth latent and representation for this image, the

qualitative comparisons are informative.

(a) Direct optimization of z. Smaller generators such as

5-layer DCGAN [32] can be inverted by applying gradient

descent on z to minimize reconstruction loss [51]. In column

(a), we test this method on a 15-layer Progressive GAN and

find that neither z nor x can be constructed accurately.
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Figure 7. Inverting layers of a Progressive GAN bedroom generator. From top to bottom: uncurated reconstructions of photographs from the

LSUN training set, the holdout set, and unrelated (non-bedroom) photographs, both indoor and outdoor.

(b): Direct learning of E. Another natural solution [10,

51] is to learn a deep network E that inverts G directly, with-

out the complexity of layer-wise decomposition. Here, we

learn an inversion network with the same parameters and

architecture as the network E used in our method, but train

it end-to-end by directly minimizing expected reconstruc-

tion losses over generated images, rather than learning it by

layers. The method does benefit from the power of a deep

network to learn generalized rules [13], and the results are

marginally better than the direct optimization of z. However,

both qualitative and quantitative results remain poor.

(c): Optimization of z after initializing with E(x). This

is the full method used in [51]. By initializing method (a) us-

ing an initial guess from method (b), results can be improved

slightly. For smaller generators, this method performs better

than method (a) and (b). However, when applied to a Pro-

gressive GAN, the reconstructions are far from satisfactory.

Ablation experiments. The last three columns of Figure 6

compare our full method (f) to two ablations of our method.

(d): Layer-wise network inversion only. We can simply

use the layer-wise-trained inversion network E as the full

inverse, and simply use the initial guess z0 = E(x), setting

x
′ = G(z0). This fast method requires only a single forward

pass through the inverter network E. The results are better

than the baseline methods but far short of our full method.

Nevertheless, despite the inaccuracy of the latent code

z0, the intermediate layer features are highly correlated with

their true values; this method achieves 95.5% correlation

versus the true r4. Furthermore, the qualitative results show

that when reconstructing real images, this method obtains

more realistic results despite being noticeably different from

the target image.

(e): Inverting G without relaxation to Gf . We can im-

prove the initial guess z0 = E(x) by directly optimizing

z to minimize the same image reconstruction loss. This

marginally improves upon z0. However, the reconstructed

images and the input images still differ signficantly, and the

recovery of z remains poor. Although the qualitative results

are good, the remaining error means that we cannot know if

any reconstruction errors are due to failures of G to generate

an image, or if those reconstruction errors are merely due to

the inaccuracy of the inversion method.

(f): Our full method. By relaxing the problem and regu-

larizing optimization of r rather than z, our method achieves

nearly perfect reconstructions of both intermediate represen-

tations and pixels. Denote the full method as r∗ = Ef (x).

The high precision of Ef within the range of G means

that, when we observe large differences between x and

Gf (Ef (x)), they are unlikely to be a failure of Ef . This

indicates that Gf cannot render x, which means that G can-

not either. Thus our ability to solve the relaxed inversion

problem with an accuracy above 99% gives us a reliable tool

to visualize samples that reveal what G cannot do.

Note that the purpose of Ef is to show dropped modes,

not positive capabilities. The range of Gf upper-bounds the

range of G, so the reconstruction Gf (Ef (x)) could be better
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Figure 8. Inverting layers of a Progressive GAN outdoor church generator. From top to bottom: uncurated reconstructions of photographs

from the LSUN training set, the holdout set, and unrelated (non-church) photographs, both indoor and outdoor.

than what the full network G is capable of. For a more com-

plete picture, methods (d) and (e) can be additionally used

as lower-bounds: those methods do not prove images are

outside G’s range, but they can reveal positive capabilities

of G because they construct generated samples in range(G).

4.5. Layer­wise inversion across domains

Next, we apply the inversion tool to test the ability of genera-

tors to synthesize images outside their training sets. Figure 7

shows qualitative results of applying method (f) to invert and

reconstruct natural photographs of different scenes using a

Progressive GAN trained to generate LSUN bedrooms. Re-

constructions from the LSUN training and LSUN holdout

sets are shown; these are compared to newly collected unre-

lated (non-bedroom) images taken both indoors and outdoors.

Objects that disappear from the reconstructions reveal visual

concepts that cannot be represented by the model. Some

indoor non-bedroom images are rendered in a bedroom style:

for example, a dining room table with a white tablecloth

is rendered to resemble a bed with a white bed sheet. As

expected, outdoor images are not reconstructed well.

Figure 8 shows similar qualitative results using a Progres-

sive GAN for LSUN outdoor church images. Interestingly,

some architectural styles are dropped even in cases where

large-scale geometry is preserved. The same set of unrelated

(non-church) images as shown in Figure 7 are shown. When

using the church model, the indoor reconstructions exhibit

lower quality and are rendered to resemble outdoor scenes;

the reconstructions of outdoor images recover more details.

5. Discussion

We have proposed a way to measure and visualize mode-

dropping in state-of-the-art generative models. Generated

Image Segmentation Statistics can compare the quality of dif-

ferent models and architectures, and provide insights into the

semantic differences of their output spaces. Layer inversions

allow us to further probe the range of the generators using

natural photographs, revealing specific objects and styles

that cannot be represented. By comparing labeled distribu-

tions with one another, and by comparing natural photos with

imperfect reconstructions, we can identify specific objects,

parts, and styles that a generator cannot produce.

The methods we propose here constitute a first step to-

wards analyzing and understanding the latent space of a

GAN and point to further questions. Why does a GAN de-

cide to ignore classes that are more frequent than others

in the target distribution (e.g. “person” vs. “fountain” in

Figure 1)? How can we encourage a GAN to learn about a

concept without skewing the training set? What is the impact

of architectural choices? Finding ways to exploit and address

the mode-dropping phenomena identified by our methods

are questions for future work.
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