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Abstract

Convolutional networks have been the paradigm of

choice in many computer vision applications. The convolu-

tion operation however has a significant weakness in that it

only operates on a local neighborhood, thus missing global

information. Self-attention, on the other hand, has emerged

as a recent advance to capture long range interactions, but

has mostly been applied to sequence modeling and gener-

ative modeling tasks. In this paper, we consider the use of

self-attention for discriminative visual tasks as an alterna-

tive to convolutions. We introduce a novel two-dimensional

relative self-attention mechanism that proves competitive

in replacing convolutions as a stand-alone computational

primitive for image classification. We find in control exper-

iments that the best results are obtained when combining

both convolutions and self-attention. We therefore propose

to augment convolutional operators with this self-attention

mechanism by concatenating convolutional feature maps

with a set of feature maps produced via self-attention. Ex-

tensive experiments show that Attention Augmentation leads

to consistent improvements in image classification on Im-

ageNet and object detection on COCO across many dif-

ferent models and scales, including ResNets and a state-

of-the art mobile constrained network, while keeping the

number of parameters similar. In particular, our method

achieves a 1.3% top-1 accuracy improvement on ImageNet

classification over a ResNet50 baseline and outperforms

other attention mechanisms for images such as Squeeze-

and-Excitation [17]. It also achieves an improvement of

1.4 mAP in COCO Object Detection on top of a RetinaNet

baseline.

1. Introduction

Convolutional Neural Networks have enjoyed tremen-

dous success in many computer vision applications, espe-

cially in image classification [24, 23]. The design of the

convolutional layer imposes 1) locality via a limited recep-

tive field and 2) translation equivariance via weight sharing.

Figure 1. Attention Augmentation systematically improves im-

age classification across a large variety of networks of different

scales. ImageNet classification accuracy [9] versus the number of

parameters for baseline models (ResNet) [14], models augmented

with channel-wise attention (SE-ResNet) [17] and our proposed

architecture (AA-ResNet).

Both these properties prove to be crucial inductive biases

when designing models that operate over images. However,

the local nature of the convolutional kernel prevents it from

capturing global contexts in an image, often necessary for

better recognition of objects in images [33].

Self-attention [43], on the other hand, has emerged as a

recent advance to capture long range interactions, but has

mostly been applied to sequence modeling and generative

modeling tasks. The key idea behind self-attention is to

produce a weighted average of values computed from hid-

den units. Unlike the pooling or the convolutional operator,

the weights used in the weighted average operation are pro-

duced dynamically via a similarity function between hid-

den units. As a result, the interaction between input signals

depends on the signals themselves rather than being prede-

termined by their relative location like in convolutions. In

particular, this allows self-attention to capture long range
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Figure 2. Attention-augmented convolution: For each spatial location (h, w), Nh attention maps over the image are computed from

queries and keys. These attention maps are used to compute Nh weighted averages of the values V. The results are then concatenated,

reshaped to match the original volume’s spatial dimensions and mixed with a pointwise convolution. Multi-head attention is applied in

parallel to a standard convolution operation and the outputs are concatenated.

interactions without increasing the number of parameters.

In this paper, we consider the use of self-attention for

discriminative visual tasks as an alternative to convolu-

tions. We develop a novel two-dimensional relative self-

attention mechanism [37] that maintains translation equiv-

ariance while being infused with relative position informa-

tion, making it well suited for images. Our self-attention

formulation proves competitive for replacing convolutions

entirely, however we find in control experiments that the

best results are obtained when combining both. We there-

fore do not completely abandon the idea of convolutions,

but instead propose to augment convolutions with this self-

attention mechanism. This is achieved by concatenating

convolutional feature maps, which enforce locality, to self-

attentional feature maps capable of modeling longer range

dependencies (see Figure 2).

We test our method on the CIFAR-100 and ImageNet

classification [22, 9] and the COCO object detection [27]

tasks, across a wide range of architectures at different com-

putational budgets, including a state-of-the art resource

constrained architecture [42]. Attention Augmentation

yields systematic improvements with minimal additional

computational burden and notably outperforms the popu-

lar Squeeze-and-Excitation [17] channelwise attention ap-

proach in all experiments. In particular, Attention Augmen-

tation achieves a 1.3% top-1 accuracy ImageNet on top of

a ResNet50 baseline and 1.4 mAP increase in COCO ob-

ject detection on top of a RetinaNet baseline. Suprisingly,

experiments also reveal that fully self-attentional models,

a special case of Attention Augmentation, only perform

slightly worse than their fully convolutional counterparts on

ImageNet, indicating that self-attention is a powerful stand-

alone computational primitive for image classification.

2. Related Work

2.1. Convolutional networks

Modern computer vision has been built on powerful im-

age featurizers learned on image classification tasks such

as CIFAR-10 [22] and ImageNet [9]. These datasets have

been used as benchmarks for delineating better image fea-

turizations and network architectures across a broad range

of tasks [21]. For example, improving the “backbone” net-

work typically leads to improvements in object detection

[19] and image segmentation [6]. These observations have

inspired the research and design of new architectures, which

are typically derived from the composition of convolution

operations across an array of spatial scales and skip con-

nections [23, 41, 39, 40, 14, 47, 13]. Indeed, automated

search strategies for designing architectures based on con-

volutional primitives result in state-of-the-art accuracy on

large-scale image classification tasks that translate across a

range of tasks [55, 21].

2.2. Attention mechanisms in networks

Attention has enjoyed widespread adoption as a com-

putational module for modeling sequences because of its

ability to capture long distance interactions [2, 44, 4, 3].

Most notably, Bahdanau et al. [2] first proposed to com-

bine attention with a Recurrent Neural Network [15] for

alignment in Machine Translation. Attention was further

extended by Vaswani et al. [43], where the self-attentional

Transformer architecture achieved state-of-the-art results in

Machine Translation. Using self-attention in cooperation

with convolutions is a theme shared by recent work in Nat-

ural Language Processing [49] and Reinforcement Learn-

ing [52]. For example, the QANet [50] and Evolved Trans-
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former [38] architectures alternate between self-attention

layers and convolution layers for Question Answering ap-

plications and Machine Translation respectively. Addi-

tionally, multiple attention mechanisms have been pro-

posed for visual tasks to address the weaknesses of con-

volutions [17, 16, 7, 46, 45, 53]. For instance, Squeeze-

and-Excitation [17] and Gather-Excite [16] reweigh feature

channels using signals aggregated from entire feature maps,

while BAM [31] and CBAM [46] refine convolutional fea-

tures independently in the channel and spatial dimensions.

In non-local neural networks [45], improvements are shown

in video classification and object detection via the addi-

tive use of a few non-local residual blocks that employ

self-attention in convolutional architectures. However, non-

local blocks are only added to the architecture after Ima-

geNet pretraining and are initialized in such a way that they

do not break pretraining.

In contrast, our attention augmented networks do not rely

on pretraining of their fully convolutional counterparts and

employ self-attention along the entire architecture. The use

of multi-head attention allows the model to attend jointly

to both spatial and feature subspaces. Additionally, we en-

hance the representational power of self-attention over im-

ages by extending relative self-attention [37, 18] to two di-

mensional inputs allowing us to model translation equivari-

ance in a principled way. Finally our method produces addi-

tional feature maps, rather than recalibrating convolutional

features via addition [45, 53] or gating [17, 16, 31, 46]. This

property allows us to flexibly adjust the fraction of atten-

tional channels and consider a spectrum of architectures,

ranging from fully convolutional to fully attentional mod-

els.

3. Methods

We now formally describe our proposed Attention Aug-

mentation method. We use the following naming conven-

tions: H , W and Fin refer to the height, width and number

of input filters of an activation map. Nh, dv and dk respec-

tively refer the number of heads, the depth of values and the

depth of queries and keys in multihead-attention (MHA).

We further assume that Nh divides dv and dk evenly and

denote dhv and dhk the depth of values and queries/keys per

attention head.

3.1. Self-attention over images

Given an input tensor of shape (H,W,Fin),
1 we flatten

it to a matrix X ∈ R
HW×Fin and perform multihead atten-

tion as proposed in the Transformer architecture [43]. The

output of the self-attention mechanism for a single head h

1We omit the batch dimension for simplicity.

can be formulated as:

Oh = Softmax

0

@

(XWq)(XWk)
T

q

dhk

1

A (XWv) (1)

where Wq , Wk ∈ R
Fin×dh

k and Wv ∈ R
Fin×dh

v are learned

linear transformations that map the input X to queries Q =
XWq , keys K = XWk and values V = XWv . The outputs

of all heads are then concatenated and projected again as

follows:

MHA(X) = Concat

h

O1, . . . , ONh

i

WO (2)

where WO
∈ R

dv×dv is a learned linear transformation.

MHA(X) is then reshaped into a tensor of shape (H,W, dv)
to match the original spatial dimensions. We note that

multi-head attention incurs a complexity of O((HW )2dk)
and a memory cost of O((HW )2Nh) as it requires to store

attention maps for each head.

3.1.1 Two-dimensional Positional Encodings

Without explicit information about positions, self-attention

is permutation equivariant:

MHA(π(X)) = π(MHA(X))

for any permutation π of the pixel locations, making it in-

effective for modeling highly structured data such as im-

ages. Multiple positional encodings that augment activation

maps with explicit spatial information have been proposed

to alleviate related issues. In particular, the Image Trans-

former [32] extends the sinusoidal waves first introduced in

the original Transformer [43] to 2 dimensional inputs and

CoordConv [29] concatenates positional channels to an ac-

tivation map.

However these encodings did not help in our experi-

ments on image classification and object detection (see Sec-

tion 4.5). We hypothesize that this is because such posi-

tional encodings, while not permutation equivariant, do not

satisfy translation equivariance, which is a desirable prop-

erty when dealing with images. As a solution, we propose

to extend the use of relative position encodings [37] to two

dimensions and present a memory efficient implementation

based on the Music Transformer [18].

Relative positional encodings: Introduced in [37] for the

purpose of language modeling, relative self-attention aug-

ments self-attention with relative position encodings and

enables translation equivariance while preventing permuta-

tion equivariance. We implement two-dimensional relative

self-attention by independently adding relative height infor-

mation and relative width information. The attention logit
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for how much pixel i = (ix, iy) attends to pixel j = (jx, jy)
is computed as:

li,j =
qTi
q

dhk

(kj + rWjx−ix
+ rHjy−iy

) (3)

where qi is the query vector for pixel i (the i-th row of Q),

kj is the key vector for pixel j (the j-th row of K) and rWjx−ix

and rHjy−iy
are learned embeddings for relative width jx−ix

and relative height jy − iy , respectively. The output of head

h now becomes:

Oh = Softmax

0

@

QKT + Srel
H + Srel

W
q

dhk

1

AV (4)

where Srel
H , Srel

W ∈ R
HW×HW are matrices of relative po-

sition logits along height and width dimensions that sat-

isfy Srel
H [i, j] = qTi r

H
jy−iy

and Srel
W [i, j] = qTi r

W
jx−ix

. As

we consider relative height and width information sepa-

rately, Srel
H and Srel

W also satisfy the properties Srel
W [i, j] =

Srel
W [i, j + W ] and Srel

H [i, j] = Srel
H [i + H, j], which pre-

vents from having to compute the logits for all (i, j) pairs.

The relative attention algorithm in [37] explicitly

stores all relative embeddings rij in a tensor of shape

(HW,HW, dhk), thus incurring an additional memory cost

of O((HW )2dhk). This compares to O((HW )2Nh) for the

position-unaware version self-attention that does not use

position encodings. As we typically have Nh < dhk , such an

implementation can prove extremely prohibitive and restrict

the number of images that can fit in a minibatch. Instead, we

extend the memory efficient relative masked attention algo-

rithm presented in [18] to unmasked relative self-attention

over 2 dimensional inputs. Our implementation has a mem-

ory cost of O(HWdhk). We leave the Tensorflow code of

the algorithm in the Appendix.

The relative positional embeeddings rH and rW are

learned and shared across heads but not layers. For each

layer, we add (2(H +W )− 2)dhk parameters to model rel-

ative distances along height and width.

3.2. Attention Augmented Convolution

Multiple previously proposed attention mechanisms over

images [17, 16, 31, 46] suggest that the convolution op-

erator is limited by its locality and lack of understanding

of global contexts. These methods capture long-range de-

pendencies by recalibrating convolutional feature maps. In

particular, Squeeze-and-Excitation (SE) [17] and Gather-

Excite (GE) [16] perform channelwise reweighing while

BAM [31] and CBAM [46] reweigh both channels and

spatial positions independently. In contrast to these ap-

proaches, we 1) use an attention mechanism that can attend

jointly to spatial and feature subspaces (each head corre-

sponding to a feature subspace) and 2) introduce additional

feature maps rather than refining them. Figure 2 summa-

rizes our proposed augmented convolution.

Concatenating convolutional and attentional feature

maps: Formally, consider an original convolution oper-

ator with kernel size k, Fin input filters and Fout output

filters. The corresponding attention augmented convolution

can be written as

AAConv(X) = Concat

h

Conv(X),MHA(X)
i

.

We denote υ = dv

Fout
the ratio of attentional channels to

number of original output filters and κ = dk

Fout
the ratio of

key depth to number of original output filters. Similarly to

the convolution, the proposed attention augmented convo-

lution 1) is equivariant to translation and 2) can readily op-

erate on inputs of different spatial dimensions. We include

Tensorflow code for the proposed attention augmented con-

volution in the Appendix A.3.

Effect on number of parameters: Multihead attention

introduces a 1x1 convolution with Fin input filters and

(2dk+dv) = Fout(2κ+υ) output filters to compute queries,

keys and values and an additional 1x1 convolution with

dv = Foutυ input and output filters to mix the contribu-

tion of different heads. Considering the decrease in filters

in the convolutional part, this leads to the following change

in parameters:

∆params ∼ FinFout(2κ+ (1− k2)υ +
Fout

Fin

υ
2), (5)

where we ignore the parameters introduced by relative po-

sition embeddings for simplicity as these are negligible. In

practice, this causes a slight decrease in parameters when

replacing 3x3 convolutions and a slight increase in parame-

ters when replacing 1x1 convolutions. Interestingly, we find

in experiments that attention augmented networks still sig-

nificantly outperform their fully convolutional counterparts

while using less parameters.

Attention Augmented Convolutional Architectures: In

all our experiments, the augmented convolution is followed

by a batch normalization [20] layer which can learn to scale

the contribution of the convolution feature maps and the at-

tention feature maps. We apply our augmented convolution

once per residual block similarly to other visual attention

mechanisms [17, 16, 31, 46] and along the entire architec-

ture as memory permits (see Section 4 for more details).

Since the memory cost O((Nh(HW )2) can be pro-

hibitive for large spatial dimensions, we augment convolu-

tions with attention starting from the last layer (with small-

est spatial dimension) until we hit memory constraints. To
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reduce the memory footprint of augmented networks, we

typically resort to a smaller batch size and sometimes addi-

tionally downsample the inputs to self-attention in the lay-

ers with the largest spatial dimensions where it is applied.

Downsampling is performed by applying 3x3 average pool-

ing with stride 2 while the following upsampling (required

for the concatenation) is obtained via bilinear interpolation.

4. Experiments

In the subsequent experiments, we test Attention Aug-

mentation on standard computer vision architectures such

as ResNets [14, 47, 13], and MnasNet [42] on the CIFAR-

100 [22], ImageNet [9] and COCO [25] datasets. Our ex-

periments show that Attention Augmentation leads to sys-

tematic improvements on both image classification and ob-

ject detection tasks across a broad array of architectures and

computational demands. We validate the utility of the pro-

posed two-dimensional relative attention mechanism in ab-

lation experiments. In all experiments, we substitute con-

volutional feature maps with self-attention feature maps as

it makes for an easier comparison against the baseline mod-

els. Unless specified otherwise, all results correspond to our

two-dimensional relative self-attention mechanism. Exper-

imental details can be found in the Appendix.

4.1. CIFAR-100 image classification

We first investigate how Attention Augmentation per-

forms on CIFAR-100 [22], a standard benchmark for low-

resolution imagery, using a Wide ResNet architecture [51].

The Wide-ResNet-28-10 architecture is comprised of 3

stages of 4 residual blocks each using two 3 × 3 convolu-

tions. We augment the Wide-ResNet-28-10 by augmenting

the first convolution of all residual blocks with relative at-

tention using Nh=8 heads and κ=2υ=0.2 and a minimum of

20 dimensions per head for the keys. We compare Attention

Augmentation (AA) against other forms of attention includ-

ing Squeeze-and-Excitation (SE) [17] and the parameter-

free formulation of Gather-Excite (GE) [16]. Table 1 shows

that Attention Augmentation improves performance both

over the baseline network and Squeeze-and-Excitation at a

similar parameter and complexity cost.

Architecture Params GFlops top-1 top-5

Wide-ResNet [51] 36.3M 10.4 80.3 95.0

GE-Wide-ResNet [16] 36.3M 10.4 79.8 95.0

SE-Wide-ResNet [17] 36.5M 10.4 81.0 95.3

AA-Wide-ResNet (ours) 36.2M 10.9 81.6 95.2

Table 1. Image classification on the CIFAR-100 dataset [22] using

the Wide-ResNet 28-10 architecture [51].

4.2. ImageNet image classification with ResNet

We next examine how Attention Augmentation performs

on ImageNet [9, 21], a standard large-scale dataset for high

resolution imagery, across an array of architectures. We

start with the ResNet architecture [14, 47, 13] because of its

widespread use and its ability to easily scale across several

computational budgets. The building block in ResNet-34

comprises two 3x3 convolutions with the same number of

output filters. ResNet-50 and its larger counterparts use a

bottleneck block comprising of 1x1, 3x3, 1x1 convolutions

where the last pointwise convolution expands the number

of filters and the first one contracts the number of filters.

We modify all ResNets by augmenting the 3x3 convolu-

tions as this decreases number of parameters.2 We apply

Attention Augmentation in each residual block of the last 3

stages of the architecture – when the spatial dimensions of

the activation maps are 28x28, 14x14 and 7x7 – and down-

sample only during the first stage. All attention augmented

networks use κ=2υ=0.2, except for ResNet-34 which uses

κ=υ=0.25. The number of attention heads is fixed to Nh=8.

Architecture Params (M) ∆Infer ∆Train top-1

ResNet-50 25.6 - - 76.4

SE [17] 28.1 +12% +92% 77.5 (77.0)

BAM [31] 25.9 +19% +43% 77.3

CBAM [46] 28.1 +56% +132% 77.4 (77.4)

GALA [28] 29.4 +86% +133% 77.5 (77.3)

AA (υ = 0.25) 24.3 +29% +25% 77.7

Table 2. Image classification performance of different attention

mechanisms on the ImageNet dataset. ∆ refers to the increase

in latency times compared to the ResNet50 on a single Tesla V100

GPU with Tensorflow using a batch size of 128. For fair compar-

ison, we also include top-1 results (in parentheses) when scaling

networks in width to match ∼ 25.6M parameters as the ResNet50

baseline.

Table 2 benchmarks Attention Augmentation against

channel and spatial attention mechanisms BAM [31],

CBAM [46] and GALA [28] with channel reduction ra-

tio σ = 16 on the ResNet50 architecture. Despite the

lack of specialized kernels (See Appendix A.3), Attention

Augmentation offers a competitive accuracy/computational

trade-off compared to previously proposed attention mech-

anisms. Table 3 compares the non-augmented networks and

Squeeze-and-Excitation (SE) [17] across different network

scales. In all experiments, Attention Augmentation sig-

nificantly increases performance over the non-augmented

baseline and notably outperforms Squeeze-and-Excitation

(SE) [17] while being more parameter efficient (Figure 1).

Remarkably, our AA-ResNet-50 performs comparably to

the baseline ResNet-101 and our AA-ResNet-101 outper-

forms the baseline ResNet-152. These results suggest that

2We found that augmenting the pointwise expansions works just as well

but does not save parameters or computations.
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Architecture GFlops Params top-1 top-5

ResNet-34 [14] 7.4 21.8M 73.6 91.5

SE-ResNet-34 [17] 7.4 22.0M 74.3 91.8

AA-ResNet-34 (ours) 7.1 20.7M 74.7 92.0

ResNet-50 [14] 8.2 25.6M 76.4 93.1

SE-ResNet-50 [17] 8.2 28.1M 77.5 93.7

AA-ResNet-50 (ours) 8.3 25.8M 77.7 93.8

ResNet-101 [14] 15.6 44.5M 77.9 94.0

SE-ResNet-101 [17] 15.6 49.3M 78.4 94.2

AA-ResNet-101 (ours) 16.1 45.4M 78.7 94.4

ResNet-152 [14] 23.0 60.2M 78.4 94.2

SE-ResNet-152 [17] 23.1 66.8M 78.9 94.5

AA-ResNet-152 (ours) 23.8 61.6M 79.1 94.6

Table 3. Image classification on the ImageNet dataset [9] across

a range of ResNet architectures: ResNet-34, ResNet-50, Resnet-

101, and ResNet-152 [14, 47, 13].

Architecture GFlops Params top-1 top-5

MnasNet-0.75 0.45 2.91M 73.3 91.3

AA-MnasNet-0.75 0.51 3.02M 73.9 91.6

MnasNet-1.0 0.63 3.89M 75.2 92.4

AA-MnasNet-1.0 0.70 4.06M 75.7 92.6

MnasNet-1.25 1.01 5.26M 76.7 93.2

AA-MnasNet-1.25 1.11 5.53M 77.2 93.6

MnasNet-1.4 1.17 6.10M 77.2 93.5

AA-MnasNet-1.4 1.29 6.44M 77.7 93.8

Table 4. Baseline and attention augmented MnasNet [42] accura-

cies with width multipliers 0.75, 1.0, 1.25 and 1.4.

attention augmentation is preferable to simply making net-

works deeper. We include and discuss attention maps visu-

alizations from different pixel positions in the appendix.

4.3. ImageNet classification with MnasNet

In this section, we inspect the use of Attention Aug-

mentation in a resource constrained setting by conducting

ImageNet experiments with the MnasNet architecture [42],

which is an extremely parameter-efficient architecture. In

particular, the MnasNet was found by neural architec-

ture search [54], using only the highly optimized mo-

bile inverted bottleneck block [36] and the Squeeze-and-

Excitation operation [17] as the primitives in its search

space. We apply Attention Augmentation to the mobile

inverted bottleneck by replacing convolutional channels in

the expansion pointwise convolution using κ=2υ=0.1 and

Nh=4 heads. Our augmented MnasNets use augmented in-

verted bottlenecks in the the last 13 blocks out of 18 in the

MnasNet architecture, starting when the spatial dimension

is 28x28. We downsample only in the first stage where At-

tention Augmentation is applied. We leave the final point-

wise convolution, also referred to as the “head”, unchanged.

In Table 4, we report ImageNet accuracies for the base-

line MnasNet and its attention augmented variants at dif-

Figure 3. ImageNet top-1 accuracy as a function of number of pa-

rameters for MnasNet (black) and Attention-Augmented-MnasNet

(red) with depth multipliers 0.75, 1.0, 1.25 and 1.4.

ferent width multipliers. Our experiments show that At-

tention Augmentation yields accuracy improvements across

all width multipliers. Augmenting MnasNets with relative

self-attention incurs a slight parameter increase, however

we verify in Figure 3 that the accuracy improvements are

not just explained by the parameter increase. Additionally,

we note that the MnasNet architecture employs Squeeze-

and-Excitation at multiple locations that were optimally se-

lected via architecture search, further suggesting the bene-

fits of our method.

4.4. Object Detection with COCO dataset

We next investigate the use of Attention Augmentation

on the task of object detection on the COCO dataset [27].

We employ the RetinaNet architecture with a ResNet-50

and ResNet-101 backbone as done in [26], using the open-

sourced RetinaNet codebase.3 We apply Attention Aug-

mentation uniquely on the ResNet backbone, modifying

them similarly as in our ImageNet classification experi-

ments.

Our relative self-attention mechanism improves the per-

formance of the RetinaNet on both ResNet-50 and ResNet-

101 as shown in Table 5. Most notably, Attention Aug-

mentation yields a 1.4% mAP improvement over a strong

RetinaNet baseline from [26]. In contrast to the success

of Squeeze-and-Excitation in image classification with Im-

ageNet, our experiments show that adding Squeeze-and-

Excitation operators in the backbone network of the Reti-

naNet significantly hurts performance, in spite of grid

searching over the squeeze ratio σ ∈ {4, 8, 16}. We hy-

pothesize that localization requires precise spatial informa-

3https://github.com/tensorflow/tpu/tree/master/

models/official/retinanet
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Backbone architecture GFlops Params mAPCOCO mAP50 mAP75

ResNet-50 [26] 182 33.4M 36.8 54.5 39.5

SE-ResNet-50 [17] 183 35.9M 36.5 54.0 39.1

AA-ResNet-50 (ours) 182 33.1M 38.2 56.5 40.7

ResNet-101 [26] 243 52.4M 38.5 56.4 41.2

SE-ResNet-101 [17] 243 57.2M 37.4 55.0 39.9

AA-ResNet-101 (ours) 245 51.7M 39.2 57.8 41.9

Table 5. Object detection on the COCO dataset [27] using the RetinaNet architecture [26] with different backbone architectures. We report

mean Average Precision at three different IoU values.

tion which SE discards during the spatial pooling operation,

thereby negatively affecting performance. Self-attention on

the other hand maintains spatial information and is likely to

be able to identify object boundaries successfully. Visual-

izations of attention maps (See Figures 9 and 10 in the Ap-

pendix) reveal that some heads are indeed delineating ob-

jects from their background which might be important for

localization.

4.5. Ablation Study

Fully-attentional vision models: In this section, we in-

vestigate the performance of Attention Augmentation as a

function of the fraction of attentional channels. As we in-

crease this fraction to 100%, we begin to replace a Con-

vNet with a fully attentional model, only leaving pointwise

convolutions and the stem unchanged. Table 6 presents the

performance of Attention Augmentation on the ResNet-50

architecture for varying ratios κ=υ ∈ {0.25, 0.5, 0.75, 1.0}.

Performance slightly degrades as the ratio of attentional

channels increases, which we hypothesize is partly ex-

plained by the average pooling operation for downsampling

at the first stage where Attention Augmentation is applied.

Attention Augmentation proves however quite robust to the

fraction of attentional channels. For instance, AA-ResNet-

50 with κ=υ=0.75 outperforms its ResNet-50 counterpart,

while being more parameter and flops efficient, indicating

that mostly employing attentional channels is readily com-

petitive.

Perhaps surprisingly, these experiments also reveal that

our proposed self-attention mechanism is a powerful stand-

alone computational primitive for image classification and

that fully attentional models are viable for discriminative vi-

sual tasks. In particular, AA-ResNet-50 with κ=υ=1, which

uses exclusively attentional channels, is only 2.5% worse

in accuracy than its fully convolutional counterpart, in spite

of downsampling with average pooling and having 25% less

parameters. Notably, this fully attentional architecture4 also

outperforms ResNet-34 while being more parameter and

4We consider pointwise convolutions as dense layers. This architecture

employs 4 non-pointwise convolutions in the stem and the first stage of the

architecture, but we believe such operations can be replaced by attention

too.

Figure 4. Effect of relative position embeddings as the ratio

of attentional channels increases on our Attention-Augmented

ResNet50.

flops efficient (see Table 6).

Architecture GFlops Params top-1 top-5

ResNet-34 [14] 7.4 21.8M 73.6 91.5

ResNet-50 [14] 8.2 25.6M 76.4 93.1

κ = υ = 0.25 7.9 24.3M 77.7 93.8

κ = υ = 0.5 7.3 22.3M 77.3 93.6

κ = υ = 0.75 6.8 20.7M 76.7 93.2

κ = υ = 1.0 6.3 19.4M 73.9 91.5

Table 6. Attention Augmented ResNet-50 with varying ratios of

attentional channels.

Importance of position encodings: In Figure 4, we show

the effect of our proposed two-dimensional relative posi-

tion encodings as a function of the fraction of attentional

channels. As expected, experiments demonstrate that our

relative position encodings become increasingly more im-

portant as the architecture employs more attentional chan-

nels. In particular, the fully self-attentional ResNet-50 gains

2.8% top-1 ImageNet accuracy when using relative position
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Architecture Position Encodings top-1 top-5

AA-ResNet-34 None 74.4 91.9

AA-ResNet-34 2d Sine 74.4 92.0

AA-ResNet-34 CoordConv 74.4 92.0

AA-ResNet-34 Relative (ours) 74.7 92.0

AA-ResNet-50 None 77.5 93.7

AA-ResNet-50 2d Sine 77.5 93.7

AA-ResNet-50 CoordConv 77.5 93.8

AA-ResNet-50 Relative (ours) 77.7 93.8

Table 7. Effects of different position encodings in Attention Aug-

mentation on ImageNet classification.

Position Encodings mAPCOCO mAP50 mAP75

None 37.7 56.0 40.2

CoordConv [29] 37.4 55.5 40.1

Relative (ours) 38.2 56.5 40.7

Table 8. Effects of different position encodings in Attention Aug-

mentation on the COCO object detection task using a RetinaNet

AA-ResNet-50 backbone.

encodings, which indicates the necessity of maintaining po-

sition information for fully self-attentional vision models.

We additionally compare our proposed two-dimensional

relative position encodings to other position encoding

schemes. We apply Attention Augmentation using the same

hyperparameters as 4.2 with the following different posi-

tion encoding schemes: 1) The position-unaware version of

self-attention (referred to as None), 2) a two-dimensional

implementation of the sinusoidal positional waves (referred

to as 2d Sine) as used in [32], 3) CoordConv [29] for which

we concatenate (x,y,r) coordinate channels to the inputs of

the attention function, and 4) our proposed two-dimensional

relative position encodings (referred to as Relative).

In Table 7 and 8, we present the results on ImageNet

classification and the COCO object detection task respec-

tively. On both tasks, Attention Augmentation without po-

sition encodings already yields improvements over the fully

convolutional non-augmented variants. Our experiments

also reveal that the sinusoidal encodings and the coordinate

convolution do not provide improvements over the position-

unaware version of Attention Augmentation. We obtain ad-

ditional improvements when using our two-dimensional rel-

ative attention, demonstrating the utility of preserving trans-

lation equivariance while preventing permutation equivari-

ance.

5. Discussion and future work

In this work, we consider the use of self-attention for vi-

sion models as an alternative to convolutions. We introduce

a novel two-dimensional relative self-attention mechanism

for images that enables training of competitive fully self-

attentional vision models on image classification for the first

time. We propose to augment convolutional operators with

this self-attention mechanism and validate the superiority of

this approach over other attention schemes. Extensive ex-

periments show that Attention Augmentation leads to sys-

tematic improvements on both image classification and ob-

ject detection tasks across a wide range of architectures and

computational settings.

Several open questions from this work remain. In fu-

ture work, we will focus on the fully attentional regime

and explore how different attention mechanisms trade off

computational efficiency versus representational power. For

instance, identifying a local attention mechanism may re-

sult in an efficient and scalable computational mechanism

that could prevent the need for downsampling with average

pooling [34]. Additionally, it is plausible that architectural

design choices that are well suited when exclusively relying

on convolutions are suboptimal when using self-attention

mechanisms. As such, it would be interesting to see if us-

ing Attention Augmentation as a primitive in automated ar-

chitecture search procedures proves useful to find even bet-

ter models than those previously found in image classifica-

tion [55], object detection [12], image segmentation [6] and

other domains[5, 1, 35, 8]. Finally, one can ask to which

degree fully attentional models can replace convolutional

networks for visual tasks.
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