
IL2M: Class Incremental Learning With Dual Memory

Eden Belouadah

CEA, LIST,

F-91191 Gif-sur-Yvette, France

eden.belouadah@cea.fr

Adrian Popescu

CEA, LIST,

F-91191 Gif-sur-Yvette, France

adrian.popescu@cea.fr

Abstract

This paper presents a class incremental learning (IL)

method which exploits fine tuning and a dual memory to re-

duce the negative effect of catastrophic forgetting in image

recognition. First, we simplify the current fine tuning based

approaches which use a combination of classification and

distillation losses to compensate for the limited availability

of past data. We find that the distillation term actually hurts

performance when a memory is allowed. Then, we mod-

ify the usual class IL memory component. Similar to exist-

ing works, a first memory stores exemplar images of past

classes. A second memory is introduced here to store past

class statistics obtained when they were initially learned.

The intuition here is that classes are best modeled when all

their data are available and that their initial statistics are

useful across different incremental states. A prediction bias

towards newly learned classes appears during inference be-

cause the dataset is imbalanced in their favor. The chal-

lenge is to make predictions of new and past classes more

comparable. To do this, scores of past classes are rectified

by leveraging contents from both memories. The method

has negligible added cost, both in terms of memory and of

inference complexity. Experiments with three large public

datasets show that the proposed approach is more effective

than a range of competitive state-of-the-art methods.

1. Introduction

Incremental learning (IL) is the ability of artificial agents

to learn from data that are presented to them sequentially.

Our focus is on class IL which assumes that data are la-

beled. The problem is trivial if enough computational power

and storage are available and if long delays are allowed for

model updates. These conditions are often not met in real

applications and class IL becomes hard to solve. This is the

case in contexts such as robotics, mobile apps and military

applications, where visual recognition capacities need to be

incremented without access to large infrastructures [21].

Recent class IL methods exploit Deep Neural Networks

(DNNs) which obtain very good performance for many AI

tasks, including image recognition [10]. The main prob-

lem faced by DNN based IL methods is catastrophic for-

getting [18], i.e. their inability to integrate new data with-

out forgetting previously learned knowledge. Minimiz-

ing computation, storage and time requirements simulta-

neously is not doable and existing methods make compro-

mises on one or two of these conditions. A stream of re-

search [1, 17, 27, 29] assumes that deep architectures can

grow to some extent so as to integrate new data. Under this

assumption, no memory of the past is needed. Another re-

search trend [5, 8, 12, 24] posits that the DNN architectures

should be fixed. They adapt the DNN fine tuning process

by adding a distillation loss and use a bounded memory of

the past to limit catastrophic forgetting.

Our method, Incremental Learning with Dual Memory

(IL2M ) is summarized in Figure 1. with an example which

includes an initial and two incremental states. IL2M uses

a fixed DNN architecture and a bounded memory of the

past. Our main contribution is to propose a second mem-

ory which stores initial class statistics in a very compact

format. The introduction of this memory is based on the in-

tuition that classes are best modeled when first learned, with

all data available. Initial class statistics are reused in each

subsequent incremental state to rectify the prediction scores

of past classes. Rectification is necessary because class IL

models are trained with imbalanced datasets in which past

classes have fewer examples. Consequently, their predic-

tion scores are generally lower than those of new classes.

A second contribution is of practical nature and consists

in using vanilla fine tuning as basis for class IL. This use

challenges the common hypothesis that a distillation loss

term is necessary in IL with memory [5, 8, 12, 24]. We

show that, if each past class has at least a few exemplars,

the distillation loss actually hurts performance and vanilla

fine tuning provides significantly better performance.

The evaluation is done against strong baselines and their

adaptations based on vanilla fine tuning. Three large pub-

lic datasets with different memory sizes and number of IL

states are used. Results indicate that IL2M obtains state-

of-the-art results in a wide majority of tested conditions.
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Figure 1: Illustration of the proposed IL2M training process. The deep models associated to the three states recognize 2,

4 and 6 classes respectively. The bounded memory includes K = 4 image exemplars of past classes and is represented

on light blue background. The number of class exemplars class stored in memory decreases when adding new classes to

keep memory requirements constant. The IL training process is more and more prone to catastrophic forgetting because the

dataset is increasingly imbalanced. The second memory S, represented in light pink, stores statistics which are obtained

when classes are initially learned. IL2M makes these class statistics usable across different incremental states to rectify the

raw prediction scores of past classes in order to make them more comparable to those of new classes. (Best viewed in color.)

2. Related work

Different methods were proposed for class IL. We group

them in three classes and list their advantages and limits.

A first class of algorithms is focused on adapting the pa-

rameters of the deep model in order to accommodate new

classes. Growing a Brain [29] proposes to widen a part

of the layers or/and increase network depth. Deep Adapta-

tion Networks [25] are an alternative to fine tuning to fit

models to new tasks. Each new task requires approximately

13% supplementary parameters. While manageable for one

task, this amount becomes important for a large number of

increments. Progressive neural networks [27] train several

models for initial tasks and exploit them when adding new

tasks in order to preserve old knowledge. Preservation is

notably done by using lateral connections between all mod-

els. A committee of expert networks is introduced in [1] to

handle the different tasks learned. The most adapted expert

is chosen via a gating mechanism which exploits training

samples. The authors of [23] introduce universal parametric

families of neural networks which share a majority of pa-

rameters and use small modular adapters that are attached

to the network to specialize it for new tasks. A key find-

ing is that both shallow and deep layer adaptation is needed

for successful adaptation. PackNet [17] is a very inter-

esting approach that accommodates new tasks by iteratively

pruning redundant parameters for previous tasks. The num-

ber of parameters grows slowly but only a limited number

of new tasks can be included with reasonable performance

loss. Also, the inference is longer since it cannot be applied

simultaneously to all trained tasks. Piggyback [16] com-

bines PackNet and network quantization works to propose

masks for individual weights. It thus learns a large number

of tasks with a single base network. While rather light, each

task requires specific masks and the number of parameters

increases when adding new tasks. Approaches in this group

cope well with new data, do not depend on past memory and

can integrate new tasks if the number of model parameters

is allowed to grow. However, they tend not to scale well,

either because new parameters need to be added each time

or because a limited number of tasks can be included.

A second class of algorithms keeps the number of DNN

parameters constant and memorizes a part of past data to

limit catastrophic forgetting. Here, the class IL problem be-

comes akin to an imbalanced learning one [9]. The chal-

lenge is to ensure similar performance for past and new

classes, given that the number of images for past classes can

be orders of magnitude lower than that for new classes [3].

Adapted fine tuning is generally applied to update the model

incrementally. A modification of loss function to include

a distillation component alongside the classification one

is widely used [5, 8, 12, 24]. These approaches are in-

spired by Learning without Forgetting (LwF ) [15] which

was an early attempt to exploit knowledge distillation [11]

as an antidote to catastrophic forgetting. The distillation

loss reduces the discrepancy between the activations of past

classes in the initial and the updated network. LwF has the

particularity of not needing a memory of old tasks, which is

an important advantage in IL. However, its performance is

lower compared to approaches that exploit a bounded mem-

ory. iCaRL [24] is an influential algorithm from this class.

It builds on the combination of classification and distillation

losses from LwF and adds a bounded memory, as well as a
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nearest-exemplars-mean (NEM) classifier. NEM is inspired

by nearest-class-mean [19], which tackles class imbalance.

iCaRL is notably tested on the Imagenet LSVRC dataset

and it outperforms several baselines, including LwF and

fixed representations. The authors of [12] propose a detailed

analysis of iCaRL and show that its most important com-

ponent is the bounded memory. They replace the NEM clas-

sification with a dynamic threshold moving method and ob-

tain a marginal improvement. An end-to-end IL (EtEIL)

algorithm is introduced in [6] which also exploits a com-

bined loss. The main novelties come from: (1) the proposal

of a distillation term per incremental state and (2) a clas-

sification step done with a balanced fine tuning that tack-

les class imbalance. As a result, a 7 points improvement

compared to iCaRL is reported for ILSVRC. We note that,

while implemented in different deep learning frameworks

and with different formulations, the distillation based back-

bones from [5, 12, 24] have rather similar similar results.

The use of GANs was explored in [8] as an alternative to

the storage of raw images for past classes. While conceptu-

ally interesting, the quality of generated exemplars is not yet

sufficient for them to efficiently replace real images. The re-

sults from [8] indicate that only a combination of both types

of images provides a slight performance improvement com-

pared to the sole use of real images. The use of the adapted

fine tuning is an adequate solution if the model complex-

ity needs to be constant across incremental states. This is

the case of embedded systems which have limited comput-

ing power and need to adapt continuously to their environ-

ment [13, 21]. However, partial access to past data is a nec-

essary condition for this type of methods to work well. This

condition cannot be met in contexts such as that of medical

data where data privacy is of utmost importance [28].

A third, less frequent, class of algorithms exploits

initial fixed representations as feature extractors for IL.

FearNet [13] is a biologically inspired such method. Sep-

arate networks are used for long and short term memories

to represent past and new classes. A decision mechanism

is implemented to decide which network should be used for

each test example. While FearNet outperforms iCaRL,

its memory increases significantly with time since the algo-

rithm needs to store detailed statistics for each class learned.

DeeSIL [2] is a simple take at class IL with bounded mem-

ory. A fixed representation is learned in the initial state

and is then reused as feature extractor for all incremental

states. Shallow classifiers are learned independently for

each new class. This approach is a direct application of

transfer learning schemes [14, 22]. Despite its simplicity,

it provides 14 and 7 points performance gain over iCaRL

[24] and end-to-end learning [5] for ILSVRC. FearNet

and DeeSIL have interesting performance but are heavily

dependent on the quality of their initial fixed representation.

If it is learned with a small number of classes or if the new

classes are very different from the initial ones, the general-

ization ability of the feature extractor is likely to be low.

3. Class IL problem formulation

The class IL problem was described in [5, 8, 24]

and we present an adaptation here. A dataset XP =
{X1, X2, ..., XP } is composed of P different classes such

that Xi = {x1
i , x

2
i , ..., x

ni

i } is the set of ni labeled exam-

ples for the ith class. In DNNs, a model M is composed

of a feature extractor F : Xi → R
d, with d the size of the

feature vector, followed by a classifier C : Rd
→ P . The

prediction score for class Ci is noted p(Ci) and is the raw

output of the DNN classification layer (without softmax).

The class IL problem is defined as follows:

Given a model MP trained on XP , the objective is to

use MP to train an updated model MN which recog-

nizes N classes based on the dataset XN . The access to

XP is partially provided by a bounded memory K and

the number of parameters of MN and MP is identical.

Each set of N − P new classes forms an incremental

batch and the N classes form an incremental state. A loss

adaptation to class IL is widely used to move from MP to

MN [5, 8, 12, 24]. It can be written as L = Lc+Ld, where

Lc and Ld are classical cross-entropy and distillation terms

respectively. Ld is meant to reduce catastrophic forgetting.

M can be modeled in an end-to-end fashion to combine

F and C in a single deep architecture [5]. The two compo-

nents can also be separated. For instance, [24] uses a deep

architecture F which is retrained at each incremental step to

extract features and a nearest-mean-of-exemplars to imple-

ment C. Alternately, [2] exploits a fixed deep representation

to extract features for all incremental states and a set of in-

dependently trained SVMs to implement C.

The bounded memory K which provides partial access

to past training data reduces the effect of catastrophic for-

getting. Since the size of the memory is constant across

incremental states, the training set of past classes is pro-

gressively reduced when more classes are added. Assuming

a balanced representation of past classes in memory, each

class will have K
P

images when incrementing from P to

N classes and K
N

for the following incremental state. We

note Z the total number of states, including the first non-

incremental one.

4. Proposed method

We focus on a class IL scenario in which the DNN model

complexity is constant and a bounded memory of the past is

allowed. Adapted fine tuning methods [5, 8, 12, 24] update

the model M for each incremental state. However, only a

small fraction of past data can be used due to the bounded

memory and imbalance worsens as more classes are learned

(K
N

< K
P

). Fixed representation based methods [2, 13] ex-
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Figure 2: Prediction scores for the ILSVRC dataset [26] with Z = 10 states and memory K = {20000, 10000, 5000}
exemplars. We select the scores of the true class for train images and then average them for past and new classes. Incremental

states from 1 to 9 are represented. The initial state (0) does not include past classes and is not represented. (Best viewed in

color.)

ploit all available data but their models are frozen after the

initial non-incremental state. They are thus heavily depen-

dent on the quality of this initial representation.

We introduce Incremental Learning with Dual Memory

(IL2M ) and illustrate it in Figure 1. The method aims

to partially reconcile the fine tuning and fixed representa-

tion based approaches. IL2M uses vanilla fine tuning as

backbone to update deep models M for each incremen-

tal state, as proposed in fine tuning approaches. Similar

to fixed representation methods, IL2M exploits class re-

lated knowledge from the initial state in which they were

learned across incremental states. Due to deep model up-

dating, initial class models cannot be fully reused in later

states. Instead, IL2M exploits past class statistics from

their initial state to rectify their prediction scores in the cur-

rent incremental state. This rectification is supported by two

related hypotheses: (1) classes are best modeled when all

their data are available and (2) class prediction scores are

higher on average when more training data are available.

We illustrate the validity of these hypotheses in Figure 2. It

plots the averaged predictions of past and new classes for

the ILSVRC dataset with Z = 10 states and memory sizes

K = {20000, 10000, 5000}.

The scores in Figure 2 confirm that vanilla fine tuning

generates a prediction bias in favor of new classes. This

bias is mainly due to the imbalance in favor of new classes

which appears in class IL. As a result, a large part of im-

ages from past classes are predicted as belonging to new

classes (see supplementary material for a detailed analy-

sis of error types). The comparison of the three subfigures

shows that score gap between past and new classes is higher

when the memory capacity is lower. The average differ-

ence over all incremental states is 2.42, 4.02 and 6.45 for

K = {20000, 10000, 5000} respectively. This is intuitive

since the imbalance between past and new classes is higher

for lower memories. The gap also tends to grow from left

to right in each subfigure due to the increasing number of

classes to fit in the bounded memory. For instance, the dif-

ference is 2.26, 4.16 and 4.67 for states 1, 5 and 9 with

K = 10000 exemplars.

To compensate for the bias toward new classes, we rec-

tify predictions of past classes Ci (i = 1, . . . , P ) using:

pr(Ci) =







p(Ci)×
µP (Ci)
µN (Ci)

×
µ(MN )
µ(MP ) , if pred = new

p(Ci), otherwise

(1)

with: P - the initial state in which Ci was learned; N -

the current incremental state; p(Ci) - the raw prediction for

Ci in state N ; µP (Ci) and µN (Ci) - the mean classification

scores of Ci in states P and N obtained from all training

data and the current exemplar set respectively; µ(MN ) and

µ(MP ) - the model confidences in states N and P given by

the averaged prediction scores of all new training data. In

Eq. 1, rectification is applied to past class predictions only if

an image is initially predicted as belonging to a new class.

This situation is the riskiest in terms of imbalance-driven

errors in favor of new classes. Otherwise, we consider that

the rectification is not necessary since a past class is directly

predicted and there is no prediction bias toward new classes.

The effect of the rectification restriction to past images ini-

tially associated to a new class is studied in the ablation

study from Subsection 5.4.

Since classes are initially learned in different incremen-

tal states, the following conditions need to be met for the

proposed rectification to be useful in class IL:

1. the scores pr() for classes in range {1, P} and p() from

{P + 1, N} should be comparable;

2. the statistics stored in the statistical memory S should

be very compact in order to increase memory needs

only marginally;
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3. model level normalization should be introduced to

limit the influence of combining the outputs of mod-

els learned in different incremental states.

The first condition is handled via the use of class related

statistics in the first term which modifies p() in Eq. 1. More

specifically, we use the means of class Ci in its initial and

current states P and N . The intuition here, supported by

Figure 2, is that since the class is first learned with all train-

ing images in state P when it was new, its mean prediction

score µP (Ci) is likely to be higher than µN (Ci). Conse-

quently, this term of the equation generally increases pr(Ci)
compared to p(Ci). The second condition listed above is re-

lated to the introduction of the statistical memory S which

makes the IL2M rectification possible. S includes a float

value per class to store µP (Ci) and the induced memory

requirement is negligible. As for the model level knowl-

edge, only one float per incremental state is needed to store

µ(M). The third condition is necessary since the averaged

scores for new classes are not equivalent in the different

incremental states which are combined. This is clear in Fig-

ure 2, where, for instance, the new class mean scores for

state 8 are higher than those of state 7 for K = 10000. The

last term of Eq. 1 provides a global harmonization of the

score rectification across the different states that are com-

bined in IL2M .

The complexity of the supplementary arithmetic opera-

tions from Eq. 1 is very low compared to the overall com-

plexity to a deep neural network architecture. For each

class score rectification, a division and a multiplication are

needed to introduce the second term. The division in third

term can be computed only once the training of the cur-

rent incremental state is ready. This term is thus integrated

through a simple multiplication. For 1000 past classes,

IL2M adds 1000 divisions and 2000 multiplications. This

is to be compared to the tens to hundreds of million of mul-

tiplications done in typical DNN architectures.

The rectification introduced here is an alternative to the

NEM classification from iCaRL [24] and to the balanced

fine tuning step of end-to-end learning from [5]. The three

methods are compared in the following section.

5. Experiments

5.1. Baseline methods

IL2M is designed for IL with bounded memory and is

compared to strong methods which address the problem:

• iCaRL - the public implementation from [24] is

reused here. It includes a fine tuning with classifi-

cation (Lc) and distillation (Ld) losses for represen-

tation learning followed by nearest-exemplars-mean

(NEM ) component for classification. When no mem-

ory is available, iCaRL is equivalent to LwF.MC,

the adaptation of Learning without Forgetting to a mul-

ticlass context also introduced in [24].

• DeeSIL - the fixed-representation based algorithm [2]

is implemented without external data to ensure compa-

rability. Each class is learned with all its training im-

ages as positives. The negative set includes all train-

ing images of other classes from the same incremental

batch and the exemplars of past classes stored in mem-

ory. A grid search for the optimal regularization pa-

rameter is applied to the first batch and the parameter

is then frozen.

• FT - fine tuning with classification loss only (Lc)

constitutes the basis for IL2M and for the proposed

modifications of two strong baselines described below.

Each incremental state uses the model learned in the

previous state to initialize the training process. Train-

ing is done with the exemplars of past classes and with

all available images of new classes. In [5], herding has

marginal effect and we perform a simpler random se-

lection of exemplars.

• FTNEM - a version of FT which uses the nearest-

exemplars-mean classifier from [24] instead of the

classification layer of the deep network. FTNEM is

a modified version of iCaRL in which the distillation

loss Ld is ablated.

• FTBAL - a version of FT in which a balanced fine

tuning is performed for classification after the initial

imbalanced vanilla FT following [5]. FTBAL is a

modified version of EtEIL [5] in which we again

ablate Ld. The balancing step starts with the latest

learning rate of the imbalanced FT . Note that origi-

nal EtEIL [5] is not fully evaluated because the only

available implementation uses MathConvNet based on

non-free Matlab. However, a top-5 accuracy compar-

ison of EtEIL and FTBAL for ILSVRC is clearly

favorable to the latter method (69.4 vs. 77.52).

In addition, we provide Full, the non incremental learn-

ing training with all data available. This is an upper bound

performance for class IL algorithms.

5.2. Datasets and methodology

We evaluate all methods on three datasets designed

for the following visual recognition tasks: (1) objects in

ILSVRC [26], (2) faces in VGGFace2 [4] and (3) tourist

landmarks in Google Landmarks [20] (Landmarks below).

A summary of the datasets is presented in Table 1. In

VGGFace2 [4] and Landmarks [20], we kept the 1,000

classes which include the largest number of examples. For

ILSVRC, we use the train and test sets from [5, 24] to fa-

cilitate comparability. VGGFace2 and Landmarks do not
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Dataset #Train #Eval #Classes

ILSVRC [26] 1,231,167 50,000 1,000

VGGFace2 [4] 491,746 50,000 1,000

Landmarks [20] 374,367 20,000 1,000

Table 1: Summary of the datasets used in evaluation.

have standard test sets for IL. We randomly select 50,000

and 20,000 images respectively for testing, with a balanced

distribution among classes (see supplementary material for

more details).

Note that, due to sequential nature of incremental learn-

ing, model training is rather expensive. As a result, the

usual evaluation protocols include two [5, 8, 12, 24] or

three [13] datasets which are generally smaller than the

ones used here. The memory K and the number of states

Z were shown to be the most important parameters of the

class IL algorithms tested here [5, 12]. We fix each param-

eter and vary the other as follows: (1) for Z = 10, we test

K = {20000, 10000, 5000, 0} and (2) for K = 5000, we

test Z = {5, 10, 20}.

A ResNet-18 architecture [10] was used in [24] and then

in [12] and [5]. We reuse it here with the standard Pytorch

version which essentially follows the original implementa-

tion from [10]. Further details of the training process are

provided in the supplementary material.

All methods are evaluated using top-1 accuracy, a metric

which is well suited when each image has only one label

in the ground truth, as it is the case here. This metric is

more informative of the actual performance than the top-5

accuracy which is often used following its introduction in

the popular ImageNet challenge [26]. However, to facili-

tate comparability with class IL results presented in previ-

ous works [5, 12, 24], we also provide top-5 results in the

supplementary material.

5.3. Discussion of results

The comparison of the methods tested in Table 2 shows

that IL2M has the best performance in a wide major-

ity of configurations with memory (K > 0). Our

method outperforms previous algorithms (iCaRL [24] and

DeeSIL [2]), FT the vanilla fine tuning baseline and its

variants FTNEM and FTBAL, which use the classification

components from [5] and [24].

Among published baselines, FT consequently outper-

forms iCaRL for Z = 10 and K = {20000, 10000}. For

K = 5000, it is better for Z = {5, 20} states and slightly

falls behind for ILSVRC with Z = 10 states. Naturally,

iCaRL is better when no memory is allowed and distil-

lation reduces catastrophic forgetting. The comparison of

FT to DeeSIL [2] is also favorable for all settings where

K > 0, except for Z = 5 and ILSVRC with Z = 10 and

K = {5000, 10000}.

The detailed results for the three datasets with K =
10000 and Z = 10 from Figure 3 confirm the above find-

ings. IL2M has the best performance for a wide majority

of IL states. It is also interesting to see that our method pro-

vides good results for later incremental states. This is clear

for ILSVRC, where IL2M has similar performance with

that of FTNEM and DeeSIL for states 7 to 9 and is better

than them in earlier states. The gap between iCaRL perfor-

mance and all FT methods introduced here is large over-

all and clearly increases for in later states for VGGFace2

and Landmarks. This finding indicates that vanilla FT is a

much better base for IL when the number of classes is large.

While our focus is on class IL with a memory, we also

present results with no memory (K = 0). Here distillation

clearly has a positive effect and outperforms fine tuning,

thus confirming the results from [24]. All methods derived

from FT have the same performance because all score rec-

tification methods rely on exemplars. DeeSIL [2] is the

best method when K = 0 because it has low dependence

on memory. Except for 20 states, its performance is better

than that of iCaRL by a consequent margin. This result is

at odds with the conclusion of [24], where the authors found

their fixed representation to be less effective than iCaRL.

The difference is explained by the fact that fixed represen-

tations of past classes in [24] were learned only with ex-

emplars from the current state. This restriction is unneces-

sary since the representation is fixed and each class can be

learned the first time it is seen without violating memory

requirements and then reused across IL states.

When compared to Full, the upper-bound non-

incremental learning, the results obtained by all incremen-

tal method are lower in all configurations. This is particu-

larly the case for ILSVRC, the hardest task among the three

tested, where the gap reaches 16.6 top-1 accuracy points for

Z = 10 states and K = 20000. Naturally, this gap grows

for all datasets when the memory is reduced. This finding

confirms the conclusions of [5, 24] that class IL remains a

hard problem if it operates under computational and mem-

ory constraints.

5.3.1 Effect of score rectification

IL2M , FTNEM and FTBAL all use vanilla FT with

memory as IL backbone. The three methods differ in the

way final classification scores are obtained. FTNEM uses

the NEM method [24] as external classifier. FTBAL clas-

sifier adds a balanced fine tuning step for classification fol-

lowing [5]. IL2M notably exploits the content of statistical

memory to rectify scores. The results from Table 2 show

that our method yields better performance than FTNEM

and FTBAL for almost all configurations tested.

Equally important, IL2M is useful for all memory sizes

while this is not the case for NEM in FTNEM , which ac-

tually hurts FT performance for Landmarks in three tested
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States Z = 10
Dataset ILSVRC VGGFace2 Landmarks

K 20k 10k 5k 0k 20k 10k 5k 0k 20k 10k 5k 0k
iCaRL 35.1 33.6 32.9 20.8 66.8 65.3 64.4 26.1 68.9 66.9 65.6 27.0

DeeSIL 47.3 47.2 47.0 46.5 81.5 81.3 80.9 80.0 82.8 82.6 82.4 81.2

FT 51.1 42.3 32.2 18.3 91.1 87.6 82.0 20.8 93.2 90.1 84.7 21.0

FT
NEM 54.9 49.1 42.8 18.3 91.1 87.6 84.2 20.8 91.1 88.5 84.7 21.0

FT
BAL 52.1 47.0 37.2 18.3 91.5 88.6 82.1 20.8 93.2 90.2 85.7 21.0

IL2M 56.4 50.8 44.1 18.3 92.0 89.7 86.5 20.8 93.4 90.8 86.9 21.0

Full 73.0 97.0 97.1

K = 5000
ILSVRC VGGFace2 Landmarks

Z=5 Z=20 Z=5 Z=20 Z=5 Z=20

32.7 29.6 74.1 49.5 73.8 52.6

50.9 28.4 89.3 69.3 88.3 74.9

35.4 36.8 85.7 83.3 85.4 84.1

44.1 46.2 87.4 85.7 83.4 84.4

44.7 41.6 87.7 83.9 88.2 84.8

44.9 42.0 90.1 85.7 88.5 85.0

73.0 97.0 97.1

Table 2: Top-1 average accuracy (%) for the different methods tested. To test robustness, the available memory (in thousand

exemplars) and the number of states are varied to the left and the right of the table. Each time, the other parameter is fixed.

Following [5], accuracy is averaged only for incremental states (i.e. excluding the initial, non-incremental state). Full is the

non-incremental upper-bound performance obtained with all data available for all classes. Best results are in bold.

Figure 3: Top-1 accuracy for object, face and landmark recognition with memory K = 10000 and Z = 10 states. To be

aligned with the results from Table 2, only the incremental states are represented. (Best viewed in color.)

configurations. The balanced fine tuning in FTBAL also

improves performance for all memory sizes but to a lesser

extent than IL2M . With lower memory, FTBAL is more

prone to catastrophic forgetting than IL2M and FTNEM

because a larger extent of data needs to be dropped dur-

ing balancing. It is noticeable that the usefulness of score

rectification grows when exemplar memory is lower and

imbalance between past and new classes is consequently

higher. For instance, IL2M gains 5.3 and 11.9 top-1 ac-

curacy points for ILSVRC with K = 20000 and K = 5000
exemplars respectively when Z = 10.

5.3.2 Effect of distillation

The results from Table 2 and Figure 3 show that the use of

distillation loss is detrimental in class IL if at least a few

exemplars per past class are allowed. The ablation of Ld in

iCaRL to obtain FTNEM is beneficial for all datasets and

memory sizes K = {20000, 10000, 5000} and Z = 10.

The results presented here are at odds with the conclusion

of [24] about the low performance of vanilla fine tuning in

class IL with memory. That conclusion was based on a bi-

ased comparison of iCaRL and FT since the first method

used an exemplar memory and the second did not. Natu-

rally, distillation is useful when no memory is allowed, the

setting for which it was initially designed [15] and which is

Incremental states

1 2 3 4 5 6 7 8 9

h
y
br
id
1

c(p) 1075 1217 1442 1446 1435 1535 1483 1505 1591

e(p, p) 600 2053 3756 5091 7406 9074 10580 11794 14156

e(p, n) 3325 6730 9802 13463 16159 19391 22937 26701 29253

c(n) 3562 3739 3558 3603 3673 3750 3584 3762 3641

e(n, n) 1020 839 965 910 793 791 903 792 810

e(n, p) 418 422 477 487 534 459 513 446 549

F
T

c(p) 2621 4327 5730 6702 7600 7980 8576 9169 8746

e(p, p) 194 690 1360 2203 3035 4016 4462 6100 5514

e(p, n) 2185 4983 7910 11095 14365 18004 21962 24731 30740

c(n) 4139 4314 4145 4155 4251 4319 4236 4376 4267

e(n, n) 779 608 771 762 692 619 694 560 667

e(n, p) 82 78 84 83 57 62 70 64 66

Table 3: Top-1 analysis for hybrid1 the FT with distillation

used as backbone for iCaRL [25] and for vanilla FT using

Z = 10 and K = 10000. c(·) e(·, ·) stand for correct and

erroneous predictions and p and n stand for past and new

classes. For instance, e(p, p) designates the number of past

samples wrongly predicted as other past classes.

not in focus here. While we do not have a complete set of

results for EtEIL, we note that distillation is also harmful

for this method on the ILSVRC dataset with K = 20000.

The original top-5 result reported in [5] is 69.4 while the

modified FTBAL version introduced here reaches 77.52.

In Table 3, we analyze the behavior of hybrid1, the

version of FT with distillation which serves as backbone

for iCaRL [24] and of vanilla FT for ILSVRC with K =
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IL Method

Z = 10
K

20k 10k 5k
FT 51.13 42.29 32.23

IL2M1 53.45 47.64 42.20

IL2M2 51.94 43.63 31.74

IL2M1+2 55.15 49.57 42.51

IL2M 56.37 50.82 44.05

Table 4: Top-1 average ILSVRC accuracy for different ver-

sions of IL2M evaluated in the ablation study with Z = 10
states and memory K = {20000, 10000, 5000}.

10000 images and Z = 10 states. The bias toward new

classes (e(p, n)) is comparable for the two methods, al-

though slightly higher when distillation is used. Conse-

quently, data imbalance is not the main factor which ex-

plains the difference between the two methods. This differ-

ence comes mostly from the distribution of wrong classifi-

cations between past classes (e(p, p)). While distillation is

assumed to preserve accuracy for past classes, the obtained

results indicate that hybrid1 makes between two and three

times more mistakes than vanilla fine tuning. A possible

explanation for this situation is that distillation usually as-

sumed to be initialized with a strong model learned on a

large balanced dataset [10]. This condition is not met in IL

since the models from the previous state are trained on an

imbalanced dataset.

5.4. Ablation study

We analyze the contribution of the IL2M components

in an ablation study with the ILSVRC dataset for Z = 10
states and memory K = {20000, 10000, 5000}. We test

the following changes on top of the FT baseline: IL2M1

- activation of the first component of the rectification which

works with class level means; IL2M2 - activation of the

second component which works with model level means;

IL2M1+2 - both mean based components are activated;

IL2M - full version in which we also add the restriction

of rectifying past class scores only if an image is initially

predicted as belonging to a new class (given by Eq. 1).

The results from Table 4 indicate that each component

has a positive effect compared to FT . The largest single

contribution is the use of class means from statistical mem-

ory S in IL2M1. The gain is particularly interesting for

the lower memory sizes, where the effect of catastrophic

forgetting on FT is higher. The model level means have a

small positive contribution for K = {20000, 10000} and a

slight negative effect for K = 5000. The final restriction of

rectification has moderate positive effect in all settings.

6. Conclusion

We introduce IL2M , a new method designed for class

IL with memory. Extensive experiments show that IL2M
outperforms very competitive algorithms which are either

based on adapted fine tuning [5, 24] or fixed representa-

tions [2]. IL2M gets significantly better results than exist-

ing adapted fine tuning based methods for almost all con-

figurations with memory and falls behind the fixed repre-

sentation in a single case. The rectification method from

Eq. 1 improves FT results in all configurations tested. The

balanced fine tuning from [5] is also beneficial, but to a

lesser extent. NEM [24] has a mixed effect because it

actually hurts performance in some cases. The IL2M ab-

lation study from Subsection 5.4 shows that the obtained

gain is mainly due to the use of the statistical memory S

introduced here. The method has negligible supplementary

cost, both in terms of memory and computation. It is thus

fitted for deployment in computationally constrained envi-

ronments. Interestingly, the largest gains compared to FT ,

FTNEM and FTBAL are obtained for lower memory sizes.

This makes IL2M very interesting from an application per-

spective since it reduces the memory requirements.

We also find that, surprisingly, vanilla fine tuning is a

very effective baseline for class IL with memory. FT com-

pares favorably with existing algorithms [2, 5, 24]. The

ablation of the distillation component from iCaRL [24]

and end-to-end incremental learning [5] in FTNEM and

FTBAL improves the performance of original methods.

This improvement of state-of-the-art methods is an interest-

ing by-product of our work. Although IL2M is designed

for class IL with memory, we also test it without memory

for completeness. As expected, adding a distillation com-

ponent is beneficial in this configuration. However, the use

of fixed representations [2] provides the best performance

when no memory is allowed and is thus preferable.

We test the proposed method and the baselines

with three large scale datasets dedicated to distinct

visual tasks and with different memory sizes. The

evaluation setting can be reused to ensure a ro-

bust testing of class incremental learning algorithms.

The code and dataset details are publicly available

at: https://github.com/EdenBelouadah/

class-incremental-learning.

The reported results reduce the performance gap be-

tween incremental and non-incremental learning. How-

ever, this gap is still large, especially for the harder visual

datasets, such as ILSVRC. The class IL research problem

remains an open one if we work under strong computa-

tional and memory constraints. We will pursue work along

the following lines: (1) test a constant complexity method

such as IL2M for multitask IL to replicate real-life scenar-

ios in which more diversified visual content is encountered,

(2) enhance vanilla fine tuning by leveraging recent results

which improve imbalanced learning [3] and make curricu-

lum learning [7] scalable and (3) explore alternative score

rectification methods to further improve performance.

590



References

[1] Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars.

Expert gate: Lifelong learning with a network of experts.

In Conference on Computer Vision and Pattern Recognition,

CVPR, 2017. 1, 2

[2] Eden Belouadah and Adrian Popescu. Deesil: Deep-shallow

incremental learning. TaskCV Workshop @ ECCV 2018.,

2018. 3, 5, 6, 8

[3] Mateusz Buda, Atsuto Maki, and Maciej A. Mazurowski. A

systematic study of the class imbalance problem in convo-

lutional neural networks. Neural Networks, 106:249–259,

2018. 2, 8

[4] Qiong Cao, Li Shen, Weidi Xie, Omkar M. Parkhi, and An-

drew Zisserman. Vggface2: A dataset for recognising faces

across pose and age. In 13th IEEE International Conference

on Automatic Face & Gesture Recognition, FG 2018, Xi’an,

China, May 15-19, 2018, pages 67–74, 2018. 5, 6

[5] Francisco M. Castro, Manuel J. Marı́n-Jiménez, Nicolás
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