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Abstract

We present a method for recovering the shared content

between two visual domains as well as the content that is

unique to each domain. This allows us to map from one

domain to the other, in a way in which the content that is

specific for the first domain is removed and the content that

is specific for the second is imported from any image in the

second domain. In addition, our method enables genera-

tion of images from the intersection of the two domains as

well as their union, despite having no such samples during

training. The method is shown analytically to contain all the

sufficient and necessary constraints. It also outperforms the

literature methods in an extensive set of experiments.

1. Introduction

In unsupervised mapping between visual domains, the

algorithm receives two unmatched sets of samples: one

from domain A and one from domain B. It then learns a

mapping function that generates, for each sample a in do-

main A, a matching sample in B.

Without a supervision in the form of pairs of matched

samples, the problem, like other unsupervised tasks, can be

ambiguous [5]. However, it is natural to expect that a pair of

samples (a, b), one from each domain, would be considered

matching, if there is a significant amount of shared content

between a and b. The more content is shared, the stronger

the link between the two samples.

Therefore, one can consider the intersection of two vi-

sual domains A and B as a domain that contains all of

the information that is common to the two domains. This

shared domain needs not be visual, and it can contain infor-

mation that is encoded (latent information).

Turning our attention to the information that comple-

ments the shared information, each domain also has a sepa-

rate, unshared part, which is domain-specific in the context

of the two domains.

When mapping a sample a from domain A to B, we can,

therefore, consider three types of information. The part of

a that is in the shared domain needs to remain fixed under

the transformation. The part of a that is specific to domain

A is discarded. Lastly, the part of the generated sample in

B that is specific to this domain is arbitrary.

While many unsupervised domain mapping methods do

not specify the component that is specific to the second do-

main, some of the recent methods rely on a sample in B

to donate this information. Such methods are called guided

image to image translation methods. The literature has two

types of such methods: those that borrow the style from the

image in B, assuming that the domain specific information

is a type of visual style [10, 14], and a recent method [18]

which assumes that domain A is a subset of domain B,

which does not contain any information that is not present

in B. In both cases, these assumptions seem too strong.

Our method is able to deal with the two separate domains

in a symmetric way, without assuming that domain B can

contribute only a different style and without assuming that

A is a degenerate subset of B. The method employs a set

of loss terms that lead, as our analysis shows, to a disentan-

glement between the three types of information that exist in

the two domains.

As a result, our method enables a level of control that is

unprecedented in mapping image across domains. It allows

us to take the specific part that belongs to domain A from

one image, the specific part of domain B from another im-

age, and the shared part from either image or from a third

image. In addition, each of the three parts can be inter-

polated between different samples, and the domain specific

parts can be eliminated altogether.

1.1. Previous Work

In image to image translation, the algorithm is provided

with two independent datasets from two different domains.

The goal is to learn a transformation of samples from the

first domain to samples from the second domain. These

transformations are often implemented by a deep neural net-

work that has an encoder-decoder architecture.

The early solutions to this problem assumed the exis-

tence of an invertible mapping y from the first domain to the

second domain. This mapping takes a sample a in domain

A and maps it to an analog sample in domain B. The cir-
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cularity based constraints by [21, 12, 20] are based on this

assumption. In their work, they learn a mapping from one

domain to the other and back in a way that returns the orig-

inal sample, which requires no loss of information. Nev-

ertheless, this assumption fails to hold in a wide variety of

domains. For example, in [21] they show that when learning

a mapping from images of zebras to images of horses, the

stripes of the zebras are lost, which results in an ambiguity

when mapping in the other direction. In our paper, we do

not make assumptions of this kind. Instead, we take a very

generic formulation that fits a wide variety of domains.

A few publications suggested learning many to many

transformations. These papers include the augmentation

based extension of CycleGAN [1]. In their generative

model, they provide an additional random vector for each

domain. Other methods such as the NAM method [9] sug-

gested non-adversarial training. In this model, the multiple

solutions are obtained by different initializations. In our pa-

per, multiple mappings are obtained by using a guide image.

A powerful method for capturing the relations between

the two domains is done by employing two different autoen-

coders that share many of their parameters [16, 15]. These

constraints provide a shared representation of the two do-

mains. Low-level image properties, such as color, texture

and edges are domain-specific and are encoded and decoded

separately. The higher level properties are shared between

the two domains and are processed by the same layers in

the autoencoders. In our paper, we employ a shared encoder

for both domains to enforce a shared representation. Each

domain has its own separate encoder to encode domain-

specific content. Weight sharing is not used.

bf Guided Translation

The most relevant line of work learns a mapping between

the two domains that takes two images as inputs: a source

image a from the first domain and a guide image b from the

second domain [10, 14, 17, 18]. The work of [10, 14, 17]

employ a very narrow encoding for the domain specific con-

tent that is reflected by a low dimensional encoding. This

enables them to only encode the style of the image in their

domain specific encoder. However, since this encoding is

very limited, it is impossible to capture the entire domain

specific content. In our method, we do not rely on archi-

tectural restrictions to partition the information in the im-

ages into domain specific and common parts. Instead, our

losses provide sufficient and necessary conditions for divid-

ing the content into domain-specific and common contents

in a principled way. Therefore, in our method we are able to

capture a disentangled representation in which the common

information in its entirety is encoded in the shared encoder

and the complete domain-specific information is encoded in

the separate encoders.

The very recent work of [18] is probably the most similar

to our work. In their paper, they tackle the problem where

the source domain is a subset of the target domain (e.g.,

images of persons to images of persons with glasses). For

such domains, a one-sided guided mapping from a source

domain to a target domain is learned. For this purpose, they

employ a common encoder, a separate encoder for the tar-

get domain and one decoder. To map between the source

domain and the target domain, one applies the decoder on

the common encoding of the source image and the separate

encoding of the target domain. In their work, they are able

to transfer the domain specific content for guiding the map-

ping from source to target. However, unlike our work, they

are unable to handle the more general case, where both the

source and the target domains have their own separate con-

tents. This distinction is important, since even though they

are able to provide content based guided mapping, they are

limited to the case where the source domain behaves as a

subset of the target domain. In our model, we are able to re-

move the content from the source images that is not present

in the target images and not just to add content from images

in the target domain.

Also related are several guided methods, which are

trained in a supervised manner, i.e., the algorithm is pro-

vided with ground truth paired matches of images from do-

mains A and B. Unlike the earlier supervised one-to-one

mapping methods, such as pix2pix [11], these methods pro-

duce multiple outputs based on a guide image from the tar-

get domain. Examples include the Bicycle GAN by [22]

and specific applications of the methods of [2, 6].

In our method, disentanglement between the shared

content and the two sources of domain-specific informa-

tion emerge. Other work that relies on unsupervised or

weakly supervised disentanglement, include the InfoGAN

method [4], which learns to disentangle a distribution to

class-information and style, based on the structur of the

data. [13, 7] learn a disentangled representation, by de-

creasing the class based information within it. We do not

employ such class information.

2. Problem Setup

We consider a framework with two different visual do-

mains A = (XA,PA) and B = (XB ,PB). Here, XA,XB ⊂
R

n are two sample spaces of visual images and PA,PB are

two distributions over them (resp.), i.e., the probability of

x ∼ PA being a is defined to be PA[x = a].
In this setting, we have two independent training datasets

SA = {ai}
m1

i=1 and SB = {bj}
m2

j=1 sampled i.i.d from PA

and PB (resp.). The set SA (resp. SB) consists of training

images from domain A (resp. B).

Within a generative perspective, we assume that a sample

a ∼ PA is distributed like g(zc, za, 0) and a sample b ∼ PB

is distributed like g(zc, 0, zb), where zc ∼ Pc and za ∼ P
s
A

and zb ∼ P
s
B are three latent variables. zc is considered

a shared content between the two domains and za and zb
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are domain specific. The process is subject to the following

independency relations. A sample a from A is generated

such that, zc |= za and a sample b from B is generated such

that, zc |= zb. The function g takes a shared content zc ∼ Pc

and a specific content za ∼ P
s
A ( zb ∼ P

s
B) and returns an

image g(zc, za, 0) ∼ PA ( g(zc, 0, zb) ∼ PB). We assume

that g is invertible for both domains, i.e., there are functions

ec, esA and esB , such that, for any sample a ∈ XA and b ∈
XB , we have:

a = g(ec(a), esA(a), 0) and b = g(ec(b), 0, esB(b)) (1)

Here, ec denotes the function that takes a sample a (or b) and

returns its shared content, esA takes a sample a and returns

the specific content of a and esB takes a sample b and returns

its specific content. As mentioned above, ec(a) ∼ ec(b),
ec(a) |= e

s
A(a) and ec(b) |= e

s
B(b). For clarity, we note this is

just a matter of modeling and we do not assume knowledge

of the distributions of zc, za and zb nor g, ec, esA and esB .

As a running example, let A be a domain of images of

non-smiling persons with glasses and B a domain of im-

ages of smiling persons without glasses. In this case, XA

is a set of images of persons with glasses, XB is a set of

images of smiling persons. In addition, PA are PB are two

distributions over these sets (resp.). The set SA consists of

m1 training images of persons with glasses and SB con-

sists of m2 training images of smiling persons. Here, the

shared content zc between the two domains is an encoding

of the identity and pose in an image (the image informa-

tion excluding information about glasses or smile), za is an

encoding of glasses and zb is an encoding of a smile. The

function g is a generator that takes an encoding zc of a per-

son and an encoding za of glasses (or an encoding zb of a

smile) and returns an image of the specified person with the

specified glasses (or an image of the specified person with

the specified smile).

In this paper, we aim to learn an encoder-decoder model

G ◦ E(x). Our encoder E is composed of three parts:

E(x) := (Ec(x), Es
A(x), E

s
B(x)). Our goal is to make the

first encoder, Ec(x), capture the shared content between the

two domains, Es
A(x), capture the content specific to images

a from A and the third encoder, Es
B(x), capture the con-

tent present only in images b from B. In addition, we want

to make our generator G be able to take Ec(a) and Es
B(b)

and return an image in B that has the shared content of a

and the specific content of b (and similarly in the opposite

direction). Both the encoder and decoder are implemented

with neural networks of fixed architectures. The specific

architectural details are given in the supplementary.

In the example above, for an image a from A, we would

like Ec(a) to encode the person in the image a (same for b

from domain B). We also want Es
A(a) to encode the glasses

in the image a and want Es
B(b) to encode the smile in the

image b. We want G to take Ec(a) and Es
B(b) and to return

an image of the person in a without her glasses, but with the

smile present in b.

Formally, we would like to have the following two prop-

erties on the encoder-decoder:

G(Ec(a), 0, Es
B(b)) ≈ g(ec(a), 0, esB(b))

and G(Ec(b), Es
A(a), 0) ≈ g(ec(b), esA(a), 0)

(2)

Here, 0 in the first equation stands for zeroing the coordi-

nates of Es
A(x) in the encoder E(x) (similarly for the sec-

ond equation).

Since we do not have any paired matches of any of

the forms: (a, b) 7→ g(ec(a), 0, esB(b)) or (a, b) 7→
g(ec(b), esA(a), 0) (the left-hand-side is a pair of images and

the right-hand-side is a single image) it is unclear how to

make the encoder-decoder G ◦ E satisfy Eq. 2. Concretely,

since we are only provided with unmatched images of per-

sons with glasses and images of smiling persons, it is not

obvious how to learn a mapping that takes an image of a

person with glasses and an image of a smiling person and

returns an image of the first person without the glasses, but

with the smile from the second image. We present a set of

training constraints that are both necessary and sufficient for

performing this training.

3. Method

In Sec. 2 we defined the different components of the pro-

posed framework. In addition, we explained that it is not

obvious how to solve Eq. 2 without any supervised data. In

this section, we explain our method for solving this problem

in the proposed unsupervised setting.

As mentioned, our method consists of three encoders,

Ec, Es
A and Es

B and a decoder G. Ec encodes the infor-

mation content common to PA and PB . The two other en-

coders, Es
A and Es

B , encode the information content specific

to samples of PA and PB (resp.). To solve this, we use three

types of losses: “zero”, adversarial, and reconstruction.

3.1. Zero Loss

We would like to enforce Es
A (Es

B) to capture informa-

tion relevant to domain A only. To do so we force Es
A (Es

B)

to be 0 on samples in B (A):

LA
zero :=

1

m2

m2∑

j=1

‖Es
A(bj)‖1 (3)

LB
zero :=

1

m1

m1∑

i=1

‖Es
B(ai)‖1 (4)

Lzero := LA
zero + LB

zero (5)

As illustrated in Fig 1(a), if A is the domain of per-

sons with glasses and B is that of smiling persons, then this

loss ensures that Es
A (Es

B) will not capture any information

about the face or smile (face or glasses).

3447



3.2. Adversarial Loss

We would like to capture the fact that the common en-
coder, Ec, does not capture more information than neces-
sary. In the running example, we would like Ec not to cap-
ture information about smile or glasses. This is illustrated
in Fig 1(c). To do so, we use an adversarial loss to ensure
that the distribution PEc(A) of Ec(a) equals the distribution

PEc(B) of Ec(b). The loss Ladv is given by:

1

m1

m1∑

i=1

l(d(Ec(ai)), 1) +
1

m2

m2∑

j=1

l(d(Ec(bj)), 1) (6)

d is a discriminator network, and l(p, q) = −(q log(p) +
(1− q) log(1− p)) is the binary cross entropy loss for p ∈
[0, 1] and q ∈ {0, 1}. The network d minimizes the loss:

Ld :=
1

m1

m1∑

i=1

l(d(Ec(ai)), 0) +
1

m2

m2∑

j=1

l(d(Ec(bj)), 1) (7)

The discriminator d attempts to separate between the dis-

tributions PEc(A) and PEc(B) of Ec(a) and Ec(b) (resp.),

by classifying samples of the former as 0 and the samples

of the latter as 1, whereas the encoder tries to fool the dis-

criminator, hence forcing both distributions to match.

Referring back to our running example, this loss is a con-

fusion term that ensures that the encoding by Ec of face

images do not contain information on whether the person is

smiling and on whether the person wears glasses.

3.3. Reconstruction Loss

Both the zero loss and the adversarial loss ensure that

no encoder encodes more information than needed. How-

ever, we need to also ensure that all the needed information

is encoded. In particular, Es
A (Es

B) should capture all the

separate information in A (B). Ec should capture all the

common information between A and B, but not less. To do

so, we force the information in Es
A(a) and Ec(a) to be suf-

ficient to reconstruct a, and similarly that the information in

Es
B(b) and Ec(b) is sufficient to reconstruct b. Specifically,

we have:

LA
recon :=

1

m1

m1∑

i=1

‖G(Ec(ai), E
s
A(ai), 0)− ai‖1 (8)

LB
recon :=

1

m2

m2∑

j=1

‖G(Ec(bi), 0, E
s
B(bj))− bj‖1 (9)

Lrecon := LA
recon + LB

recon (10)

3.4. Full Objective

For the full objective, Ec, Es
A, Es

B and G jointly mini-

mize the following objective:

L = Lzero + λ1Ladv + λ2Lrecon (11)

Where λ1 and λ2 are positive constants. The discriminator

d minimizes the loss Ld concurrently. The full description

of the architecture employed for the encoders, generator and

discriminator is given in the supplementary material.

4. Theoretical Analysis

We provide an informal theoretical analysis for the suc-

cess of the proposed method. For the formal version, please

refer to the supplementary material.

In Sec. 2 we represented our random variable a ∼
PA and b ∼ PB in the following forms a =
g(ec(a), esA(a), 0) and b = g(ec(b), 0, esB(b)), where

ec(a) |= e
s
A(a), e

c(b) |= e
s
B(b) and g is an invertible function.

Before we present our theorem regarding emerging dis-

entanglement between the learned encoders, we provide a

necessary definition of an intersection. An intersection of

two independent random variables a and b are two represen-

tations a = g(ec(a), esA(a), 0) and b = g(ec(b), 0, esB(b)),
such that, the common encoding ec(a) ∼ ec(b) has the

largest amount of information (measured by entropy H).

For example, let us consider the case in which domain A

consists of images of persons wearing glasses and domain

B consists images of smiling persons. In this case, we can

encode the samples of A into (i) an identity and pose en-

coding and (ii) a glasses encoding. Similarly, we can en-

code the samples of B into the first encoding of domain A

and the encoding of the smile. This representation forms an

intersection, since we cannot transfer common information

from the glasses and the smile into the common part.

Definition 1 (Intersection). We say that the two representa-

tions a = g(ec(a), esA(a), 0) and b = g(ec(b), 0, esB(b))
form an intersection between a and b, if for any

other representation a = ĝ(êc(a), êsA(a), 0) and b =
ĝ(êc(b), 0, êsB(b)), such that, ĝ is invertible and êc(a) ∼
êc(b), we have: H(êc(a)) ≤ H(ec(a)).

The following theorem shows that under reasonable con-

ditions, by minimizing the proposed losses, we obtain a dis-

entangled representation.

Theorem 1 (Informal). In the setting of Sec. 2. Let a ∼ PA

and b ∼ PB be two random variables. Assume that the rep-

resentations g(ec(a), esA(a), 0) and g(ec(b), 0, esB(b)) form

an intersection between a and b. Assume that we cannot

recover the sample a from the separate encoding Es
A(a).

Assume that the reconstruction and adversarial losses are

minimized by Ec, Es
A, E

s
B and G. Then, we obtain a dis-

entanglement between Ec(a) and Es
A(a), such that, Ec(a)

captures the information of ec(a) and Es
A(a) captures the

information of esA(a).

The theorem makes three types of assumptions. The first

type is about the modeling of the data, i.e., that it follows the
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Figure 1. Illustration of the train and inference stages. The losses are illustrated in (a), (b) and (c) and the guided mappings are illustrated

in (d) and (e). (a) Illustration of the zero loss. Encoding images from domain A (illustrated in green) with domain’s B separate encoder

should result in a zero vector, encoding no information about the image (and vice versa). (b) Illustration of the reconstruction loss. Given

a’s separate encoding (illustrated in green), for example glasses, and its common encoding (illustrated in purple), for example all other

facial features, it should be possible to reconstruct a (same for domain B). (c) Illustration of the adversarial loss. The distribution of the

common encoding from domain A and domain B (face features) should be the same. To enforce this, an adversarial loss is used. (d)

Constructing new images. At inference time we can encode domain’s B image b using its separate encoder to get its smile, encode the

common domain A’s image a (face features without glasses) and generate an image similar to a, but without glasses and with b’s smile.

(e) Similarly to (d), we can generate an image similar to a but with the smile removed and glasses of b added.

problem definition in Sec. 2 and that the shared part of the

model (ec) is an intersection of the two domains. The sec-

ond assumption is regarding the separate encoder we learn

(Es
A) and it states that one cannot reconstruct a from Es

A(a).
The last group of assumptions concerns the losses, which

we minimize in our algorithm.

The conclusion of this theorem is that under the proposed

assumptions, (i) the common Ec(a) and separate Es
A(a)

parts are independent, (ii) the common part Ec(a) captures

the information in the underlying ec(a), and (iii) the sepa-

rate part Es
A(a) captures the information in esA(a). There-

fore, we obtain the desired encoding of domain A. By sym-

metric arguments, we arrive at the same conclusions for

Ec(b) and Es
B(b).

5. Experiments

To evaluate our method, we consider the celebA [19]

dataset, which consists of celebrity face images with dif-

ferent attributes. We consider the smile, glasses, facial hair,

male, female, blond and black hair attributes. Each of these

attributes can be used as domain A or B symmetrically.

5.1. Guided translation between domains

In Fig. 2, we consider A to be the domain of images of

smiling persons and B to be the domain of images of per-

sons with glasses. Given a sample a ∈ A (top row) and

a sample b ∈ B (left column), each image constructed is

of the form G(Ec(a), 0, Es
B(b)). The common features of

image a (its identity) are preserved, the smile is removed,

and the glasses of b are added (the guide image). The re-

verse direction, as well as other cross domain translations,

are depicted in the supplementary.

In order to evaluate the success of the translation numeri-

cally, we pretrain a classifier to distinguish between images

from domain A and domain B. If the specific part of the

domain A was successfully removed (for example, smile),

and the specific part of domain B was successfully added

(for example, glasses), then the classifier should classify

the translated image as a domain B image. Tab. 1 shows

the success of our method in this case, in comparison to

3449



Smile To Glasses Facial Hair Smile To Facial Hair Glasses To

Glasses To Smile To Smile Facial Hair To Glasses Facial Hair

Fader networks [13] 76.8% 97.3% 95.4% 84.2% 77.8 % 85.2%

Guided content transfer [18] 45.8% 92.7% 85.6% 85.1% 38.6% 82.2%

MUNIT [10] 7.3% 9.2% 9.3% 8.4% 7.3% 8.5%

DRIT [14] 8.5% 6.3% 6.3% 10.3% 8.6% 10.1%

Ours 91.8% 99.3% 93.7% 87.1% 93.1% 97.2%

Table 1. We pretrain a classifier to distinguish between samples in A (e.g. images of persons with glasses) and samples in B (e.g.

images of persons with smile). We then sample a ∈ A, b ∈ B from the test samples and check the membership of the generated image

G(Ec(b), Es
A(a), 0)) in A. Similarly, in the reverse direction, we check the membership of G(Ec(a), 0, Es

B(b)) in B.

Smile To Glasses Facial Hair Smile To Facial Hair Glasses To

Glasses To Smile To Smile Facial Hair To Glasses Facial Hair

Question (1) ours 4.74 ±0.13 4.30 ±0.21 4.26 ±0.20 4.30 ±0.15 4.18 ±0.17 4.50 ±0.18
Question (2) ours 3.92 ±0.16 4.45 ±0.12 4.03 ±0.15 3.34 ±0.17 3.85 ±0.20 3.95 ±0.22
Question (3) ours 3.95 ±0.23 3.20 ±0.24 3.24 ±0.25 3.22 ±0.27 3.49 ±0.22 3.39 ±0.23

Question (1) for [18] 3.67 ±0.17 4.16 ±0.18 3.39 ±0.19 3.34 ±0.13 4.24 ±0.12 3.15 ±0.15
Question (2) for [18] 1.87 ±0.35 4.42 ±0.22 3.00 ±0.32 2.67 ±0.33 2.20 ±0.42 3.30 ±0.22
Question (3) for [18] 3.95 ±0.15 2.93 ±0.22 3.37 ±0.25 3.40 ±0.27 3.43 ±0.28 3.75 ±0.20

Table 2. Given 20 randomly selected images a ∈ A and b ∈ B, we consider the generated image G(Ec(a), 0, Es
B(b))) and ask if (1) a’s

separate part is removed (2) b’s separate part is added (3) a’s common part is preserved (similarly in the reverse direction). Mean opinion

scores in the range of 1 to 5 are reported, where higher is better.

the baseline methods of [18, 13, 10, 14], which are much

less successful in switching attributes. Specifically: (i) MU-

NIT [10] and DRIT [14] only change style, but the content

is unchanged, (ii) Fader networks [13] translated between

the domains, in a less convincing way, that also ignores the

guide image, and (iii) The method of Press et al. [18] adds

the element of the target domain, but fails to remove the

content of the source domain.

By conducting a user study, we evaluate the ability to

(a) remove the specific attribute of domain A (b) add the

specific attribute of domain B, and (c) preserve the iden-

tity of the image encoded in the common encoder. To do

so, given an image a from domain A and an image b from

domain B, we present the user with two images a ∈ A,

b ∈ B and the generated image G(Ec(a), 0, Es
B(b)) (or

G(Ec(b), Es
A(a), 0) for the reverse direction), and ask the

following three questions: 1. Is the specific attribute of A

(e.g smile) removed? 2. Is the guided image b specific at-

tribute (e.g glasses) added? 3. Is the identify of a’s im-

age preserved (that is, is the common attribute from a still

present in the image)? Mean Opinion Score on the scale

of 1 to 5, are collected for 20 randomly selected test im-

ages in A and B by 20 different users is reported in Tab. 2.

For most translations, the ability to remove A’s specific at-

tribute and add B’s specific attribute is significantly better

than that of [18], while the ability to preserve the identity of

a is on-par with [18]. The Fader networks [13] provides

a generic (unguided) cross domain translation, and MU-

NIT [10] transfers style and not content and were therefore

not included in the user study. See supplementary for the

results obtained by these methods.

5.2. Linearity of latent space

We evaluate the linearity of the latent representation of

A’s separate encoder, B’s separate encoder and the com-

mon encoder. In this case, A serves as the domain of im-

ages of smiling persons and B of images of persons with

facial hair. In Fig. 3 the generated images take the form

G(com, a, 0), where com = αEc(a1) + (1 − α)Ec(a2)
and a = βEs

A(a3) + (1−β)Es
A(a4). α ranges between 0

and 1, going left to right and β ranges from 0 to 1, going

from top to bottom. a1, a2, a3, a4 are images from domain

A (smiling persons), given in the top row and left column.

We observe that the latent representations produced by A’s

separate encoder and the common encoder are linear.

Similarly, in Fig. 4 we evaluate the linear separability

of B’s separate encoder. Generated images take the form

G(com, 0, b), where com = αEc(a1)+(1−α)Ec(a2) and

b = βEs
B(b1) + (1−β)Es

B(b2). α ranges between 0 and

1, going left to right, and β ranges between 0 and 1, going

from top to bottom. a1, a2 are images from domain A given

in the top row and b1, b2 are images from domain B in the

left column.

Lastly, in Fig. 5, we fix the common part from some

image c, and evaluate the linearity of both separate en-

coders applied together. Generated images take the form

G(com, a, b), where com = Ec(c) and a = αEs
A(a1) +

(1 − α)Es
A(a2) and b = βEs

B(b1) + (1 − β)Es
B(b2). α
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Figure 2. Images a ∈ A are in the top row and b ∈ B in the

left column. The images constructed are G(Ec(a), 0, Es
B(b))),

consisting of the common parts of a and separate part of b (smile

is removed and glasses added).

Figure 3. Interpolation in the latent space of domain A (smiling).

We linearly interpolate between the common encoding of the two

images in the top row going left to right. Concurrently, we linearly

interpolate between the separate encoding of the two images in the

left column going top to bottom.

ranges from 0 to 1 going left to right and β ranges from 0 to

1 going from top to bottom. c is a fixed image in A, while

a1, a2 are images from domain A given in the top row and

b1, b2 are images from domain B in the left column.

Figure 4. Interpolation in the latent space of domains A (smiling)

and B (facial hair). We interpolate the common encoding of the

two images from domain A in the top row. Concurrently, we lin-

early interpolate between the separate encoding of the two images

from domain B in the left column.

Figure 5. Interpolation domains A (smiling) and B (facial hair).

Fixing the common encoding to randomly chosen image, we in-

terpolate between A’s separate encoding of the two images in the

top row. Concurrently, we interpolate between B’s separate en-

coding of the two images in the left column.

Note that in this last case, we generate images from the

union domain, i.e., create images that have, in addition to

the common information, both the added content of A and

of B. The method also allows us to consider the intersec-
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Figure 6. Generating images from the intersection of A and B.

(top) image from A. (bottom) mapping to the intersection domain.

tion domain. In the depicted example, domain A includes

images of persons with glasses and B includes images of

smiling persons. The intersection of A and B consists of

images of non-smiling persons (without glasses). Having

never seen such images in the training set, our method now

allows us to generate images from this distribution. This is

illustrated in Fig. 6. To do so, the generated image is of the

form G(Ec(x), 0, 0), where x is a member of A or B.

5.3. Unsupervised Domain Adaptation

To evaluate the disentangled representation, we per-

form unsupervised domain adaptation experiments translat-

ing from MNIST to SVHN. In this problem, the underly-

ing framework is used to translate from MNIST to SVHN

and a pretrained classifier is used to evaluate the percentage

of images mapped to the same label in the target domain.

In our case, given an MNIST digit a, we randomly sample

an SVHN digit b and consider the translation to SVHN as

G(Ec(a), 0, Es
B(b)). In the MNIST to SVHN direction our

method has 61.0% accuracy beating Vae-NAM [8] (51.7%),

NAM [9] (31.9%), DistanceGAN [3] (27.8%) and Cycle-

GAN [21] (17.7%). In the reverse direction it has 41.0%
accuracy beating Vae-NAM (37.4%), NAM (33.3%), Dis-

tanceGAN (27.8%) and CycleGAN (26.1%).

5.4. Ablation study

We consider the formulation of our objective with each

of the three parts missing: the adversarial loss, the zero

loss and the reconstruction loss. We conduct an ablation

study in the case of A being images of smiling persons and

B is the domain of images of persons with glasses. The

results, which appear in Tab. 3 and shown visually in the

supplementary, indicate that when the reconstruction loss

is missing, the method is unable to generate realistic look-

ing images. In the case of no adversarial loss, the method

is able to remove the smile but unable to add glasses from

b. Without the adversarial loss, the common encoder can

contain information specific to the domain, such as glasses,

and so there would be no need to encode it in the sepa-

rate encoder. Lastly, without the zero loss, the translation is

slightly worse but still succeeds to a large extent. As shown

in our analysis, the enforcing of the zero loss is not required

to achieve the desired disentanglement effect.

All Losses 91.8% 99.3%

No zero loss 85.4% 97.8%

No adversarial loss 64,5% 79.3%

No reconstruction loss 50.0% 50.0%

Table 3. An ablation study for the case where A is persons with

glasses and B is smiling persons. We consider the same setting

as Tab 1, and consider the effect of removing each loss on the

classification loss. The left column is for the Smile To Glasses

task and the right column is for the Glasses To Smile task.

6. Conclusions

The field of unsupervised learning presents new prob-

lems that go beyond the classical methods of clustering or

density estimation. The problem of unsupervised cross-

domain translation was not considered solvable up to a few

years ago. Recently, a set of guided translation problems

have emerged, in which one maps between domains based

on the features of a reference image in the target domain.

While the literature methods treat the two domains in an

asymmetric way (one domain donates style and another

content, or one domain is a subset of the second), our work

is the first to treat the domains in a symmetric way.

Our work also presents the first method that is able to

create images that have guided elements from two different

domains, extracted from donor images a and b (one from

each domain) and overlaid on a third image (taken from ei-

ther domains) that donates the shared content.

The method we propose is shown to provide a sufficient

set of constraints in order to support this conversion. It does

not employ GANs in the visual domains, or cycles of any

sort. The constraints are simple structural and reconstruc-

tion constraints, with the addition of a domain confusion

loss, applied in the shared latent space.

Our experiments show that the new method provides su-

perior results for the symmetrical guided domain problem

in comparison to the literature methods. Going forward, the

ability to intersect domains (creating a domain that is or-

thogonal to the specific parts of the two domains), construct

their union (combining both specific parts and the shared

part), and consider the difference between the two, could

lead to the ability to perform domain arithmetics and con-

struct complex visual domains by combining, in a very flex-

ible way, an unlimited number of domains.
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