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Figure 1. We propose a novel multi-matching method that is both scalable and able to account for geometric consistency. Left: the centaurs

(in different poses) are consistently matched by our approach, as indicated by the coloured dots. Centre: methods that ignore geometric

relations (QUICKMATCH [48], SPECTRAL [38]) lead to wrong matchings, as evidenced by mismatching colours in the magnifications.

Right: existing methods that account for geometric consistency (Yan et al. ’15 [56], Yan et al. ’16 [53], Wang et al. [51]) do not scale to

large problems (shown are runtimes when matching 5–50 objects, each having 20 points, so that a total of 100–1000 points are matched).

Abstract

The matching of multiple objects (e.g. shapes or images)

is a fundamental problem in vision and graphics. In order

to robustly handle ambiguities, noise and repetitive patterns

in challenging real-world settings, it is essential to take ge-

ometric consistency between points into account. Compu-

tationally, the multi-matching problem is difficult. It can

be phrased as simultaneously solving multiple (NP-hard)

quadratic assignment problems (QAPs) that are coupled via

cycle-consistency constraints. The main limitations of ex-

isting multi-matching methods are that they either ignore

geometric consistency and thus have limited robustness, or

they are restricted to small-scale problems due to their (rel-

atively) high computational cost. We address these short-

comings by introducing a Higher-order Projected Power

Iteration method, which is (i) efficient and scales to tens

of thousands of points, (ii) straightforward to implement,

(iii) able to incorporate geometric consistency, (iv) guaran-

tees cycle-consistent multi-matchings, and (iv) comes with

theoretical convergence guarantees. Experimentally we

show that our approach is superior to existing methods.

1. Introduction

Establishing correspondences is a fundamental problem

in vision and graphics that is relevant in a wide range of ap-

plications, including reconstruction, tracking, recognition,

or matching. The goal of correspondence problems is to

identify points in objects (e.g. images, meshes, or graphs)

that are semantically similar. While matching points inde-

pendently of their neighbourhood context is computation-

ally tractable (e.g. via the linear assignment problem (LAP)

[12]), such approaches are limited to simple cases without

ambiguities or repetitive patterns. In order to resolve ambi-

guities and avoid mismatches in challenging real-world sce-

narios, it is crucial to additionally incorporate the geometric

context of the points, so that spatial distances between pairs

of points are (approximately) preserved by the matching. To

this end, higher-order information is commonly integrated

into the matching problem formulation, e.g. via the NP-hard

quadratic assignment problem (QAP) [28].

Multi-matching, i.e. finding matchings between more

than two objects (e.g. an image sequence, a multi-view

scene, or a shape collection) plays an important role in var-

ious applications, such as video-based tracking, multi-view

reconstruction (e.g. for AR/VR content generation) or shape

modelling (e.g. for statistical shape models in biomedicine

[23]). Computationally, finding valid matchings between

more than two objects simultaneously is more difficult com-

pared to matching only a pair of objects. This is because one

additionally needs to account for cycle-consistency, which

means that compositions of matchings over cycles must be

the identity matching—even when ignoring higher-order
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terms, an analogous multi-matching variant of the linear

assignment problem that accounts for cycle-consistency re-

sults in a (non-convex) quadratic optimisation problem over

binary variables, which structurally resembles the NP-hard

quadratic assignment problem. When additionally consid-

ering higher-order terms in order to account for geometric

relations between the points, multi-matching problems be-

come even more difficult. For example, a multi-matching

version of the quadratic assignment problem either results

in a fourth-order polynomial objective function, or in a

quadratic objective with additional (non-convex) quadratic

cycle-consistency constraints, both of which are to be opti-

mised over binary variables.

Practical approaches for solving multi-matching prob-

lems can be put into two categories: (i) methods that

jointly optimise for multi-matchings between all objects

(e.g. [24, 53, 44, 48, 6]) and (ii) approaches that first es-

tablish matchings between points in each pair of objects in-

dependently, and then improve those matchings via a post-

processing procedure referred to as permutation synchro-

nisation [38, 14, 61, 43, 33, 7]. Approaches that jointly

optimise for multi-matchings either ignore geometric rela-

tions between the points [48], or are prohibitively expensive

and thus only applicable to small problems (cf. Fig. 1). In

contrast, while synchronisation-based approaches are gen-

erally more scalable (e.g. synchronisation problems with

a total number of points in the order of 10k-100k can be

solved), they completely ignore geometric relations (higher-

order terms) during the synchronisation, and thus achieve

limited robustness in ambiguous settings (cf. Fig. 1).

The aim of this work is to provide a scalable solution for

multi-matching that addresses the mentioned short-comings

of previous approaches. Our main contributions are:

• We propose a method that jointly optimises for multi-

matchings which is efficient and thus applicable to

large-scale multi-matching problems.

• Our method is guaranteed to produce cycle-consistent

multi-matchings, while at the same time considering

geometric consistency between the points.

• Our Higher-order Projected Power Iteration (HiPPI)

method has theoretical convergence guarantees and

can be implemented in few lines of code.

• We empirically demonstrate that our method achieves

beyond state-of-the-art results on various challenging

problems, including large-scale multi-image matching

and multi-shape matching.

2. Background & Related Work

In this section we review the most relevant works in the

literature, while at the same time providing a summary of

the necessary background.

Pairwise matching: The linear assignment problem

(LAP) [12] can be phrased as

min
X2P

hA,Xi , (1)

where A is a given matrix that encodes (linear) matching

costs between two given objects, and X 2 P is a per-

mutation matrix that encodes the matching between these

objects. The LAP can be solved in polynomial time, e.g.

via the Kuhn-Munkres/Hungarian method [34] or the (em-

pirically) more efficient Auction algorithm [9, 8]. The

quadratic assignment problem (QAP) [28], which reads

min
X2P

vec(X)TW vec(X) , (2)

additionally incorporates pairwise matching costs between

two objects that are encoded by the matrix W . The

QAP is a (strict) generalisation of the LAP and in gen-

eral it is NP-hard [39]. The QAP is a popular formal-

ism for graph matching problems, where the first-order

terms (on the diagonal of W ) account for node matching

costs, and the second-order terms (on the off-diagonal of

W ) account for edge matching costs. Existing methods

that tackle the QAP/graph matching include spectral relax-

ations [30, 17], linear relaxations [47, 46], convex relax-

ations [59, 41, 37, 21, 1, 26, 20, 6], path-following meth-

ods [58, 60, 25], kernel density estimation [50], branch-

and-bound methods [5] and many more, as described in the

survey papers [39, 31]. Also, tensor-based approaches for

higher-order graph matching have been considered [19, 36].

While the requirement X 2 P implies bijective match-

ings, in the case of matching only two objects, the formula-

tions (1) and (2) are general in the sense that they also apply

to partial matchings, which can be achieved by incorporat-

ing dummy points with suitable costs. However, due to am-

biguities with multi-matchings of dummy points, this is not

easily possible when considering more than two objects.

Multi-matching: In contrast to the work [52], where

cycle-consistency has been modelled as soft-constraint

within a Bayesian framework for multi-graph matching, in

[55, 54] the authors have addressed multi-graph matching

in terms of simultaneously solving pairwise graph matching

under (hard) cycle-consistency constraints. In [56], the au-

thors have generalised factorised graph matching [60] from

matching a pair of graphs to multi-graph matching. Another

approach that tackles multi-graph matching is based on a

low-rank and sparse matrix decomposition [57]. In [53], a

composition-based approach with a cycle-consistency regu-

lariser is employed. In [26], the authors propose a semidefi-

nite programming (SDP) relaxation for multi-graph match-

ing by (i) relaxing cycle-consistency via a semidefinite con-

straint, and (ii) lifting the n⇥n permutation matrices to

n2⇥n2-dimensional matrices. In order to reduce compu-

tational costs due to the lifting of the permutation matri-

ces, the authors in [6] propose a lifting-free SDP relaxation
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for multi-graph matching. More recently, a convex relax-

ation of multi-graph matching based on message passing

has been proposed [45], where cycle-consistency as well

as higher-order terms are considered. In [40], the authors

propose a random walk technique for multi-layered multi-

graph matching. While there is a wide range of algorithmic

approaches for multi-graph matching, the aforementioned

approaches have in common that they are computationally

expensive and are only applicable to small-scale problems,

where the total number of points does not significantly ex-

ceed a thousand (e.g. 20 graphs with 50 nodes each). In

contrast, our method scales much better and handles multi-

matching problems with more than 20k points.

In [16], the authors use a two-stage approach with a

sparsity-inducing `1-formulation for multi-shape matching.

While the effect of this approach is that only few multi-

matchings are found, our approach obtains significantly

more multi-matchings, as we will demonstrate later.

Rather than modelling higher-order relations between

points, the recent approach [51] accounts for geometric con-

sistency in 2D multi-image matching problems by impos-

ing a low rank of the (stacked) 2D image coordinates of

the feature points. On the one hand, this is based on the

(over-simplified) assumption that the 2D images depict a

3D scene under orthographic projections, and on the other

hand such an extrinsic approach is not directly applicable

to distances on non-Euclidean manifolds (e.g. multi-shape

matching with geodesic distances). In contrast, our ap-

proach is intrinsic due to the use of pairwise adjacency ma-

trices, and thus can handle general pairwise information in-

dependent of the structure of the ambient space.

Synchronisation methods: Given pairwise matchings

between pairs of objects in a collection, synchronisation

methods have the purpose to improve these matchings. The

motivation of permutation synchronisation methods is to

achieve cycle-consistency in the set of pairwise matchings:

Definition 1. (Cycle-consistency)1

Let X = {Xij 2 Pmimj
}ki,j=1 be the set of pairwise match-

ings in a collection of k objects, where each Xij is an ele-

ment of the set of partial permutation matrices

Ppq = {X 2 {0, 1}p⇥q : X1q  1p,1
T
p X  1

T
q } . (3)

The set X is said to be cycle-consistent if for all i, j, ` 2
[k] := {1, . . . , k} it holds that:

(i) Xii = Imi
(identity matching),

(ii) Xij = XT
ji (symmetry), and

(iii) XijXj`  Xi` (transitivity).

For the case of full permutation matrices, i.e. in (3) the

inequalities become equalities and p=q, Pachauri et al. [38]

1Note that matrix and vector inequalities are understood in an elemen-

twise sense.

have proposed a simple yet effective method to achieve

cycle-consistency based on a spectral decomposition of the

matrix of pairwise matchings. The authors of [43] provide

an analysis of such spectral synchronisations. Earlier works

have also considered an iterative refinement strategy to im-

prove pairwise matchings [35].

While the aforementioned synchronisation methods con-

sidered the case of full permutations, some authors have

also addressed the synchronisation of partial matchings, e.g.

based on semidefinite programming [14], alternating di-

rection method of multipliers [61], spectral decomposition

followed by k-means clustering [2], or non-negative ma-

trix factorisation [7]. A spectral approach has also been

presented in [33], which, however, merely improves given

initial pairwise matchings without guaranteeing cycle-

consistency.

Rather than explicitly modelling the cubic number of

cycle-consistency constraints (cf. Def. 1), most permuta-

tion synchronisation methods leverage the fact that cycle-

consistency can be characterised by using the notion of uni-

verse points, as e.g. in [48, 7]:

Lemma 2. (Cycle-consistency, universe points)

The set X of pairwise matchings is cycle-consistent, if there

exists a collection {X` 2 Pm`d : X`1d = 1m`
}k
`=1

, such

that for each Xij 2 X it holds that Xij = XiX
T
j .

Here, the (m`⇥d)-dimensional object-to-universe

matching matrix X` assigns to each of the m` points of

object ` exactly one of d universe points—as such, all

points among the k objects that are assigned to a given

(unique) universe point are said to be in correspondence.

For notational brevity, it is convenient to consider a ma-

trix formulation of Lemma 2. With mi being the number of

points in the i-th object and m =
Pk

i=1
mi, let X be the

(m⇥m)-dimensional pairwise matching matrix

X = [Xij ]
k
i,j=1 2 [Pmimj

]ki,j=1 (4)

and let

U = {U 2 [Pmid]i : U1d = 1m} ⇢ {0, 1}m⇥d . (5)

Lemma 2 translates into the requirement that there must be

a U 2 U , such that

X = UUT . (6)

With this matrix notation it becomes also apparent that

one can achieve synchronisation by matrix factorisation,

such as pursued by the aforementioned spectral approaches

[38, 43, 2, 33]. While recently a lot of progress has been

made for permutation synchronisation, one of the open

problems is how to efficiently integrate higher-order infor-

mation to model geometric relations between points. We
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achieve this goal with our proposed method and demon-

strate a significant improvement of the matching accuracy

due to the additional use of geometric information.

Power method: The power method is one of the clas-

sical numerical linear algebra routines for computing the

eigenvector corresponding to the largest (absolute) eigen-

value [22]. Moreover, it is well-known that the eigenvec-

tor corresponding to the largest (absolute) eigenvalue max-

imises the Rayleigh quotient xTAx
xT x

, which, up to scale,

is equivalent to maximising the (not necessarily convex)

quadratic objective xTAx over the unit sphere. In addition

to computing a single eigenvector, straightforward exten-

sions of the power method are the Orthogonal Iteration and

QR Iteration methods [22], which simultaneously compute

multiple (orthogonal) eigenvectors and can be used to max-

imise quadratic objectives over the Stiefel manifold.

Power method generalisations: Moreover, higher-

order generalisations of the power method have been pro-

posed, e.g. for rank-1 tensor approximation [18], or for

multi-graph matching [44]. However, the latter approach

has a runtime complexity that is exponential in the num-

ber of graphs and thus prevents scalability (e.g. matching

12 graphs, each with 10 nodes, takes about 10 minutes). In

[13], the authors propose a Projected Power Method for the

optimisation of quadratic functions over sets other than the

Stiefel manifold, such as permutation matrices. In a per-

mutation synchronisations setting, their method obtains re-

sults that are comparable to semidefinite relaxations meth-

ods [14, 24] at a reduced runtime. However, due to the

restriction to quadratic objective functions, their approach

cannot handle geometric relations between points, as they

would become polynomials of degree four, as will be ex-

plained in Sec. 3. Our method goes beyond the existing ap-

proaches as we propose a convergent projected power iter-

ation method for maximising a higher-order objective over

the set U . With that, we can incorporate geometric infor-

mation between neighbouring points using a fourth-order

polynomial, while always maintaining cycle-consistency.

3. Method

The overall idea of our approach is to phrase the multi-

matching problem as simultaneously solving k2 pairwise

matching problems with quadratic (second-order) match-

ing scores, where the variables are weighted based on lin-

ear (first-order) matching scores. Instead of directly opti-

mising over pairwise matchings, we parametrise the pair-

wise matchings in terms of their object-to-universe match-

ings, cf. Lemma 2 and Eq. (6). Although this has the

disadvantage that the quadratic term becomes quartic (a

fourth-order polynomial), it has the strong advantages that

(i) cycle-consistency is guaranteed to be always maintained,

(ii) one only optimises for m ⇥ d, rather than m ⇥m vari-

ables in the pairwise case, where commonly d⌧ m.

3.1. Multi-Matching Formulation

In the following we present our multi-matching formu-

lation. Let Ai 2 S+
mi

denote the (mi⇥mi)-dimensional

symmetric and positive semidefinite adjacency matrix of

object i (e.g. a matrix that encodes the Gaussian of pair-

wise Euclidean/geodesic distances between pairs of points).

For a given Xi 2 Pmid, the d⇥d matrix XT
i AiXi is

a row/column reordering of the matrix Ai according to

the universe points. As such, we can use the Frobe-

nius inner product hXT
i AiXi, X

T
j AjXji for quantifying

how well two adjacency matrices Ai and Aj agree af-

ter they have been reordered based on Xi and Xj . This

term can be understood as the object-to-universe formula-

tion of second-order matching terms when using pairwise

matching matrices (analogous to the QAP in Koopmans-

Beckmann form [27]). As such, multi-matching with ge-

ometric consistency can be phrased as

max
X1,...,Xk

kX

i,j=1

hXT
i AiXi, X

T
j AjXji

s.t Xi 2 Pmid 8 i 2 [k] . (7)

Equivalently, for U = [XT
1 , . . . , X

T
k ]

T 2 R
m⇥d and

A 2 S+
m being the (symmetric and positive semidefinite)

block-diagonal multi-adjacency matrix defined as A =
diag(A1, . . . , Ak) 2 R

m⇥m, Problem (7) can be written

in compact matrix form as

max
U2U

tr(UTAUUTAU) . (8)

Let Wij 2 R
mi⇥mj

+ encode the (non-negative) similarity

scores between the points of object i and j (in analogy to

linear terms when using pairwise matching matrices), and

let W = [Wij ]ij 2 R
m⇥m be a (symmetric) matrix that

encodes all similarity scores. With that, we can define the

reweighting of the object-to-universe matchings U as WU ,

where both U and WU have the same dimensionality. The

purpose of this reweighting is to amplify matchings in U

that have high similarity scores, cf. Fig. 2. By replacing U

in Problem (8) with its reweighted matrix WU , we arrive at

our final multi-matching formulation

max
U2U

tr(UTWUUTWU) := f(U) , (9)

for W := WTAW . While (9) is based on the U -matrix

and hence intrinsically guarantees cycle-consistent multi-

matchings, the objective function is a fourth-order polyno-

mial that is to be maximised over the (binary) set U .

3.2. Algorithm

In order to solve Problem (9) we propose a Higher-order

Projected Power Iteration (HiPPI) method, as outlined in
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Figure 2. Effect of reweighting U with W . The similarity matrix

W indicates that the first point in the first object is similar the

second point in the second object (the grey values in W at position

(1, 4), and (4, 1)). Hence, those elements in the first column of

U that match these points to each other are amplified in WU .

Alg. 1. The main idea is to perform a higher-order power

iteration step, followed by a projection onto the set U . The

approach is simple, and merely comprises of matrix multi-

plications and the Euclidean projection onto U .

Input: similarities W , multi-adjacency matrix A2S+
m

Output: cycle-consistent multi-matching Ut 2 U
Initialise: t 0, U0 2 U ,W  WTAW

1 repeat

2 Vt  WUtU
T
t WUt

3 Ut+1  projU (Vt)
4 t t+1

5 until |f(Ut)� f(Ut�1)| = 0
Algorithm 1: Higher-order Projected Power Iteration

(HiPPI) algorithm.

3.3. Theoretical Analysis

In this section we analyse the properties of our algorithm.

The respective proofs can be found in the supplementary

material.

Monotonicity: The HiPPI algorithm is guaranteed to

monotonically increase the objective f(Ut):

Proposition 3. In Alg. 1 it holds that f(Ut+1) � f(Ut).

In the proof of Proposition 3 we use the following result:

Lemma 4. Let W be a symmetric and positive semidefinite

matrix. For tr(V TWV V TWV )  tr(UTWV V TWU)
we have tr(UTWV V TWU)  tr(UTWUUTWU).

Convergence: Proposition 3 immediately leads to the

convergence of our algorithm, which is stated in the follow-

ing corollary:

Corollary 5. The sequence (f(Ut))t=0,1,... produced by

Alg. 1 converges after a finite number of iterations.

Remark 6. As the order of the universe points can be ar-

bitrary, there is a whole family of equivalent solutions: for

any U 0 = UP for P being a d⇥d permutation, we have that

f(U) = f(U 0), since U 0(U 0)T = UPPTUT = UUT .

Complexity analysis: The update rule in Alg. 1 can

be written as Ut+1 = projU (WUtU
T
t WUt). The ma-

trix multiplications for computing WUtU
T
t WUt have time

complexity O(m2d), where the universe size d is generally

much smaller compared to the total number of all points

m across all the k objects. As can be seen in the proof of

Proposition 3, the projection onto U is a linear program-

ming problem. Finding its optimiser amounts to solving k

individual (partial) linear assignment problems, each having

sub-cubic empirical average time complexity when using

the Auction algorithm [9, 42] (we use the implementation

by [8]). Hence, the overall (average) per-iteration complex-

ity is O(m2d + kd2 log(d)). The memory complexity is

O(m2) due to the matrix W 2 R
m⇥m, which can be im-

proved by considering sparse similarity scores.

4. Experimental Results

In this section we extensively compare our method to

other approaches on three datasets. To be more specific, we

consider two multi-image matching datasets, Willow [15]

and HiPPI, as well as the multi-shape matching dataset

Tosca [11]. The datasets are summarised in Table 1.

Dataset Type Bij. # k m

HiPPI images no 31 [7,100] [2257,20703]
Willow images yes 5 [40,108] [400,1080]
Tosca shapes no 7 [6,20] [3000,10000]

Table 1. Overview of properties of the datasets. “Bij.” indicates

whether the matchings are bijective, “#” is the number of instances

per dataset, k is the number of objects, and m is the total number

of points summed over all objects.

Similarity scores: The similarity scores between im-

age/shape i and j is encoded in the matrix Wij 2 R
mi⇥mj

+ ,

which is defined using feature matrices Fi 2 R
mi⇥f and

Fj 2 R
mj⇥f of the respective image/shape, where f is the

feature dimensionality. As in [48], the similarity scores are

based on a weighted Gaussian kernel, i.e.

(Wij)pq = !pq exp(�
k(Fi)p � (Fj)qk

2

2�2
) , (10)

where !pq is a weight that depends on the distance between

the features and the closest descriptor from the same image.

For details we refer the reader to [48]. The particular choice

of features for each dataset are described below.

Adjacency matrices: The adjacency matrix Ai 2 S+
mi

of image/shape i is based on Euclidean distances between

pairs of 2D image point locations in the case of multi-image

matching (or geodesic distances between pairs of points on
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Figure 3. Multi-image matching on the HiPPI dataset. Our method is the only one that considers geometric relations between points, while

at the same time being scalable to such large datasets (note that the reported runtimes include the initialisation). We clearly outperform other

matching methods as well as synchronisation methods in terms of the fscore (higher is better), while also guaranteeing cycle-consistency.

the 3D shape surface for multi-shape matching). By de-

noting the distance between the points with indices p2[mi]
and q2[mi] as dpq , the elements of the adjacency matrix are

based on a Gaussian kernel, so that

(Ai)pq=exp(�
d2pq

2µ�2
A

) . (11)

We set �A=median(dmin), where (dmin)p=minq 6=p dpq
for p 2 [mi], and µ is a scaling factor.

Quantitative scores: For the quantitative evaluation we

consider the fscore = 2· precision·recall

precision+recall
, and the cycle-error,

which is given by the fraction of the total number of cycle-

consistency violations in all three-cycles, divided by the to-

tal number of matchings in all three-cycles.

4.1. HiPPI Dataset

In this experiment we compare various multi-image

matching methods.

Dataset: The HiPPI dataset comprises 31 multi-

image matching problems. For each problem instance,

a (short) video sequence has been recorded (with resolu-

tion 1920⇥1080, frame-rate 30 FPS, and duration >5s).

In each video, feature points and feature descriptors were

extracted using SURF [4] with three octaves. To obtain

ground truth matchings, these feature points were tracked

across the sequence based on their geometric distance and

feature descriptor similarity. To ensure reliable ground truth

matchings, we have conducted the following three steps:

(i) obvious wrong matchings between consecutive images

have been automatically pruned, (ii) we have manually re-

moved those features that were incorrectly tracked from the

first to the last frame (by inspecting the first and last frame),

and (iii) in order to prevent feature sliding in-between the

first and last frame, we manually inspected the flow of

each remaining feature point and removed wrongly tracked

points. Note that steps (ii) and (iii) have been performed by

two different persons, which took in total about 24 hours.

A multi-matching problem was then created by extracting

evenly spaced frames from a sequence, where in each frame

we added a significant amount of outlier points (randomly

selected from the previously pruned points, where the num-

ber of points is chosen such that in each frame 50% of the

points are outliers), and we simulate occlusions (a rectan-

gle of size 0.2⇥0.2 of the image dimensions) in order to get

difficult partial multi-matching problems.

Multi-image matching: We compare our method with

QUICKMATCH [48], MATCHEIG [33], SPECTRAL [38]

(implemented by the authors of [61] for partial permuta-

tion synchronisation), and MATCHALS [61]. Other meth-

ods that incorporate geometric information [56, 53, 51] do

not scale to such large problem instances, see Fig. 1, and

thus we cannot compare to them. The universe size d is set

to twice the average of the number of points per image [33].

We used QUICKMATCH (⇢den=0.5) for initialising U0 in

our method, and we set µ=1. The results are shown in

Fig. 3, where it can be seen that our method achieves a supe-

rior matching quality. In contrast to other methods (except

QUICKMATCH), our method guarantees cycle-consistency.

4.2. Willow Dataset

The evaluation on the Willow dataset [15] is based on

the experimental protocol from [51], where deep features

have been used for matching. For this dataset the matchings

are bijective, and hence for all methods we set the universe

size d to the number of annotated features. Since QUICK-

MATCH [48] is tailored towards partial matchings, as it im-

plicitly determines the universe size during its internal clus-

tering, we have found that it does not perform so well on

this dataset (see Table 2). In Table 2 it can be seen that our

method is superior compared to the other approaches. We

show some qualitative results in Fig. 4.

4.3. Tosca Dataset

Based on the experimental setup of [16] using the Tosca

dataset [11], we compare our method with two other ap-

proaches that guarantee cycle-consistency, namely QUICK-
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Instance PAIRWISE SPECTRAL MATCHALS QUICKMATCH YAN ET AL. WANG ET AL. OURS

Car 0.54 (0.4s) 0.65 (0.5s) 0.64 (4.3s) 0.27 (0.2s) 0.57 (22.9s) 0.71 (3.4s) 0.74 (0.9s)
Duck 0.48 (0.6s) 0.66 (0.7s) 0.60 (4.2s) 0.27 (0.2s) 0.54 (21.7s) 0.82 (4.4s) 0.88 (1.0s)
Face 0.94 (3.5s) 0.98 (3.6s) 0.97 (6.9s) 0.91 (0.2s) 0.85 (14.9s) 0.96 (5.0s) 1.00 (3.8s)
Motorbike 0.33 (0.5s) 0.37 (0.6s) 0.35 (3.6s) 0.12 (0.2s) 0.32 (33.3s) 0.65 (8.4s) 0.84 (1.0s)
Winebottle 0.62 (1.3s) 0.82 (1.4s) 0.77 (4.7s) 0.29 (0.2s) 0.71 (20.4s) 0.88 (4.9s) 0.95 (1.6s)

Table 2. Fscores (higher is better) and runtimes for the Willow dataset. All methods are initialised based on pairwise matches with

linear costs (except QUICKMATCH [48], which is initialisation-free). OURS (µ=10), YAN ET AL. [53], and WANG ET AL. [51] consider

geometric relations between points, amongst which OURS is the fastest (note that the reported runtimes include the initialisation).

Figure 4. A subset of images from four multi-matching problems of the WILLOW dataset (solved using our method). The correspondences

are encoded by the colours of the points.

Cosmo et al. Tron et al. Ours
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#matches [16] Ours

cat 88 518

centaur 51 551

david 136 515

dog 137 582

horse 21 515

michael 83 511

victoria 120 515

Figure 5. Our method obtains significantly more multi-matchings (bottom right, see also Fig. 6) compared to the method of

Cosmo et al. [16], while at the same time achieving comparable errors (percentage of correct keypoints, PCK).

MATCH, and the sparse multi-shape matching approach by

Cosmo et al. [16]. The feature descriptors on the shape sur-

faces are based on wave kernel signatures (WKS) [3], we use

QUICKMATCH (⇢den=0.2) as initialisation, and set µ=5.

Multi-shape matching: Quantitative results are shown

in Fig. 5 and qualitative results are shown in Fig. 6. As ex-

plained before, QUICKMATCH ignores geometric relations

between points, and thus leads to geometric inconsistencies

(first row of Fig. 6). While the method of Cosmo et al. [16]

is able to incorporate geometric relations between points,
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Figure 6. Qualitative results on the Tosca centaur. Dots with same

colour indicate matched points. QUICKMATCH (top) does not take

geometric consistency into account and thus leads to mismatches

(red circles). While Cosmo et al. [16] (centre) obtain only few re-

liable matchings, leading to regions without correspondences, our

method (bottom) obtains significantly more reliable matchings.

one major limitation of their approach is that only a sparse

subset of matchings is found. This may happen even when

the shape collection is outlier free [16]. This behaviour can

be seen in the second row of Fig. 6, where only few multi-

matchings are obtained and hence there are large regions

for which no correspondences are found. In contrast, our

approach incorporates geometric consistency, produces sig-

nificantly more multi-matchings (Fig. 6), and results in a

percentage of correct keypoints (PCK) that is competitive

to the method of Cosmo et al. [16], see Fig. 5.

5. Discussion & Limitations

Positive semidefiniteness of A: Although at first sight

it may seem overly restrictive that our monotonicity results

of Alg. 1 rely on the multi-adjacency matrix A being posi-

tive semidefinite, in practice this is usually not an issue. As

explained e.g. in [49], for getting rid of a bias towards far-

away points, one usually applies a kernel (e.g. Gaussian or

heat kernel) to the Euclidean or geodesic distances between

pairs of points, which directly results in positive semidefi-

nite adjacency matrices [10].

Convergence speed: While we do not provide conver-

gence rates for our algorithm, we experimentally verified

that in practice our algorithm only needs few steps, i.e. it

took less than 40 iterations in all conducted experiments.

We have initially experimented with a Frank-Wolfe (FW)

approach for our multi-matching formulation that optimises

over the convex hull of U . Although such an approach

would allow to provide convergence rates, we have found

that our method was superior compared to FW.

Initialisation: As Problem (9) is non-convex, the re-

sult produced by Alg. 1 generally depends on the initialisa-

tion U0. We have additionally evaluated our method on the

HiPPI dataset using random initialisations, where we have

obtained an average fscore of 0.90±0.08 (QUICKMATCH

on its own resulted in an average fscore of 0.71±0.03,

and our method with QUICKMATCH initialisation achieved

0.92±0.05, cf. Fig. 3).

General QAPs: Our formulation of the geometric con-

sistency term in Problem (9) corresponds to the Koopmans-

Beckmann form of the QAP [27], which is strictly less gen-

eral compared to Lawler’s form vec(X)TW vec(X) [28].

An interesting direction for future work is to devise an anal-

ogous algorithm for solving Lawler’s form.

Partial objects: In our formulation we do not explicitly

consider the rejection of outlier points. Hence, our method

works best when matching a collection of objects that can

properly be matched. We believe that matching collections

of partial objects is an interesting direction for future work.

6. Conclusion

We presented a Higher-order Projected Power Iteration

approach for multi-matching. Contrary to existing permu-

tation synchronisation methods [38, 14, 61, 43, 2, 33], our

method is able to take geometric relations between points

into account. Hence, our approach can be seen as a gener-

alisation of permutation synchronisation. Moreover, previ-

ous multi-matching methods that consider geometric con-

sistency (e.g. [56, 53]) only allow to solve problems with

up to few thousand points. In contrast, we demonstrated

that our approach scales to tens of thousands of points. In

addition to being able to account for geometric consistency,

key properties of our method are convergence guarantees,

computational efficiency, simplicity, and guaranteed cycle-

consistency. Moreover, we have demonstrated superior per-

formance on three datasets, which highlights the practical

relevance of the proposed algorithm.
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