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Abstract

We present a robust, fast and accurate method for reg-

istration of 3D scans. Using correspondences, our method

optimizes a robust cost function on the intrinsic represen-

tation of rigid motions, i.e., the Special Euclidean group

SE(3). We exploit the geometric properties of Lie groups as

well as the robustness afforded by an iteratively reweighted

least squares optimization. We also generalize our ap-

proach to a joint multiview method that simultaneously

solves for the registration of a set of scans. Our approach

significantly outperforms the state-of-the-art robust 3D reg-

istration method based on a line process in terms of both

speed and accuracy. We show that this line process method

is a special case of our principled geometric solution. Fi-

nally, we also present scenarios where global registration

based on feature correspondences fails but multiview ICP

based on our robust motion estimation is successful.

1. Introduction

The availability of consumer depth cameras has al-

lowed the easy and reliable scanning of a 3D scene or

object [32, 42, 51]. To build a geometrically consis-

tent 3D reconstruction, we need to solve the key prob-

lem of aligning or registering all scans in a global frame

of reference [40, 44, 20, 30]. There is a wide variety

of solutions to the 3D registration problem in the litera-

ture [17, 28, 24, 11, 52]. All of these methods involve a

trade-off between speed and accuracy. Recently, [52] has

presented a method for fast global registration (henceforth

denoted FGR) of 3D scans based on the robustness of a line

process. This method has been shown to outperform exist-

ing methods in terms of both speed and accuracy.

∗This work was done while the author was a student at the Indian In-

stitute of Science. Supported in part by a research grant from Science

and Engineering Research Board, Department of Science and Technology,

Government of India.
†Corresponding author.

As in [52], given a set of 3D feature correspondences,

we pose the registration problem as one of solving for the

rigid Euclidean motion that minimizes a robust cost func-

tion. However, unlike their approach, our solution systemat-

ically utilises the rich geometric structure of the underlying

Lie group representation for 3D motion, i.e., the Special Eu-

clidean group SE(3). In this context, we achieve robustness

via the iteratively reweighted least squares (IRLS) method.

The key observation of our paper is that our specific com-

bination of geometry of rigid Euclidean motion and the ro-

bustness of IRLS allows our method to significantly outper-

form the fast global registration method of [52] without hav-

ing to take recourse to tuning of parameters. Additionally,

we show that the solution proposed in [52] is a special case

of our more general solution. In the process, we demon-

strate that we can gain both theoretical insight as well as

improved performance by utilizing the rich structure of the

underlying geometric representation of rigid Euclidean mo-

tions.

Furthermore, our work also addresses two important

considerations. Firstly, in order to achieve robustness, some

loss functions used for optimization have parameters that

need to be either provided a priori or estimated in situ. This

is the case with [52] which uses the Geman-McClure loss

function. We argue that for the problem of 3D registration

the statistical efficiency (i.e. accuracy) trade-off inherent to

all robust estimators can be addressed using loss functions

that are parameter free. This obviates the need to estimate

any parameter during the course of optimization. Secondly,

we argue that 3D registration using 3D point feature cor-

respondences has certain limitations. While such feature

correspondences can be reliably obtained when the camera

motion is small (equivalently there is significant overlap be-

tween scans), there are certain scenarios where the feature

correspondences break down. For such cases, we demon-

strate that accurate joint registration of multiple 3D scans

can be achieved by incorporating our robust motion estima-

tion method into local methods such as ICP.
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2. Literature Survey

Although the literature of 3D registration is extensive,

in the following we only focus on aspects that are directly

relevant to our method. A large number of methods for reg-

istering 3D scans using point correspondences have two key

aspects, (a) a method for establishing point correspondences

between two 3D scans and (b) a method for estimating mo-

tion given an adequate number of such correspondences.

We may further classify methods according to whether they

use a fixed set of point correspondences [11, 52, 45, 21]

or update them [30, 37, 2, 12, 7]. In the former instance,

we use invariant feature representations to find point corre-

spondences across a pair of scans which are then used for

motion estimation. In the latter approach, we alternately

update point correspondences using nearest neighbors and

motion estimation till convergence, such as in the classical

approach of ICP and its variants (see [37, 7, 9, 49] and refer-

ences therein). Independent of the method for establishing

correspondences, we need a method for robust motion es-

timation given a set of correspondences. This problem of

robust motion estimation is the main focus of this paper.

The least squares solution to the motion estimation prob-

lem is the classical method of Umeyama [47]. However, the

least squares solution breaks down in the presence of out-

liers. The requisite robustness is often achieved using vari-

ants of RANSAC [30, 24, 2, 35, 38, 33, 36] or motion clus-

tering [30, 12, 39]. Other classes of approaches are based

on the branch-and-bound framework [17, 22, 27, 14, 48].

However, all of these approaches often require expen-

sive iterations and are slow to converge. Other solutions

based on expectation-maximization using Gaussian mixture

model representations of the scans [25, 15, 13] are simi-

larly slow. Another approach that is relatively efficient is

to perform robust averaging of pairwise motions between

scans [19, 46, 3], or use variants of pose-graph optimiza-

tion [11], to produce tightly registered scans. Yet another

approach is to use IRLS [23] to optimize robust cost func-

tions [1]. The recent fast global registration method of [52]

made use of the duality between robust estimators and line

processes [6] to develop a fast approach for global regis-

tration. This method has been shown to produce the best

results till date in terms of speed as well as accuracy.

3. Lie Group Structure of Euclidean Motions

Our method utilizes the geometric structure of Lie

groups, specifically that of the Special Euclidean group

SE(3). In this section, we provide a very brief description of

the group structure and relevant Lie group properties. The

Euclidean motion between two 3D scans consists of a rota-

tion and a translation. While rotations can be represented in

a variety of ways, we represent them as 3 × 3 orthonormal

matrices R, i.e., RR⊤ = I3 and |R| = +1 (here and for

the rest of this paper we use In to denote the n × n iden-

tity matrix). A rigid Euclidean motion (R, t) can then be

compactly represented by a 4× 4 matrix

M =

[

R | t

0 | 1

]

(1)

where t ∈ R
3. The matrices R and M satisfy the properties

of a matrix group and also form smooth, differentiable

manifolds, i.e., they are Lie groups. Thus, R ∈ SO(3)
and M ∈ SE(3) where SO(3) and SE(3) are the Special

Orthogonal and the Special Euclidean groups respectively.

We note that R and M have 3 and 6 degrees of freedom

respectively.

Lie Groups: The Lie group structure of SE(3) plays an

important role in our formulation. Detailed expositions on

the geometric properties of this representation are presented

in [10, 41]. For our purposes, it will suffice to note that

for finite-dimensional Lie groups (matrix groups) the prod-

uct and inverse operations are differentiable mappings. Ev-

ery point in a Lie group has a local neighborhood (tangent

space) called its Lie algebra which has the properties of a

vector space. For R ∈ SO(3) and M ∈ SE(3), the cor-

responding Lie algebra are denoted as [ω]× ∈ so(3) and

m ∈ se(3) respectively. Here [ω]× ∈ so(3) is the skew-

symmetric form of the axis-angle rotation representation ω.

In this representation, R represents a rotation by angle ||ω||
about the axis ω

||ω|| . Further, we can move from a Lie group

to its Lie algebra and vice-versa using the logarithm and the

exponential mappings respectively. Thus, R = exp([ω]×)
and [ω]× = log(R). Similarly, we have M = exp(m) and

m = log(M) with the forms

m = log(M) =

[

[ω]× | u

0 | 0

]

;

M = exp(m) =

∞
∑

k=0

m
k

k!
=

[

R | t

0 | 1

]

.

(2)

Further, we note that the exp(·) and log(·) mappings for

SO(3) and SE(3) have closed form expressions that can be

efficiently implemented, as shown in Eqn. 7 in [18].

4. Robust Motion Estimation

Given S ≥ 3 pairs of point correspondences

{(ps,qs)|1 ≤ s ≤ S} between two scans, we can solve for

the motion M required for aligning the scan pair. In the case

of global approaches, where the motion can potentially be

large, such point correspondences are obtained by matching

geometric features such as FPFH [38] whereas in iterative

schemes like ICP the correspondence of points is obtained

by finding the nearest neighbor match on the second scan
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for a point on the first one. Due to a variety of sources of

error, the correspondence pairs are not in perfect alignment

or could be grossly incorrect, i.e., es = ‖ps −Mqs‖ 6= 0,

where es denotes the norm of the discrepancy in registra-

tion for the s-th correspondence pair (ps,qs). When we as-

sume that the individual errors have a zero-mean, iid Gaus-

sian distribution, the optimal estimate for M is obtained by

a least squares minimization and has a closed form [47].

However, since correspondences could be highly incorrect

in practice, instead of a least squares formulation, we pose

motion estimation as the optimization of a robust cost func-

tion

min
M∈SE(3)

C(M) =
S
∑

s=1

ρ
(

‖ps −Mqs‖
)

=
S
∑

s=1

ρ(es(M))

(3)

where ρ(·) is a robust loss function. We also note that the

individual error terms es(M) are a function of the motion

M. The use of robust estimators is well studied in statistics

as an M-estimation problem and has been successfully used

in a variety of vision problems [29]. However, in addition

to robustness, in Eqn. 3 we require our solution to satisfy

the geometric constraints for M ∈ SE(3). These require-

ments of robust estimation under geometric constraints are

satisfied by our solution.

4.1. Proposed Solution for Pairwise Registration

We propose to minimize the cost function C(M) in

Eqn. 3 in an iterative fashion. Let the estimate for M at

the (k − 1)-th iteration be denoted M(k − 1). In the k-th

iteration, let us update the motion matrix by ∆M(k), i.e.,

M(k) = ∆M(k)M(k − 1). Noting that here the matrix

multiplication is not commutative, our formulation uses a

left-invariant metric on SE(3) [34, 50]. Using a first-order

approximation for the motion update matrix ∆M(k), we

have

∆M(k) ≈ I4 +∆m(k) (4)

=⇒ C(M(k))

(

=

S
∑

s=1

ρ
(

‖ps −M(k)qs‖
)

)

=

S
∑

s=1

ρ
(

‖ps − (I4 +∆m(k))M(k − 1)qs‖
)

. (5)

The Lie algebra matrix ∆m(k) encodes the 6 parameters

that we need to estimate for the update ∆M(k). We can ob-

tain the vector representation for these 6 parameters using

the ‘vee’ operator, i.e., v = ∆m
∨ =

[

ω u
]⊤

. Since we

use a first-order approximation in Eqn. 4, the cost C(M(k))
is linear in ∆m(k). We equivalently note that it is also lin-

ear in v(k). Thus, we rewrite the individual error terms

es(M(k)) as

es(M(k)) = ‖ps − (I4 +∆m(k))M(k − 1)qs‖

= ‖As
v− bs‖

(6)

where As and bs are the appropriate matrices. The deriva-

tion of the explicit forms of As and bs are given in Sec-

tion A in the Appendix. To obtain the update in the

k-th iteration, we now optimize the cost C(M(k)) =
∑S

s=1 ρ(e
s(v)) w.r.t. v, and get,

ρ′(es)

es
(As)⊤As

v =
ρ′(es)

es
(As)⊤bs (7)

for each summand indexed by s, where ρ′(·) = ∂ρ
∂e

is the

influence function of the robust loss ρ(·). We may further

denotews = ρ′(es)
es

, which is the relative weight accorded to

the s-th equation in Eqn. 7. Collecting all such relationships

obtained for each pair of correspondences (ps,qs) into a

single system of equations we have

A⊤WAv = A⊤Wb (8)

where A =





A1

. . .

AS



, b =





b1

. . .

bS



, and

W = diag
(

w1I3, . . . , w
SI3
)

.

Eqn. 8 is a weighted linear system of equations with the

solution v = (A⊤WA)
−1

A⊤Wb. However, it should

be noted that each individual weight ws is a function

of the error es which, in turn, is dependent on v since

es = ‖As
v− bs‖. Thus, in Eqn. 8, the equivalent

relationship is A⊤W(v)Av = A⊤W(v)b. The solution

for this system of equations is the well-known iteratively

reweighted least squares (IRLS) method [23, 43]. In

the IRLS method, in each iteration the weights ws are

estimated based on the current estimate of v. Given these

weights, v is re-estimated. This process is repeated till

convergence.

Given a solution for v, we can estimate ∆M(k) =
exp(v̂(k)) where the ‘hat’ operator v̂ converts the esti-

mated Lie algebra parameters v into its equivalent matrix

representation ∆m(k). We emphasize here that although

in Eqn. 4, we assumed a first-order approximation, we

map the estimated v(k) into an intrinsic estimate of the

motion update, i.e., ∆M(k) = exp(v̂(k)) ∈ SE(3). In

other words, a first-order approximation in an intermediate

step does not mean that the actual cost function is approxi-

mated. The mapping ∆m(k) = exp(v̂(k)) ensures that the

estimated motion M(k) is always a valid member of the

SE(3) group. We now state our solution for robust motion

estimation in Algorithm 1.
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Algorithm 1 IRLS estimation of pairwise 3D registration

Input: {(p1,q1) · · · (pS ,qS)} (S correspondences across a

pairs of scans)

Output: M ∈ SE(3) (Robust motion estimate)

Initialization: M = I4

while ||v|| > ǫ do

1. Compute {(As,bs)|∀s ∈ [1 · · · S]} using Eqn. 6

2. Compute weights ws = ρ′(es)
es

as defined by

Eqn. 7

3. Estimate v as IRLS solution for Eqn. 8

4. Update M← exp(v̂)M
end while

Algorithm 1 is an iterative algorithm with a nested iter-

ation. The outer loop is defined by the while statement

and we denote its number of iterations as Kouter. The inner

loop consists of the IRLS step of line 3 in Algorithm 1 since

IRLS is itself an iterative method. We denote the number of

iterations of the IRLS step as KIRLS .

4.2. Extension to Joint Multiview Registration

In Algorithm 1 we presented the registration solution for

two scans. This approach can be extended to the simulta-

neous or joint multiview registration of a set of scans. To-

wards this end, we define a viewgraph G = {V, E} where

vi ∈ V represents the Euclidean motion of the i-th scan

(equivalently camera) and an edge (i, j) ∈ E signifies that

the relative Euclidean motion between the i-th and the j-th

scans can be determined from available matches. Further,

we denote the number of scans as N = |V|. We may now

define the cost function to be optimized for joint multiview

registration as follows

C(M) =
∑

(i,j)∈E

Sij
∑

s=1

ρ
(
∥

∥Mip
s
i −Mjp

s
j

∥

∥

)

=
∑

(i,j)∈E

Sij
∑

s=1

ρ(esij(M))

(9)

where M = {M1 · · ·MN} denotes the set of absolute mo-

tions of each of theN scans w.r.t. to a global frame of refer-

ence and Sij is the number of correspondences between the

i-th and the j-th scans. We again use an iterative approach

to minimize the cost function C(M) in Eqn. 9 w.r.t. M.

In the k-th iteration, we update each motion matrix Mi by

∆Mi(k), i.e., Mi(k) = ∆Mi(k)Mi(k−1) ∀i ∈ [1 · · ·N ].
Using a first-order approximation for each update matrix

∆Mi(k), we have

esij(M(k)) = ‖(I4 +∆mi(k))Mi(k − 1)ps
i

− (I4 +∆mj(k))Mj(k − 1)ps
j‖

(10)

=
∥

∥As
ij✈ − bs

ij

∥

∥ (11)

where ✈ =
[

v1 · · · vN

]⊤
collates the corresponding

vector representations of each of the Lie algebra matrices

∆mi(k), and As
ij and bs

ij are constructed analogous to

Eqn. 6. The subsequent update in the k-th iteration is then

analogously obtained from the relation

A
⊤
W(✈)A✈ = A

⊤
W(✈)❜ (12)

where A, ❜ and W(✈) correspondingly collate all As
ij , bs

ij

and ws
ij =

ρ′(esij)

es
ij

. As earlier, the solution for the system

of equations in Eqn. 12 is the IRLS method, where we esti-

mate the weights ws
ij and the collated vector representation

✈ in alternating iterations till convergence.

Given a solution for ✈, we can estimate, for each i ∈
[1 · · ·N ], ∆Mi(k) = exp(v̂i(k)) and thereby update each

member of M(k) as Mi(k) ← ∆Mi(k)Mi(k − 1). It

should also be noted that in multiview registration, the

choice of the global frame of reference for the set M is ar-

bitrary. For our implementation, we fix it to the first scan,

i.e., we set M1 = I4 and do not update M1 throughout

course of optimization. The detailed algorithm is presented

as Algorithm B.1 in the Appendix.

5. Results

We test our algorithm on 3 different choices of the loss

function ρ(·), namely L 1

2

: ρ(x) =
√

|x|, L1: ρ(x) = |x|,

and scaled Geman-McClure: ρ(x) = µx2

µ+x2 , where µ is the

scale factor. The FGR approach of [52] uses only the scaled

Geman-McClure loss function and anneals µ in fixed steps

per iteration. To enable comparison, we anneal µ in an iden-

tical manner in our tests with the scaled Geman-McClure

loss function. We present results on both pairwise and mul-

tiview registration tests. For the pairwise and multiview

tests, we terminate using ǫ = 10−5 and ǫ = 10−7 respec-

tively. All our reported running times are measured on a

single thread on an Intel Xeon(R) E5-2650 v3 processor

clocked at 2.30 GHz.

5.1. Pairwise Registration

We present the performance of our proposed pairwise

registration on the synthetic range data provided by [52] and

on the 4 indoor sequences in the Augmented ICL-NUIM

dataset provided by Choi et al. [11]. In all our pairwise

tests, we use KIRLS = 2. We compare the registration er-

rors given by the 3 versions of our method with the follow-

ing prior methods: Super4PCS [30], GoICP [48], Choi et

al. [11], FGR [52] and DARE [26] (using the hyperparam-

eters suggested by the authors). Registration errors com-

prise of statistical measures on the distances between the

ground-truth point correspondences between pairs of scans

post alignment. We also report the trajectory errors, which

include statistical measures on both the rotation errors and
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Table 1: Median rotation angle error (Md.RAE) (in de-

grees), median translation norm error (Md.TNE), mean

RMSE (Mn.RMSE) and maximal RMSE (Mx.RMSE) (all

in units of the surface diameters) achieved by each method

for each noise level σ on the synthetic range datasets.

Method
σ = 0.0025

Md.RAE Md.TNE Mn.RMSE Mx.RMSE

Super4PCS [30] 0.864 0.008 0.014 0.029

GoICP [48] 1.207 0.011 0.032 0.133

Choi et al. [11] 0.778 0.006 0.008 0.022

FGR [52] 0.749 0.005 0.004 0.011

DARE [26] 1.851 0.013 0.035 0.176

Our L 1

2

0.545 0.004 0.004 0.011

Our L1 0.566 0.004 0.004 0.011

Our GM 0.725 0.005 0.004 0.011

Method
σ = 0.005

Md.RAE Md.TNE Mn.RMSE Mx.RMSE

Super4PCS [30] 1.468 0.012 0.017 0.095

GoICP [48] 1.736 0.019 0.037 0.127

Choi et al. [11] 1.533 0.015 0.035 0.274

FGR [52] 1.146 0.008 0.006 0.017

DARE [26] 2.005 0.025 0.054 0.312

Our L 1

2

0.959 0.008 0.006 0.017

Our L1 1.516 0.011 0.007 0.017

Our GM 1.146 0.008 0.006 0.017

the translation norm errors between the pairs of cameras

(corresponding to the given scans) w.r.t. the ground-truth

camera pair, for all the methods.

Synthetic range dataset: We perform the set of controlled

experiments described in [52] on each of their 5 synthetic

datasets, at the given Gaussian noise levels σ = 0.0025 and

σ = 0.005 (for each model, σ is in units of the surface di-

ameter). Adding Gaussian noise of this scale to a pair of

scans in the synthetic range dataset is sufficient to introduce

outliers in the point correspondences that are computed be-

tween that pair. Since depth cameras produce noisy scans in

practice, this is a realistic way of increasing the outlier per-

centage in the point correspondences for synthetic scans.

Table 1 lists the mean and maximal RMSE on the aligned

ground truth correspondences for each method and for each

noise level. For both noise levels, our method with the L 1

2

loss function attains the lowest registration error together

with FGR. Table 2 reports the mean running time of the

motion step of each method for each of the 5 models in

the dataset. The L 1

2

of our method is more than 3× faster

than all prior methods on the average, and the L1 version is

more than 5× faster. We present more pairwise results on

synthetic datasets of [31] in Section C in the Appendix.

Augmented ICL-NUIM dataset: Each of the 4 sequences

in the Augmented ICL-NUIM dataset provided by Choi et

al. [11] consist of 2350 to 2870 scans of an indoor scene.

Moreover, the given scans are provided in a smooth tempo-

ral sequence, i.e., pairs of scans with proximity in times-

tamp also have sufficient view overlap with each other.

This, in turn, leads to reliable FPFH feature matches be-

Table 2: Running time (in milliseconds) of the motion step

of each method for each model in the synthetic range dataset

(K = ×1, 000).

Dataset

Mean

#

points

Super

4PCS

[30]

GoICP

[48]

Choi

et al.

[11]

FGR

[52]
DARE

[26]

Our

L 1

2

Our

L1

Our

GM

Bimba 9,416 16,230 1,550 650 11.9 920 3.9 2.5 5.5

Child’n 11,148 18,410 1,620 890 16.8 960 4.8 3.3 8.0

Dragon 11,232 20,520 1,840 970 17.6 1,090 5.0 3.4 8.2

Angel 12,072 29,640 3,000 1,090 19.1 1,770 5.3 3.8 8.9

Bunny 13,357 38,470 5,530 1,170 21.6 3,310 7.4 5.1 9.9

Mean 11,445 24,650 2,710 960 17.4 1,610 5.3 3.6 8.1

tween such pairs. We therefore tested the performance of

all the methods for all pairs of scans (i, j) in each sequence

such that |i − j| ≤ 10. Table 3 lists the results on each

dataset for the various methods under consideration. For

each dataset and corresponding method, we list the median

rotation angle error and the median translation norm error

of the recovered pairwise camera motions, as well as the

mean computation time on the pairs. The L 1

2

version of our

method performs the best in terms of the trajectory error

statistics. It can also be seen to be significantly faster than

the FGR method of [52].

5.2. Joint Multiview Registration

We present the performance of our joint multiview regis-

tration algorithm on the 4 sequences in the Augmented ICL-

NUIM dataset, specifically, on the 47 to 57 scene fragments

that were provided for each sequence by Choi et al. [11].

We use KIRLS = 3 for multiview registration, as the joint

optimization variable and its corresponding search space are

both large (✈ ∈ R
6(N−1) in Eqn. 12 for N cameras). First,

we compute pairwise motion estimates between fragments

followed by a robust motion averaging step on SE(3) that

is similar to the one used for rotation averaging in [8]. The

output of this two-stage approach is used to initialize the

joint multiview optimization in Eqn. 9. The main drawback

of only using the two-step approach for global registration

is that it is not a true global method. It only considers lo-

cal point correspondences, and then averages out the errors

made by the pairwise motion estimates. Conversely, the

joint multiview approach deals with point correspondences

in the global setting and solves for the global cost function.

The relative improvement in reconstruction error gained by

using the joint multiview approach on top of the two-stage

approach is shown in Table C.2 in the Appendix.

We compare our results with those of Choi et al. [11],

FGR [52] and Super4PCS [30] as the best-performing

RANSAC variant. While we are aware of other approaches

to multiview registration including closed form approaches,

we omit them from our comparisons because they failed to

provide a solution in the large-scale dataset for multiview

registration we have used. For example, Bartoli et al. [4]

and Bergström et al. [5], among others, compute transfor-

mations using a closed form SVD solution that do not scale

to large-scale data. Approaches such as that of Fitzgibbon
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Table 3: Median rotation angle error (RAE) (in degrees), median translation norm error (TNE) (in meters) and mean running

time (in milliseconds) of the motion step of each method for each sequence in the Augmented ICL-NUIM dataset.

Method
livingroom 1 livingroom 2 office 1 office 2

Md.RAE Md.TNE Mn.Time Md.RAE Md.TNE Md.Time Md.RAE Md.TNE Mn.Time Md.RAE Md.TNE Mn.Time

Super4PCS [30] 1.104 0.039 368,030 0.616 0.033 344,720 0.932 0.038 367,980 0.844 0.027 345,460

GoICP [48] 1.336 0.071 35,110 0.992 0.058 33,420 1.365 0.066 34,450 1.104 0.047 32,530

Choi et al. [11] 0.941 0.041 14,740 0.551 0.031 13,850 0.811 0.036 14,720 0.765 0.029 13,990

FGR [52] 0.793 0.029 272 0.482 0.021 181 0.707 0.020 272 0.669 0.016 177

DARE [26] 1.305 0.044 21,500 1.172 0.059 20,320 1.716 0.037 21,110 1.286 0.068 20,920

Our L 1

2

0.595 0.023 61 0.380 0.017 50 0.474 0.014 59 0.437 0.011 45

Our L1 0.964 0.025 33 0.419 0.019 27 0.569 0.017 33 0.524 0.013 25

Our GM 0.793 0.029 118 0.482 0.021 87 0.707 0.020 118 0.669 0.016 89

Table 4: Mean registration error (MRE) (in meters) and run-

ning time (in seconds) for each method for full reconstruc-

tion from the fragments of each sequence in the Augmented

ICL-NUIM dataset.

Method
livingroom 1 livingroom 2

MRE Time MRE Time

Super4PCS [30] 0.13 221,160 0.14 82,640

Choi et al. [11] 0.04 8,940 0.07 3,360

FGR [52] 0.05 131 0.06 81

Our L 1

2

0.04 71 0.05 49

Our L1 0.07 62 0.09 40

Our GM 0.05 88 0.06 70

Method
office 1 office 2

MRE Time MRE Time

Super4PCS [30] 0.09 112,430 0.11 100,720

Choi et al. [11] 0.03 4,500 0.04 4,080

FGR [52] 0.03 69 0.05 48

Our L 1

2

0.03 42 0.04 32

Our L1 0.04 36 0.06 28

Our GM 0.03 55 0.05 41

et al. [16] use an LM-based approach, which are slow and

do not exploit the geometry of the problem.

Table 4 lists the mean registration error from the ground

truth surface achieved by each compared method on each

sequence as well as the time taken to complete execution.

For estimating the mean registration error, we use Cloud-

Compare from http://www.cloudcompare.org.

Once again, the L 1

2

version of our method performs the

best overall in terms of registration error and is significantly

faster than the FGR method of [52]. Also our L1 method is

the fastest amongst all methods with a slight drop in accu-

racy compared to our L 1

2

method. Finally, Figure 1 shows

a complete reconstruction of the sequence livingroom

2 from the Augmented ICL-NUIM dataset produced by the

L 1

2

version of our multiview method. A full-blown version

of this figure, as well as reconstructions of other sequences,

are shown in Figures C.1, C.2, C.3 and C.4 in the Appendix.

6. Discussion

As we demonstrated in Section 5, our motion estima-

tion method in Algorithm 1 is both fast and accurate. More

Figure 1: Reconstruction of the livingroom 2 sequence

from the Augmented ICL-NUIM dataset, as given by our

method with the L 1

2

loss function

specifically, our method outperforms the state-of-the-art

FGR method of [52] in terms of both speed and accuracy.

Given their strong similarities, in Section 6.1 we examine

the relationship of the method of [52] and our approach in

Algorithm 1. Subsequently we discuss the limitations of

using FPFH for feature matching and our approach to over-

come those in Section 6.2.

6.1. Comparison with FGR [52]

In [52], the cost function to be minimized is the same as

that of Eqn. 3. However, for minimizing this cost function,

they use a line process optimization. Originally developed

in [6] for modelling discontinuities, a line process optimiza-

tion can be shown to be equivalent to optimizing a robust

estimator. Recalling that es = ‖ps −Mqs‖, we define a

cost function

E(M,L) =

S
∑

s=1

(es)2ls + ψ(ls) (13)

where L = [l1 · · · lS ] is the collection of line processes ls

for each correspondence pair (ps,qs) and ψ(·) is a penalty

term for each line process. Here ψ(l) is a monotonically

decreasing function designed such that when l = 0, ψ(l) is
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a fixed non-negative constant and when l = 1, ψ(l) = 0.

Thus, varying the line process l in the interval [0, 1] allows

us to move between a least-squares and a robust regime.

The authors of [6] have shown that for every choice of loss

function ρ(·), there is an equivalent ψ(·) such that min-

imization in Eqn. 13 yields the same solution as that of

Eqn. 3. The FGR method of [52] utilizes the robustness of

the line process to estimate the desired M ∈ SE(3). Using a

first-order approximation of the motion update, [52] arrives

at a Gauss-Newton solution (Eqn. 8 of [52]). It can be easily

shown that this solution is identical to solving the system of

equations in Eqn. 8 in our notation. In other words, while

solving for the update step v(k), the FGR method of [52]

implicitly carries out a single iteration of our IRLS step in

line 3 of Algorithm 1. By contrast, we carry outKIRLS > 1
iterations of the IRLS step to achieve better convergence.

Although the difference between our method and that

of [52] is only in the number of iterations of the inner IRLS

step, its implication is significant. If we were solving a

single IRLS problem in a vector space setting, this differ-

ence would have been immaterial. However, we note that in

both of our approaches, the linear solution for the updates

v(k) are interleaved with the non-linear motion updates

M ← exp(v̂)M, resulting in significantly different trajec-

tories of the solution M(k) on the SE(3) group. Specifi-

cally, in our case, by iterating the IRLS step to convergence

we obtain the best possible estimate of v(k) in each inter-

mediate step which, in turn, results in the best improvement

of the estimate M(k) (equivalently the most reduction in

the cost function C(·) in the k-th step).

Another noteworthy difference between the two methods

is the choice of the parametrization of the motion represen-

tation. We use the geometrically correct form of ∆m(k) in

Eqn. 4, i.e., v =
[

ω u
]⊤

for our update step. However,

for their update step, the authors of [52] use an extrinsic

form of motion parametrization, i.e.,
[

ω t
]⊤

. While our

parametrization is geometrically consistent with Lie group

theory, we can recognize from Eqn. 7 in [18] that the

choice in [52] is approximately close to our representation

for small motion, i.e., u → t if and only if θ → 0 in that

equation. Conversely, for sufficiently large θ, the approxi-

mate representation
[

ω t
]⊤

is notably different from the

exact representation
[

ω u
]⊤

of the se(3) form. There-

fore the improvement per iteration in the cost function for

the method of [52] is lower compared to our single iteration

IRLS form. The result is that the method of [52] has slower

convergence.

We highlight both these differences for a pair of scans

from the Augmented ICL-NUIM dataset in Figure 2. For

the purpose of illustration, we consider the L 1

2

loss function

for the line process optimization routine proposed in [52] as

well as for our optimization routine. We do not consider

Figure 2: Comparison of the line process solution with our

method for different KIRLS . For ease of visualization, we

show performance only for the iterations between 2 and 10.

Table 5: Number of iterationsKouter taken by each method

to reach each convergence criterion ǫ

ǫ
LP Ours, KIRLS =

[52] 1 2 3

10
−1 2 2 2 2

10
−2 5 5 4 4

10
−3 13 13 8 6

10
−4 21 18 11 8

10
−5 27 24 13 10

10
−6 33 32 19 14

10
−7 63 46 25 18

the Geman-McClure loss function since it has a scale fac-

tor which, in practice, is initialized at a large value and has

to be progressively annealed during optimization. In other

words, we use L 1

2

because it does not alter the fundamental

properties of the two optimization routines, and at the same

time lends itself to a clean illustration of our argument. We

also note that in Figure 2, we represent the cost C(M) as

a function of the number of iterations Kouter, and that it

is depicted on a log10 scale. For ease of visualization, we

only show the plot for the iteration range [2, 10]. Alongside

the figure, Table 5 reports the number of iterations Kouter

taken by each method to reach different convergence crite-

ria specified by ǫ.

We observe from Table 5 that, firstly, even though

the line process is conceptually equivalent to our procedure

with a single IRLS step, the proposed optimization routine

of [52] takes more iterations than our actual procedure with

a single IRLS step to converge to the same convergence

criterion. This is because of the extrinsic (approximate)

parametrization
[

ω t
]⊤

used in [52] as opposed to the

correct Lie algebraic representation
[

ω u
]⊤

. Secondly, it

is clear from both Figure 2 and Table 5 that the cost function

converges in progressively fewer iterations as we increase

the number of IRLS steps. However, it should be noted that

increasing the number of IRLS steps makes each iteration

of our optimization routine slower as well. Therefore, a
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balance has to be struck between the speed of each iteration

and the number of iterations required for convergence. In

practice, we have found that using 2 IRLS steps per itera-

tion for pairwise registration and 3 IRLS steps per iteration

for joint multiview registration yield our desired results. In

any event, the key observation is that the single iteration of

the FGR is insufficient and yields poorer convergence com-

pared to our formulation.

Choice of Loss Function: The choice of the loss func-

tion ρ(.) to be used is a critical factor in our estimation

procedure. All loss functions achieve robustness to out-

liers by a trade-off with statistical efficiency (i.e. accu-

racy). In practice, the accuracy achievable by a chosen loss

function depends on the empirical nature of the error dis-

tribution. As discussed earlier, in [52] the authors use the

Geman-McClure loss function ρ(x) = µx2

µ+x2 . Here the per-

formance critically depends on choosing a good value for

µ that reflects the outlier distribution inherent to the data

used. In [52], the authors start with a large µ and progres-

sively reduce it in fixed amounts with every iteration. How-

ever, if the scale of the scans in the dataset varies signifi-

cantly, such a fixed annealing procedure may not produce

the best possible results. To overcome this limitation of the

Geman-McClure method, we have also tested for L1 and

L 1

2

as shown in Section 5, and demonstrated that the latter

provides the best performance. Apart from improved per-

formance, an important desirable property of using L 1

2

is

that it is entirely parameter free, hence we do not need to

follow any additional annealing procedure. We could con-

ceivably further improve performance by determining the

optimal exponent p in Lp(.) = ‖.‖
p
2 for 0 < p < 1. How-

ever, for a broad range of possible error distributions, we

find that L 1

2

is adequate.

6.2. Limitation of Feature­Based Registration

In Section 5, we have demonstrated the potency of the

FPFH feature-matching based registration paradigm. How-

ever, we note that these experiments, derived from those

presented in [52], have special data characteristics. Specifi-

cally, in these examples, either the datasets are small or the

motions between adjacent scans are small in magnitude and

exhibit temporal smoothness. However, we note that reg-

istration using correspondences cannot work in all scenar-

ios. For example, when scans in the input dataset have suf-

ficiently large depth differences or large motions between

them in both rotation and translation, FPFH feature-based

matches become few and unreliable. Consequently, the re-

constructions given by both FGR [52] and our proposed al-

gorithms become incorrect. In such a scenario, we need to

take recourse to using a robust ICP-based multiview reg-

istration method (albeit with a greater computational cost)

which converges to the correct solution.

In this alternative approach, following [19], we again

Figure 3: 3D reconstruction of a statue of Mahatma Gandhi.

The close-up on the top left shows that joint multiview reg-

istration using FPFH features fails whereas the close-up

on the bottom left shows successful registration using our

robust pairwise motion estimation within a multiview ICP

routine. The full reconstruction is shown on the right.

consider the camera viewgraph G = {V, E}. For each

edge available in the set E , we estimate the pairwise mo-

tion using a robust version of ICP. Specifically, for the mo-

tion estimation step in our robust ICP, we use the motion

obtained using the L 1

2

loss optimization for pairwise reg-

istration method as described in Algorithm 1. We estimate

the absolute motion of all cameras by motion averaging of

all pairwise motions on edges E . Here, our solution for ro-

bust motion averaging for rigid Euclidean motions is simi-

lar to the robust rotation averaging method of [8]. We find

that typically, we achieve the desired convergence in 3 full

iterations of this procedure. To illustrate our argument, we

show the qualities of reconstructions achieved for a life-size

statue of Mahatma Gandhi located at Sabarmati Ashram in

Ahmedabad, India, where the input set of scans is small and

mostly have low overlap. Moreover, overlapping scans have

significant depth differences between them, leading to sig-

nificantly different FPFH features and consequently, a high

percentage of incorrect matches. A visual representation of

this scenario is shown in Figure D.2 in the Appendix for

better understanding. As we can see in Figure 3, the joint

multiview registration using FPFH features-based matches

fails to correctly align some of the scans, whereas the robust

multiview-based ICP routine successfully produces a cor-

rect reconstruction. A larger version of Figure 3 is shown in

Figure D.1 in the Appendix for better viewing.

7. Conclusion

We have presented a robust and efficient 3D point

registration method that uses the geometry of the SE(3)
group and outperforms the state-of-the-art. We have also

shown that when feature correspondences are unreliable,

our method can make a multiview ICP method robust and

effective.
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