
Why Does a Visual Question Have Different Answers?

Nilavra Bhattacharya∗, Qing Li+, Danna Gurari∗

∗ University of Texas at Austin, + University of California, Los Angeles

Abstract

Visual question answering is the task of returning the an-

swer to a question about an image. A challenge is that dif-

ferent people often provide different answers to the same

visual question. To our knowledge, this is the first work that

aims to understand why. We propose a taxonomy of nine

plausible reasons, and create two labelled datasets consist-

ing of ∼45,000 visual questions indicating which reasons

led to answer differences. We then propose a novel problem

of predicting directly from a visual question which reasons

will cause answer differences as well as a novel algorithm

for this purpose. Experiments demonstrate the advantage

of our approach over several related baselines on two di-

verse datasets. We publicly share the datasets and code at

https://vizwiz.org.

1. Introduction

Visual question answering (VQA), the task of returning

the answer to a question about an image, is of widespread

interest across both industry and academia. For example,

many people who are blind find existing VQA solutions are

indispensable assistants for providing answers to their daily

visual questions; e.g., they use vision-based assistants such

as VizWiz [7] and BeSpecular [1] to snap a photo with their

mobile phones and then receive answers from remote work-

ers. In the artificial intelligence research community, the

VQA problem has emerged as an iconic challenge for emu-

lating a human’s vision and language capabilities [5, 24].

Despite the tremendous social impact and progress with

VQA solutions, a limitation is that most solutions lack a

way to handle when a visual question elicits different an-

swers from different people. The prevailing assumption

is that the goal is to return a single answer. Yet prior

work [17] has shown that it is common for visual questions

to elicit different answers—it occurs for over half of nearly

500,000 visual questions in three VQA datasets.

Our goal is to identify why different answers arise. Ac-

cordingly, our work is premised on the assumption that

there can exist multiple answers for a visual question. Our

work extends prior work [5, 17, 30, 38] which has suggested

reasons why answers can differ—including that visual ques-

tions are difficult, subjective, or ambiguous as well as syn-

onymous answers. First, we propose a taxonomy of nine

plausible reasons why answers can differ, which are exem-

plified in Figure 1. We next ask crowd workers to identify

which of these reasons led to answer differences for each

of ∼45,000 visual questions asked by people who are blind

and sighted. Finally, we propose a novel problem of pre-

dicting which reasons will lead to answer differences di-

rectly from a visual question and propose a novel algorithm

for this task. Our findings offer compelling evidence that an

algorithmic framework must learn to simultaneously model

and synthesize different individuals’ (potentially conflict-

ing) perceptions of images and language.

We offer our work as a valuable foundation for improv-

ing VQA services, by empowering system designers and

users to know how to prevent, interpret, or resolve answer

differences. Specifically, a solution that anticipates why a

visual question will lead to different answers (summarized

in Figure 1) could (1) help users identify how to modify

their visual question in order to arrive at a single, unambigu-

ous answer; e.g., retake an image when it is low quality or

does not show the answer versus modify the question when

it is ambiguous or invalid; (2) increase users’ awareness for

what reasons, if any, trigger answer differences when they

are given a single answer; or (3) reveal how to automati-

cally aggregate different answers [2, 18, 23, 25, 42] when

multiple answers are collected.

More generally, to our knowledge, this is the first work

in the computer vision community to characterize, quantify,

and model reasons why annotations differ. We believe it

will motivate and facilitate future work on related problems

that similarly face annotator differences, including image

captioning, visual storytelling, and visual dialog. We pub-

licly share the datasets and code to encourage community

progress in developing algorithmic frameworks that can ac-

count for the diversity of perspectives in a crowd.

2. Related Work

Visual Question Answering Datasets. Numerous dataset

challenges have been posed to encourage the develop-

ment of algorithms that automatically answer visual ques-
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What's this?

Answers

1. unsuitable

2. unsuitable

3. unanswerable

4. unsuitable

5. unsuitable

6. unsuitable

7. unsuitable

8. nothing

9. jar

10.black
LOW QUALITY IMAGE

How many people are 

eating this hotdog?

Answers

1. 2

2. 0

3. 2

4. 0

5. 2

6. 3

7. 0

8. 2

9. 2

10.2ANSWER NOT PRESENT 

/ GUESSWORK

I just wanted to say thank 

you for your assistance.

Answers

1. unanswerable

2. unanswerable

3. your welcome

4. unanswerable

5. thank you

6. unanswerable

7. you welcome

8. unanswerable

9. no problem

10. thanks
INVALID

What type of plant is this that 

is growing in my garden?

What is on the bed?

Could the floor use a mopping?

When does this expire?

What book is this?

What kind of spice is this?

Answers

1. pillows

2. pillows

3. pillows

4. pillows

5. blanket

6. pillows

7. pillows

8. blanket

9. sheets

10.pillows

Answers

1. yes

2. yes

3. yes

4. yes

5. no

6. no

7. no

8. yes

9. no

10.yes

Answers

1. chili powder

2. ewfwfe

3. chili powder

4. chili powder

5. chili powder

6. chili powder

7. chili powder

8. chili powder

9. chili powder

10.chili powder

Answers

1. maxiaids

2. maxiaids

3. maxi aids

4. maxi aids catalog

5. macias catalog

6. maxiaids products for

independent living

7. maxiaids

8. maxiaids

9. maxi aids catalog

10.maxi aids 2012 catalog

Answers

1. august 14 2013

2. 08 14 2013

3. 14 august 2013

4. 14 aug 2013

5. 14 aug 2013

6. august 14th 2013

7. 14aug2013

8. 14 aug 2013

9. 14 aug 2013

10.aug 14 2013

Answers

1. unanswerable

2. unanswerable

3. green

4. unanswerable

5. milk weed

6. unanswerable

7. princess tree

8. possibly strawberries

9. bell vine

10. tomato
DIFFICULT

AMBIGUOUS

SUBJECTIVE

SYNONYMS

GRANULAR

SPAM

Figure 1: Examples of visual questions (VQs) asked by people who are blind and sighted, and answers from 10 different

people. As shown, the answers can differ for a variety of reasons, including because of the VQ (first and second columns) or

the answers (third column). We propose a novel problem of predicting why answers will differ for a VQ and a solution.

tions [5, 16, 19, 24]. The shared goal of these challenges is

to return a single answer to each visual question. Yet, visual

questions often lead to different answers from different peo-

ple [5, 17, 30, 38]. Prior work [5, 30] tried to mitigate this

problem on the performance metric side, by using consen-

sus metrics. We instead introduce the first VQA dataset that

fosters research in learning why different answers will arise.

Specifically, for two popular VQA datasets, VizWiz [19]

and VQA 2.0 [5], we label each visual question with meta-

data indicating which among nine options are the reasons

for the observed answer differences. Experiments demon-

strate these datasets are valuable for training algorithms to

predict why answers will differ for any visual question.

Challenges/Obstacles for Answering Visual Questions.

Our work relates to the body of literature aimed at under-

standing what can make a visual question challenging, or

even impossible, to answer. One work examined the issue

of difficulty (aka - required skill level), by identifying the

minimum age needed to successfully answer a visual ques-

tion [5]. Another set of works explored the issue of rele-

vance, and in particular identifying when questions are un-

related to the contents of images [29]. Another work exam-

ined the issue of answerability, with an emphasis on when

questions cannot be answered due to extreme image qual-

ity issues including blur, saturation, and fingers obstruct-

ing the camera view [19]. Our work complements prior

work in that we found that each of these issues are com-

monly associated with visual questions that evoke different

answers; e.g., see examples in Figure 1 for “Difficult”, “An-

swer Not Present”, and “Low Quality Image” respectively.

Our experiments demonstrate a strong advantage of design-

ing algorithms to directly predict the reason why answers

will differ over relying on related methods that predict rele-

vance [29] or answerability [19] alone.

Understanding Why Crowd Responses Differ. More

broadly, related work includes literature about why a

crowd’s annotations can differ and how to resolve those dif-

ferences (largely in domains outside VQA). Commonly, it

is assumed there is a single true answer and that any ob-

served differences stem from insufficient annotator perfor-

mance, for example because the task is too difficult for

some annotators [3, 6, 12, 20, 21, 35, 36, 37, 43] or be-

cause malicious workers submit spam [13, 14, 41]. Others

have embraced the possibility that the task may be ambigu-

ous [2, 18, 23, 25] or subjective [42] and so multiple anno-

tations can be valid. While each work embeds assumptions
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Reason Label Description

Issues with the Question-Image (QI) pair

Low Quality 

Image
LQI image is too small, out of focus, having poor quality, or nothing is visible

Answer 

Not Present
IVE

good image, but answer to the question is not present in the image (Insufficient Visual

Evidence), so some answers reflect guesses

Invalid INV a proper or semantically correct question is absent

Difficult DFF
questions that require domain expertise (e.g., identifying if a skin-rash is due to bug bite), 

special skills, or too much effort (e.g., counting the number of sheep in a field full of sheep)

Ambiguous AMB
good image and valid question, but taken together they have more than one valid interpretation,

leading to multiple answers

Subjective SBJ opinion-driven questions, such as assessing beauty, fashion sense, emotions

Issues with the answers

Synonyms SYN
answers present the same idea, but using different words having similar meaning

(e.g., ‘round’ versus ‘circular’)

Granular GRN
answers present the same idea, but in different levels of detail or specialization

(e.g., ‘plane’ versus ‘Boeing’)
Spam SPM a person inadequately answers a simple, straight-forward visual question

Table 1: Proposed taxonomy of nine reasons that evoke differing answers for visual questions.

regarding why answers differ, a challenge remains of know-

ing which assumptions are valid when. Thus, we conduct a

systematic study to enumerate plausible reasons and pro-

pose an algorithm to decide which reasons apply when.

Learning to Anticipate Annotation Differences. Re-

lated works have trained algorithms to anticipate when an-

notation differences will arise for numerous vision prob-

lems. Some methods recognize when visual content is am-

biguous and so will lead to diverse human interpretations,

including for captioning images [23], interpreting visual at-

tributes [25], and locating the most prominent foreground

object [18]. Other methods recognize to what extent vi-

sual content will evoke people’s subjective perceptions, in-

cluding for visual humor [10] and memorability [22]. Other

methods anticipate whether a crowd will offer different re-

sponses to a visual question [17] and to what extent [44].

Complementing prior work, we propose the first solution

for deciphering which of multiple reason(s) will lead to an-

notation differences. A key insight for our approach is to

employ a VQA system’s predicted answers as predictive

cues, motivated by the belief that VQA models trained to

optimize for multiple correct answers (e.g., using “soft tar-

get” scores) embed some understanding for why there may

be uncertainty around a single true answer [38].

3. Labeled Datasets

We now introduce how we created the datasets, which

consist of VQAs paired with labels indicating why answers

differ. In particular, in this section, we describe our taxon-

omy and data labeling approach.

Reasons for Differing Answers. We developed a taxon-

omy of nine reasons for why answers may differ, which

are summarized in Table 1. Six of the nine reasons

are inspired by the crowdsourcing literature – INV [31],

DFF [43], AMB [23, 25, 42], SBJ [32, 42, 9], SYN [31], and

SPM [40, 41, 13, 14]. Two of the reasons are inspired by

prior visual question answering work [19] – LQI and IVE.

The final category is inspired by our inspection of a random

subset of visual questions with their answers – GRN. We

checked whether this taxonomy provided full coverage of

plausible reasons for answer differences by conducting a pi-

lot crowdsourcing study, and found no additional categories

were identified1. This taxonomy is divided into reasons that

arise from the visual question versus answers.

Approach for Labeling VQAs. We designed our user in-

terface for this annotation task to show the visual question

(used interchangeably with Question-Image/QI pair) with

the ten answers, and to require a user to select all reasons

why the answers differed. The user was required to select

at least one reason. We grouped reasons based on whether

the issue stemmed from the QI pair versus answers to assist

1Using the setup from the next subsection, we crowdsourced five la-

bels per VQA for 100 VQAs randomly selected from VizWiz [19]. In this

user interface, users were provided an “OTHER” category and an optional,

open-ended feedback comment box. No additional reasons were identified

either by users selecting “OTHER” or providing feedback.
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the user in deciding which reason(s) to select. We also in-

cluded a reason called Other (OTH), linked to a free-entry

text-box, so users could suggest what they thought was the

relevant reason when they felt no options were suitable.

We chose to label 44,955 VQAs coming from two pop-

ular VQA datasets. Each VQA consists of an image and a

question paired with 10 answers crowdsourced from Ama-

zon Mechanical Turk (AMT) workers. We include the

VizWiz [19] dataset to address immediate, real-world needs

of people who are blind. It originates from people who are

blind who used mobile phones to snap photos and record

questions about them [7, 8]; e.g., “what type of beverage

is in this bottle?” or “has the milk expired?”. We used the

entire dataset, excluding VQs where all answers are identi-

cal with exact string matching (i.e., no answer differences),

resulting in 29,921 VQAs. We also included a sample from

the popular VQA 2.0 [16] dataset for comparison. It dif-

fers from VizWiz in part because the images and questions

were created separately. The images originate from the MS-

COCO dataset [27] and the questions came from crowd

workers instructed to ask a question about the image that

can ‘stump’ a ‘smart robot’ [5]. We used a subset of 15,034
randomly selected QI pairs from the training set, for which

the ten crowdsourced answers were not identical using exact

string matching. Together, VizWiz [19] and VQA 2.0 [16]

represent a diversity of users and use case scenarios.

We employed crowd workers from Amazon Mechanical

Turk to label the VQAs. For quality control, we restricted

workers to those who previously completed over 500 jobs

with at least a 95% approval rating, and are from the US

to try to ensure English proficiency. We also collected five

labels per visual question from five workers.

4. Understanding Why Answers Differ

We analyzed the 224,775 crowdsourced annotations to

answer the following: (1) what reasons (un)commonly

evoke differing answers?, (2) how many unique reasons typ-

ically lead to differing answers for a visual question?, and

(3) which reasons commonly occur together versus alone?

4.1. (Un)Common Reasons for Answer Differences

QI Pair Versus Answers. We first quantified the ten-

dency for answer differences to arise because of issues with

the QI pair versus answers. To do so, we quantified the pro-

portion of VQAs having issues only with the QI pair (i.e.,

due to LQI, IVE, INV, DFF, AMB, or SBJ), only with the

answers (i.e., due to SYN, GRN, or SPM), and with both.

To enrich our analysis, we examined the influence of differ-

ent levels of trust in the crowd by tallying the valid reasons

observed when requiring a minimum of 1, 2, or 3 members

of the crowd to offer the same reason for the reason to be

valid. Results for each dataset are shown in Figure 2.

We found that answer differences arise most often be-

cause of issues with both the QI pair and the answers. For

example, 75% and 80% of visual questions from VizWiz

and VQA 2.0 datasets, respectively, have issues arising from

both sources (Figure 2; 2 person threshold). In contrast, a

very small fraction of answer differences arise because of

the answers alone. A larger percentage arise because of is-

sues with the QI pair alone, affecting roughly 20% of VQAs

for both datasets (Figure 2; 2 person threshold). This latter

finding highlights that a considerable portion of answer dif-

ferences could be avoided by modifying the visual question.

Frequency of Each Reason. We next examined the ten-

dency for each of the nine reasons to lead to different an-

swers. To do so, we calculated the percentage of VQAs

assigned with each reason for different levels of trust in the

crowd (i.e., requiring a minimum of 1, 2, or 3 members

of the crowd to offer the same reason for the reason to be

valid). Results are shown in Figure 3.

The most common reasons match for both datasets: am-

biguous QIs (AMB), followed by synonymous answers

(SYN), and finally varying levels of answer granularity

AQIQI & A

Answer difference due to issues with:

(i) 1 Person (ii) 2 Person (iii) 3 Person

(i) (ii) (iii)

Validity Threshold:

(a) VizWiz (b) VQA_2.0

93%

75%

56%

(i) (ii) (iii)

96%

80%

54%

6%

21%

32% 4%

18%

39%

Figure 2: Percentage of VQAs where answer differences

arise due to issues with both the QI pair and the 10 an-

swers (QI & A, yellow), issues with the QI pair only (QI,

striped), or issues with the 10 answers only (A, red), for

the (a) VizWiz and (b) VQA 2.0 datasets. Results are shown

with respect to different levels of trust in the crowd work-

ers: (i) Trust All: only one worker has to select the reason (1

person validity threshold); (ii) Trust Any Pair: at least two

workers must agree on the reason (2 person validity thresh-

old); and (iii) Trust Majority: at least three workers must

agree on the reason (3 person validity threshold).
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(a) (b) (c)

Frequency of Reasons for Answer Differences

1 Person Threshold 2 Person Threshold 3 Person Threshold

Dataset: VizWiz Dataset: VQA_2.0 Dataset: Combined

P
e
rc

e
n
ta

g
e
  

o
f 

 V
Q

A
s

Figure 3: Histograms showing the frequency of each reason leading to answer differences for (a) 29,921 visual questions

asked by blind people, (b) 15,034 visual questions asked by sighted people, and (c) combination of the two. The plots are

computed based on increasing thresholds of inter-worker agreement required to make a reason valid ranging from requiring

at least one worker selecting it up to at least three workers. The most popular reasons are ambiguous visual questions (AMB),

synonymous answers (SYN), and varying answer granularity (GRN) whereas the most rare are spam (SPM) and other (OTH).

(GRN). Ambiguity (AMB) accounts for 81.3% of answer

disagreements across both datasets (Figure 3c; 2 person

threshold). Ambiguous examples in the VizWiz dataset of-

ten arise because the question “What (object) is this . . . ?”

is asked about an image showing multiple objects (e.g.,

‘store’, ‘shopping area’, ‘shopping cart’). In the VQA 2.0

dataset, we found ambiguity can arise for lengthy questions

which may leave individuals confused about how to inter-

pret the question (e.g. ‘What weather related event can be

seen under the clouds in the horizon?’) as well as for vi-

sual questions seemingly designed to be ambiguous in or-

der to “stump a robot” [5] (e.g. ‘Q: Where are the baby ele-

phants? Ans 1: right, Ans 2: on the grass, Ans 3: next

to mom and dad, etc.). The closely-following second and

third most common reasons are answer granularity (GRN)

and synonyms (SYN) which account for 72.9% and 68.3%

of VQAs across both datasets (Figure 3c; 2 person thresh-

old). These findings highlight that most answer differences

can be resolved by disambiguating visual questions or re-

solving synonyms and differing granularity [15, 26, 42].

The least common reason for answer differences is spam

(SPM), with it accounting for approximately 1.1% of VQAs

across both datasets (Figure 3c; 2 person threshold). This is

interesting because the issue of spam has received a lot of at-

tention in the crowdsourcing literature (e.g., [13, 14, 41] to

name a few). Our findings suggest that improving spam de-

tection solutions will lead to considerably less impact than

improving approaches addressing the other reasons.

Despite that the approaches for curating the VQAs in

the VizWiz and VQA 2.0 datasets are very different—with

VizWiz arising from daily visual challenges of blind users,

and VQA 2.0 containing visual questions designed to be

hard for machines to answer—we found overall that the

ranking and prevalence of reasons for answer difference

across the two datasets is very similar. The key differences

lie in difficult VQs (DFF) and low quality images (LQI).

For example, the percentage of difficult visual questions is

four times more in VQA 2.0 than VizWiz; i.e., ∼3% versus

∼12% (2-person threshold). Additionally, the percentage

of low quality images in VizWiz accounts for approximately

nine times more than that observed for VQA 2.0; i.e., 23.8%

versus 2.6% of all visual questions respectively (2-person

threshold). Despite such dataset differences, we will show

in Section 5 that prediction models can still learn to predict

which reason(s) will lead to answer differences.

Examples of VQAs that were most confidently voted by

the crowd workers as belonging to each of the nine reasons

for answer differences are shown in Figure 1.

4.2. Co­Occurring Reasons for Answer Differences

We now examine how many reasons typically lead to an-

swer differences for a given VQA as well as to what extent

reasons co-occur. For the following analysis, we assume a

reason occurs for a VQA if at least two crowd workers flag

that reason as occurring.

Number of Unique Reasons. We first tallied the number

of unique reasons leading to answer differences for each

VQA. Across both datasets, there are most commonly three

unique reasons; i.e., for more than 55% of the VizWiz and

VQA 2.0 VQAs. Two and four reasons also are common,

accounting for 15% and 16% VQAs respectively across

both datasets. The remaining ∼20% arise from one unique
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(a) (b)

Reason

Co-occurs with (%) Reason 

Clarity 

(%)
LQI IVE INV DFF AMB SBJ SYN GRN SPM OTH

LQI 0 44 17 3 0 0 0 0 0 0 56

IVE 33 0 44 9 0 0 0 0 0 0 56

INV 25 89 0 9 0 1 0 0 0 0 11

DFF 13 59 28 0 0 0 0 0 0 0 41

AMB 0 0 0 0 0 3 76 83 0 0 17

SBJ 0 0 3 0 49 0 0 0 0 0 51

SYN 0 0 0 0 86 0 0 92 0 0 8

GRN 0 0 0 0 85 0 83 0 0 0 15

SPM 8 0 0 0 0 0 0 0 0 2 92

OTH 0 0 0 0 0 0 0 0 7 0 93

Reason

Co-occurs with (%) Reason 

Clarity 

(%)
LQI IVE INV DFF AMB SBJ SYN GRN SPM OTH

LQI 0 28 8 3 0 0 0 0 1 0 72

IVE 3 0 20 10 0 5 0 0 1 0 80

INV 3 87 0 0 0 5 0 0 0 0 13

DFF 0 19 0 0 0 0 0 0 0 0 81

AMB 0 0 0 0 0 0 65 62 0 0 35

SBJ 0 12 2 0 0 0 0 0 0 0 88

SYN 0 0 0 0 85 0 0 76 0 0 15

GRN 0 0 0 0 82 0 76 0 0 0 18

SPM 4 19 1 8 0 0 0 0 0 1 81

OTH 4 0 0 0 0 0 0 0 3 0 96

Figure 4: Tendency for each reason to co-occur with every other reason as well as to occur alone (i.e., reason clarity) for the

(a) VizWiz and (b) VQA 2.0 datasets (2-person threshold). Across both datasets, ‘spam’ and ‘other’ most often occur alone.

reason, followed by five and six unique reasons respectively,

across both datasets. These findings motivate representing

the problem of predicting which reasons lead to answer dif-

ferences as a multi-label classification problem.

Reasons Occurring Together. We next examined the ex-

tent to which the various reasons co-occur. To do so, we

computed an adaptation of causal power [11, 28], measur-

ing the co-occurrence of two reasons di and dj as:

co occurrence (di, dj) =
P (dj |di)− P (dj |d̄i)

1− P (dj |d̄i)
(1)

where P (d) is the probability that reason d is present for

a VQA and P (d̄) is the probability that it is not present.

Intuitively, this metric indicates how often dj arises when

di occurs for a VQA. Results are shown in Figure 4.

Across both VizWiz and VQA 2.0, we observe the rea-

sons with the highest co-occurrences (≥ 80%) are answer

synonyms (SYN), answer granularity (GRN), invalid ques-

tions (INV), and ambiguity (AMB). For example, in VizWiz,

for all the VQAs where SYN was chosen, GRN co-occurs

for 92% of those VQAs, followed by AMB for 86%. Like-

wise, in all the question where GRN occurs, AMB occurs

in 85% of them, and SYN occurs in 83% of them. Our re-

sults offer strong evidence that ambiguity in the QI pair can

cause people to be uncertain both about what level of detail

to provide and what word to use among valid synonyms;

e.g., ‘money’, ‘currency’, ‘10 dollar bill’. We hypothesize

that one promising way a VQA system could greatly reduce

the frequency of answer differences is to instruct individu-

als asking QIs to clarify the level of detail they are seeking

whenever answer differences are expected to arise from QI

ambiguity or differing answer granularity.

We also observe that across both datasets, invalid ques-

tion (INV) is paired with insufficient visual evidence to an-

swer the question (IVE). This is true for 89% of VQAs in

VizWiz and 87% of VQAs in VQA 2.0. This suggests that

if the answer to the question is not present in the image,

people think that the question is invalid.

Reasons Occurring Alone. We next measured how often

a reason occurs on its own. To do so, we compute clarity

of a reason d as follows: the percentage of all VQAs where

d is chosen for which no other reason is chosen. Results

are shown in Figure 4. Across both datasets, spam (SPM)

commonly occurs alone; i.e., for at least 92% and 81% of

the VQAs in VizWiz and VQA 2.0, in which this reason is

valid. For VizWiz, as reflected by small percentage values

for clarity, most of the reasons commonly co-occur with at

least one other label. In contrast, VQA 2.0 only has four of

the nine labels (INV, SYN, GRN, AMB) with low clarity

(≤ 35%), while the rest have high clarity (≥ 72%). This

reveals that co-occurrence in VQA 2.0 centers around fewer

reasons than for VizWiz.

5. Predicting Why Answers Will Differ

We now introduce a novel machine learning task of pre-

dicting why a visual question will lead to different answers.

5.1. Prediction Model

We pose the task as a multi-label classification problem.

Ground Truth. We compute binary ground truth for each

of the nine reasons described in Table 1, as well as the

“Other” category. Consequently, our ground truth consists

of 10 labels. For each label, we consider it as present (i.e.,

‘1’) for a visual question only if at least two of the five

crowd workers selected that label as present.

Proposed Model. The motivation for the design of our

model is that it employs as predictive cues the input image

(I), input question (Q), and answers to the QI pair (A). This

is because we know that answer differences can arise from

the QI pair alone (i.e., first six reasons in Table 1) as well as

from the answers alone (i.e., last three reasons in Table 1).
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Figure 5: Summary of the proposed model (Q+I+A) for predicting which among 10 reasons will lead to answer differences.

Our key challenge is how to represent the answers, since the

ground truth answers are not known in practice.

Our model is summarized in Figure 5. It takes as in-

put the image, encoded as the last convolutional layer of

the Faster R-CNN model [34], and the question, encoded

as a 300 dimension word from the pre-trained GloVe vec-

tors [33] that is then passed to a single-layer GRU with 1024

hidden units. Our key design decision was to pass this in-

put to an “Answer Prediction” module, with the goal that it

outputs all answers. We employed a VQA algorithm [4, 39]

that is trained to optimize for multiple correct answers and

output a “soft target” vector representation of its confidence

on all answer candidates; e.g., for the second example in

second row of Figure 1, the ideal prediction for the 10 an-

swers of 7 “pillows”, 2 “blanket”, and 1 “sheets” would be

0.7 for “pillows”, 0.2 for “blanket”, 0.1 for “sheets”, and 0

otherwise.2 By including the “Answer Prediction” module,

the subsequent “Answer Difference” module can then make

predictions based not only on the image and question fea-

tures but also using the (predicted) answers. The “Answer

Difference” module passes its input (Q, I, & A) through a

fully-connected layer of 1024 units to a sigmoid function in

order to predict the probability of each of the 10 labels.

For training, we adopt the binary cross entropy loss as:

L =

N∑

i=1

yi log(pi) + (1− yi) log(1− pi),

where N is the total number of labels, yi is the ground

truth label, and pi is the predicted probability from the sig-

moid function. We initialize the model using the pre-trained

weights of [33] for the “GRU”, pre-trained weights of [4]

for the “CNN” and “Answer Prediction” modules, and ran-

dom values for the “Answer Difference” module. We fine-

tune the whole network using the Adam solver with a fixed

learning rate of 0.001 and batch size of 128. Dropout and

early stopping (five epochs) are used to reduce overfitting.

2To avoid learning on the same data observed at test time, we ensure

the “Answer Prediction” module is pretrained on a different VQA dataset.

5.2. Evaluation

Dataset Train/Validation/Test Split. We used the whole

VizWiz dataset, including the QI pairs where all answers

were identical (i.e., 3% of the VQAs from the original

dataset) so that trained algorithms can work well in the pres-

ence of QI pairs that do not lead to answer differences. Us-

ing similar train/validation/test splits from [19], we have

19,969 training (64%), 3166 validation (10%), and 7983
test (26%) samples. For the 15,034 VQs from the VQA 2.0

dataset, we introduced a 65/10/25 split which resulted in

9772 training, 1504 validation, and 3758 test examples.

Evaluation Metrics. We report the average precision for

each label and the mean average precision across all labels.

Baselines. To our knowledge, no prior work has tried to

predict the reason(s) why a visual question will have dif-

ferent answers. Therefore, we evaluate the benefit of three

related baseline methods to reveal the value of re-purposing

existing approaches for our new problem.3 We include ran-

dom guessing (i.e., Random), since this is the best a user

can achieve today. We also include an algorithm for the re-

lated task of predicting whether a question is relevant to the

given image, which we call QI-relevance. We adapt the

pretrained question-image-relevance system [29] to predict

among the plausible reasons: if the QI pair is predicted as

relevant, the “LQI”, “IVE”, and “AMB” are predicted as 0,

and 1 otherwise. Other labels are predicted randomly since

they are unrelated to QI-relevance. We also include an algo-

rithm that predicts whether a VQ is unanswerable for the

VizWiz dataset (“Q+I” in [19]). Similar to the QI-relevance

baseline, if the VQ is predicted as answerable, the “LQI”,

“IVE”, and “AMB” are predicted as 0, and 1 otherwise.

We also evaluate five variants of our Q+I+A model. We

examine the power of different predictive cues by predicting

only from the question-image pair (i.e., Q+I), question (i.e.,

Q), and image (i.e., I). We examine fine-tuning the VQA

model [16, 19] on our datasets after replacing the last layer

3To avoid overlap between the training data and our test data, we re-

trained all baselines with the test set samples excluded (when needed).
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Table 2: Average precision for predicting why answers to visual questions will differ for the VQA 2.0 and VizWiz datasets.

Model Overall LQI IVE INV DFF AMB SBJ SYN GRN SPM OTH

V
Q

A
2

.0

Random 30.24 3.71 22.43 15.09 14.62 95.19 14.18 64.99 69.42 0.52 2.25

QI-Relevance [29] 32.23 4.01 43.16 15.09 14.62 94.11 14.18 64.99 69.42 0.52 2.25

I 31.88 4.31 29.46 9.28 17.02 92.91 17.99 74.55 72.56 0.5 0.24

Q 43.47 7.65 58.89 44.56 28.15 96.42 24.04 88.63 84.67 1.36 0.38

Q+I 43.16 9.05 58.03 41.95 28.22 96.25 24.29 88.26 84.02 1.27 0.26

Q+I+A 44.55 11.58 59.95 46.03 30.27 96.47 24.88 89.69 85.62 0.8 0.26

Q+I+A FT 44.46 8.11 60.67 43.36 31.35 96.98 25.31 90.49 86.89 1.03 0.48

Q+I+A GT 44.09 8.94 59.64 45.21 30.04 96.60 23.83 89.75 85.80 0.82 0.30

V
iz

W
iz

Random 30.15 23.59 33.69 18.15 5.70 74.70 5.14 66.61 71.94 1.35 0.62

QI-Relevance [29] 31.71 30.56 40.52 18.15 5.7 76.53 5.14 66.61 71.94 1.35 0.62

Unanswerable [19] 35.31 44.82 58.63 18.15 5.7 80.14 5.14 66.61 71.94 1.35 0.62

I 40.54 55.42 50.66 30.12 8.77 83.39 8.64 79.76 86.29 1.71 0.61

Q 40.5 35.87 54.66 39.24 12.32 84.41 11.00 79.46 85.10 2.15 0.76

Q+I 45.73 57.81 62.47 43.24 13.77 87.81 11.14 86.36 92.01 2.00 0.75

Q+I+A 50.02 65.58 77.42 56.54 10.49 89.70 11.26 90.42 95.44 1.98 1.31

Q+I+A FT 50.01 64.93 77.40 56.78 10.10 89.48 13.16 90.52 95.50 1.84 1.28

Q+I+A GT 50.68 66.25 77.71 57.20 13.55 90.01 12.46 90.53 95.51 1.96 1.62

of the pre-trained model to a fully-connected layer repre-

senting the answer difference reasons (i.e., Q+I+A FT). Fi-

nally, we examine what happens when we use the ground

truth (GT) instead of the “Answer Prediction” module ; i.e.,

directly use a “soft target” representation of the GT answers

rather than predicted answers (i.e., Q+I+A GT). Following

[39], only answers that appear more than eight times in the

training dataset are considered in the answer representation.

Results. Results for both datasets are shown in Table 2.

As observed, the proposed model (i.e., Q+I+A) outper-

forms the existing baselines by a large margin overall. For

example, across both datasets, the performance gain is more

than 12 percentage points compared to the next best base-

line of QI-relevance. Compared to the status quo of Ran-

dom guessing, the gains are even greater. The results reveal

that re-purposing existing algorithms for our new problem

is inadequate, which motivates the need for new algorithmic

frameworks that directly learn the “answer difference” task.

Our findings also reveal the benefit of different predictive

cues. Compared with Q+I, the Q+I+A improves the perfor-

mance by 1.4% and 4.3% on VQA 2.0 and VizWiz datasets

respectively. This verifies the effectiveness of adding the

predicted answers as one more signal for prediction. In-

terestingly, we observe I has a much larger impact for the

VizWiz dataset than for VQA 2.0. We attribute this differ-

ence largely to its significant advantage for the LQI and IVE

categories for VizWiz, providing over a 20% and 30% gain

respectively over Random guessing.

When comparing the performance of Q+I+A with

Q+I+A FT and Q+I+A GT, we observe similar perfor-

mance. For Q+I+A FT, this could be because the predicted

answers have already captured the knowledge encoded in

the pre-trained VQA model. For Q+I+A GT, this might

arise because the answer probabilities from VQA models

offer richer information than human-annotated answers and

because uncommon answers are excluded.

Overall, the models perform worst across both datasets

for VQs that are subjective (< 26%) and difficult (< 32%).

This highlights a need for models to learn abstract concepts

such as common sense. Other challenges for the model, de-

spite considerable improvement of our models over related

baselines (i.e., by typically over 20%), are recognizing in-

valid questions and low quality images.

6. Conclusions

We proposed a taxonomy of nine reasons why answers to

visual questions can differ and a novel problem of predict-

ing why answers will differ. Our experiments demonstrate

the promise of algorithms that predict directly from a visual

question for this novel task. The datasets and code are pub-

licly shared at https://vizwiz.org to facilitate future

extensions of this work. Valuable future work includes user

studies to identify how to employ such algorithms to guide

users in modifying their visual questions so they arrive at a

single answer or to retroactively aggregate answers [36].
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