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Abstract

Trajectory prediction for objects is challenging and crit-

ical for various applications (e.g., autonomous driving, and

anomaly detection). Most of the existing methods focus

on homogeneous pedestrian trajectories prediction, where

pedestrians are treated as particles without size. How-

ever, they fall short of handling crowded vehicle-pedestrian-

mixed scenes directly since vehicles, limited with kinemat-

ics in reality, should be treated as rigid, non-particle ob-

jects ideally. In this paper, we tackle this problem using

separate LSTMs for heterogeneous vehicles and pedestri-

ans. Specifically, we use an oriented bounding box to rep-

resent each vehicle, calculated based on its position and

orientation, to denote its kinematic trajectories. We then

propose a framework called VP-LSTM to predict the kine-

matic trajectories of both vehicles and pedestrians simul-

taneously. In order to evaluate our model, a large dataset

containing the trajectories of both vehicles and pedestri-

ans in vehicle-pedestrian-mixed scenes is specially built.

Through comparisons between our method with state-of-

the-art approaches, we show the effectiveness and advan-

tages of our method on kinematic trajectories prediction in

vehicle-pedestrian-mixed scenes.

1. Introduction

Trajectory prediction is a challenging and essential task

due to its broad applications in the computer vision field,

including the navigation of autonomous driving, anomaly

detection, and behavior understanding. Trajectory predic-

tion for pedestrians has been extensively studied in recent

years [34, 28, 5, 2, 9, 32, 29]. By encoding human-human

interactions in a complex environment, these methods can

predict future trajectories based on historical and surround-

ing human behaviors. Many methods have also been pro-

posed to predict vehicle trajectories based on the states of
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Figure 1. Illustration of various interactions in a vehicle-

pedestrian-mixed scene. The vehicle-vehicle, human-human, and

vehicle-human interactions are separately represented with solid

blue lines, solid red lines, and orange dash lines. The vehicle a

and pedestrian b in gray dash box have similar interactions with

surrounding pedestrians. b walks freely to avoid collisions with

d. However, the vehicle a, limited with kinematics, stops to avoid

collisions with c.

surrounding vehicles [18, 14, 6].

All the above methods predict the trajectories of ho-

mogeneous traffic agents, namely, the whole scene with

only pedestrians or only vehicles. Furthermore, in these

methods, each agent is treated as a particle, with the same

motion pattern. However, such naive simplifications are

not suitable in common vehicle-pedestrian-mixed scenes,

where vehicles and pedestrians have different sizes and

motion patterns. As shown in Fig. 1, the interactions

among different traffic agents in a vehicle-pedestrian-mixed

scene include human-human, human-vehicle, and vehicle-

vehicle interactions. The pedestrians with free movement

are treated as particles, while the vehicles should be treated

as rigid, non-particle objects ideally due to their sizes. Be-

sides, only trajectories represented with positions are pre-

dicted in existing methods for traffic agents, which is in-

sufficient to describe the accurate trajectories of heteroge-

neous vehicles in vehicle-pedestrian-mixed scenes. Dif-

ferent orientations along which vehicles drive forward in

Fig. 1, will result in different interactions with surrounding

agents. Besides, the kinematic motion of vehicles has been

seldom considered yet in existing trajectory prediction liter-

ature. Therefore, predicting the accurate kinematic trajecto-

ries of heterogeneous vehicles, treated as rigid non-particle
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objects, as well as the pedestrian trajectories separately in

vehicle-pedestrian-mixed scenes is of importance and gen-

erally considered as a widely open problem.

In this work, we treat a vehicle as a rigid non-particle

object and use an oriented bounding box (OBB) to describe

its detailed trajectory. Besides, we use the orientation of

OBB to denote the driving-forward direction of a vehicle.

Vehicles with the same position but different orientations

will cause different interactions with surrounding agents.

We further propose a Vehicle-Pedestrian LSTM (called VP-

LSTM) to predict the trajectories of both pedestrians and

vehicles simultaneously. The kinematic trajectories of ve-

hicles can be learned and predicted based on their positions

and orientations. All the aforementioned three types of

interactions (vehicle-vehicle, human-human, and vehicle-

human), are considered in our model. Through many ex-

periments and comparisons with existing methods, we show

the advantages of VP-LSTM on a large-scale, mixed traffic

dataset that includes the trajectories of both vehicles and

pedestrians.

The main contributions of this work include: (i) we pro-

pose a novel multi-task learning architecture, VP-LSTM, to

jointly predict kinematic trajectories of both vehicles and

pedestrians in vehicle-pedestrian-mixed scenes, where ve-

hicles and pedestrians are treated as rigid bodies and par-

ticles, respectively. Thanks to the size information of het-

erogeneous vehicles, we exploit OBBs to represent vehi-

cles and predict their positions and orientations. Because of

the different trajectory definitions of vehicles and pedestri-

ans, we adopt different methods to optimize the separate d-

variate Gaussian distributions (d = 4 for vehicles and d = 2

for pedestrians). (ii) We introduce a large-scale and high-

quality dataset containing the trajectories of both heteroge-

neous vehicles and pedestrians in two scenarios (BJI and

TJI) under different traffic densities. The dataset is avail-

able at http://vr.ict.ac.cn/vp-lstm.

2. Related Work

Human Trajectory Prediction. Based on how features

are selected, existing human trajectory prediction methods

can be roughly divided into hand-crafted [11, 4, 17, 23, 31,

24, 30], and DNN-based. In general, hand-crafted features

based methods are inefficient and only can generate limited

results.

Recently, DNN-based methods have demonstrated supe-

rior performances due to the intrinsic encoding of complex

human-human interactions in the network. Alahi et al. [2]

proposed a social-LSTM model to predict the trajectories

of pedestrians. Varshneya et al. [28] proposed a sequence-

to-sequence model coupled with a soft attention mechanism

to learn the motion patterns of dynamic objects. Bartoli et

al. [5] adopted a “context-aware” LSTM model to predict

human motion in crowded space. The DNN-based meth-

ods were also extended based on various attention mecha-

nisms [7, 29]. Gupta et al. [9] used generative adversarial

networks with a pooling module to predict the social pedes-

trians’ motion. The CIDNN model [32] mapped the loca-

tion to high dimensional feature space and used the inner

product to encode crowd interactions. The joint prediction

of trajectories with head poses and activities for pedestrians

were respectively proposed [10, 21]. All these approaches

well encoded human-human interactions with DNN models

and could better predict human trajectories based on histor-

ical trajectory sequences and interactions.

Vehicle Trajectory Prediction. Based on different hy-

pothesis levels, the task of vehicle trajectory prediction

can be divided into the following categories [19]: physics-

based, maneuver-based, and interaction-aware models. The

Gaussian process regression flow [15] and the Bayesian

nonparametric approach [13] ignore the interactions among

objects in the scene. Vehicle trajectories can be predicted

based on semantic scene understanding and optimal control

theory [16]. Lee et al. [18] proposed DESIRE to predict fu-

ture distances for interacting agents in dynamic scenes. Kim

et al. proposed an LSTM-based probabilistic prediction ap-

proach [14] by building an occupancy grid map. Deo et

al. built a convolutional social pooling network [6] to pre-

dict vehicle trajectories on highways. All the above meth-

ods focused on the macro behaviors of vehicles by treat-

ing vehicles as particles, but they fell short of character-

izing the potential interactions among heterogeneous vehi-

cles and pedestrians. Ma et al. proposed an LSTM-based

algorithm, TrafficPredict, to predict trajectories for hetero-

geneous traffic agents [22]. But the kinematics of vehicles

was ignored.

Human and Vehicle Trajectory Datasets. Quite a few

human trajectory datasets have been built for the analy-

sis of crowd behavior [20, 25, 35, 3, 27, 33]. A widely-

known traffic dataset, including detailed vehicle trajecto-

ries and high-quality video, is the Next Generation Simula-

tion (NGSIM) program [1]. Although the precise locations

of vehicles are recorded, only vehicle-vehicle interaction

behaviors are insufficient to describe vehicle-pedestrian-

mixed scenes, especially in crowded space. Ma et al. used

Apollo acquisition car to collect a trajectory dataset of het-

erogeneous traffic agents [22]. However, the available on-

line portion of the Apollo dataset contains much noise that

may be caused by LiDAR.

3. Our Method

Our goal is to predict the kinematic trajectories for all

heterogeneous agents in vehicle-pedestrian-mixed scenes

jointly and simultaneously. We present the details of the

proposed VP-LSTM model in this section.
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Figure 2. Illustration of the used symbols and terms. The velocity

and orientation of vehicle v j at t are respectively illustrated with

a red arrow and a purple arrow. The blue arrow is the velocity of

pedestrian pi. (a) The green rectangle is OBB for v j, whose four

vertices are denoted as P
j
t = {P

j
f l,t

,P
j
f r,t ,P

j
rr,t ,P

j
rl,t

}. β j indicates

the pan angle of the orientation from the X-axis. γ j is the angle

between the orientation and the velocity. (b) The black dash line

is the motion path of vehicle v j and ε j denotes the angle between

the orientations at two adjacent steps.

3.1. Formulation

We assume there are a total of N pedestrians and M vehi-

cles, respectively in a vehicle-pedestrian-mixed scene. For a

pedestrian pi (i ∈ [1,N]), his/her trajectory at step t is repre-

sented by position xi
t = (x,y)i

t . The input/output trajectory

of a pedestrian is a sequence formed of consecutive posi-

tions.

Thanks to the size information of vehicles, we treat ve-

hicles as rigid bodies, represented with OBBs. The in-

put trajectory of a vehicle is represented by a temporal se-

quence of the four vertices on the OBB. As illustrated in

Fig. 2(a), for a vehicle v j( j ∈ [1,M]), its input trajectory at

step t is represented by P
j
t = {P

j

f l,t ,P
j
f r,t ,P

j
rr,t ,P

j

rl,t}. Here

P
j
∗,t = (x∗,y∗)

i
t ,∗ ∈ ( f l, f r,rr,rl).

Due to the geometric constraints among the OBB ver-

tices, we do not take the positions of the four vertices on an

OBB as the output trajectory of the vehicle. Here we exploit

the positions and orientations, represented by y
j
t = (x,y) j

t

and a
j
t = (αx,αy)

j
t respectively, as the output trajectory of

v j at step t. Inspired by the previous work of [10], in or-

der to ensure the continuity of the orientations, we choose a

vector representation, instead of the angular representation,

to denote the orientation. a
j
t is the anchor point of the vector

originating from y
j
t , towards v j oriented.

In this work, in order to jointly predict the trajectories

of both vehicles and pedestrians, we feed the kinematic tra-

jectory sequences of both pedestrians (xi
t ) and vehicles (P

j
t )

in an observation period from step t = 1 to t = Tobs as the

input. Then, the positions of pedestrians, and both the posi-

tions (y
j
t ) and orientations (a

j
t ) of vehicles in the prediction

period from step t = 1 to t = Tpred can be predicted simulta-

neously.
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Figure 3. Illustration of mixed social pooling. For any agent in-

volved in a vehicle-pedestrian-mixed scene (here we take vehicle

v1 as an example), the hidden states of its neighbors are separately

pooled on VO and PO. The interactions from scene for v1 are

captured with H
(vp,1)
t and H

(vv,1)
t .

3.2. Pedestrian and Vehicle Models

For any pedestrian pi and any vehicle v j, we first use

separate embedding functions φ(·) with ReLU nonlinearity

to embed xi
t , P

j
t as follows:

e
(x,i)
t = φ(xi

t ,Wx)

e
(P∗, j)
t = φ(P j

∗,t ,WP∗),∗ ∈ ( f l, f r,rr,rl)

e
(P, j)
t = φ(e

(Pf , j)
t ,e

(Pf r , j)
t ,e

(Pr , j)
t ,e

(Pr , j)
t ,WP).

(1)

Here Wx, WP∗ , and WP are the embedding weights.

Mixed Social Pooling. The social pooling mechanism

proposed in [2] and developed in [10, 9] can capture the mo-

tion dynamics of pedestrians in crowded space. We adopt

this pooling scheme in our network to collect the latent

motion representations of vehicles and pedestrians in the

neighborhood. We use a similar grid of No ×No cells in [2],

called occupancy map, which is centered at the position of

a pedestrian or vehicle. No denotes the size of the neighbor-

hood. The positions of all the neighbors, including pedes-

trians and vehicles, are pooled on the occupancy map.

The hidden states of pi and v j, denoted as h
(p,i)
t and h

(v, j)
t

respectively, carry their latent representations. Through the
occupancy map, pedestrians and vehicles share the latent
representations with hidden states. As shown in Fig. 3, the
occupancy map VO and PO are built respectively for both
vehicles and pedestrians. The pooling occurs on vehicle v j

involved in vehicle-pedestrian-mixed scenes as follows:

H
(vp, j)
t (m,n, :) = ∑

k∈PO
j
t−1

h
(p,k)
t−1 , H

(vv, j)
t (m,n, :) = ∑

l∈VO
j
t−1

h
(v,l)
t−1 .

(2)

where h
(p,k)
t−1 is the hidden state of the pedestrians who are

included into the PO of vehicle v j; similarly, h
(v,l)
t−1 is the

hidden state of the vehicles that are included into the VO

of vehicle v j, and m and n denote the indices of the No ×No

grid. So H
(vp, j)
t and H

(vv, j)
t carry the vehicle-human interac-
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tions and vehicle-vehicle interactions respectively for vehi-

cle v j. As for pedestrian pi, the human-human interactions

and human-vehicle interactions are defined in a similar way,

denoted as H
(pp,i)
t and H

(pv,i)
t , respectively.

After mixed social pooling, separate embedding func-

tions φ(·) with ReLU nonlinearity are used to embed the

heterogeneous interactions for v j as follows:

e
(vp, j)
t = φ(H

(vp, j)
t ,W

vp
H ), e

(vv, j)
t = φ(H

(vv, j)
t ,W vv

H ). (3)

Here W
vp
H and W vv

H denote the corresponding embedding

weights for vehicle v j. e
(pp,i)
t and e

(pv,i)
t for pedestrian pi

are defined similarly with embedding parameters W
pp

H and

W
pv

H .

Recursion for VP-LSTM. Finally, the recursion equa-

tions for pedestrian pi and vehicle v j are as follows:

h
(p,i)
t = LST M(h

(p,i)
t−1 ,e

(x,i)
t ,e

(pp,i)
t ,e

(pv,i)
t ,W

p
LST M)

h
(v, j)
t = LST M(h

(v, j)
t−1 ,e

(P, j)
t ,e

(vp, j)
t ,e

(vv, j)
t ,W v

LST M)
(4)

Here, W
p

LST M and W v
LST M are respective LSTM weights for

pedestrians and vehicles.

3.3. VP­LSTM Optimization

As a multi-task problem, we adopt different optimiza-

tion methods for respective modules. The entire network is

trained end-to-end by minimizing respective objectives of

vehicles and pedestrians in the scene.

Optimization for Pedestrians. VP-LSTM estimates sep-

arate d-variate conditional distributions for pedestrians and

vehicles, respectively. For pedestrians, we create a bivari-

ate Gaussian distribution (d = 2) to predict the position

x̂i
t = (x̂, ŷ)i

t . Following the work of [8], the distribution is

parameterized by the mean µ
(p,i)
t = (µx,µy)

(p,i)
t and the co-

variance matrix Σ
(p,i)
t . Specifically, for a bivariate Gaussian

distribution, Σ
(p,i)
t can be obtained by optimizing the stan-

dard deviation σ
(p,i)
t = (σx,σy)

(p,i)
t and the correlation co-

efficient ρ
(p,i)
t [8].

The parameters of the module of pedestrians in VP-
LSTM can be learned by minimizing a negative log-
Likelihood loss as follows:

[µ
(p,i)
t ,σ

(p,i)
t ,ρ

(p,i)
t ] =W

p
O h

(p,i)
t−1 (5)

L(p,i)(Wx,W
pp

H ,W
pv

H ,W
p

LST M ,W
p

O) =

−
Tpred

∑
t=Tobs+1

log(P(xi
t |µ

(p,i)
t ,σ

(p,i)
t ,ρ

(p,i)
t )),

(6)

where L(p,i) is for the trajectory of the pedestrian pi.

Optimization for Vehicles. Different from pedestrians,

we use a four dimensional Gaussian multivariate distribu-

tion (d=4) to predict the position ŷ
j
t = (x̂, ŷ) j

t and orienta-

tion â
j
t = (α̂x, α̂y)

j
t of vehicles. Also, the distribution is pa-

rameterized by the mean µ
(v, j)
t = (µx,µy,µαx ,µαy)

(v, j)
t and

the covariance matrix Σ
(v, j)
t . The previous work [10] stud-

ied a higher dimensional problem of the optimization of

Gaussian parameters. For a higher dimensional problem,

pairwise correlation terms cannot be optimized and used to

build a covariance matrix. Its main reasons include: (i) the

optimization process for each correlation term is indepen-

dent; and (ii) multiple variables need to satisfy the positive-

definiteness constraint [26].

Following the work of [10], we adopt the Cholesky fac-

torization to optimize parameters for vehicles. With the

Cholesky factorization Σ
(v, j)
t = LT L, we first exponentiate

the diagonal values for L to make it unique. Then, we use

Σ
(v, j)
t = LT L to obtain the covariance matrix Σ

(v, j)
t . Here L

is a 4×4 upper triangular matrix. The optimization process

of a four dimensional Gaussian multivariate distribution can

be transformed to search for ten scalar values in L and four

mean parameters, namely, µ
(v, j)
t = (µx,µy,µαx ,µαy)

(v, j)
t .

We denote ten vectorized scalar values in the upper tri-

angular matrix L at t for v j as θL
(v, j)
t . The parameters of the

vehicles’ module can be learned by minimizing a negative
log-Likelihood loss:

[µ
(v, j)
t ,θL

(v, j)
t ] =W v

Oh
(v, j)
t−1 (7)

L(v, j)(WPf l
,WPf r

,WPrr
,WPrl

,WP,W
vp
H ,W vv

H ,W v
LST M ,W v

O) =

−
Tpred

∑
t=Tobs+1

log(P(y
j
t ,a

j
t |µ

(v, j)
t ,θL

(v, j)
t ))

(8)

Here, L(v, j) is for vehicle v j. In order to avoid over-fitting,

we also add a l2 regularization term onto the trajectory loss

of pedestrians (Eq. 6) and vehicles (Eq. 8), respectively.

3.4. Displacements Prediction

Our model can simultaneously predict the future posi-

tion x̂i
t = (x̂, ŷ)i

t for pedestrian pi, and both the position

ŷ
j
t = (x̂, ŷ) j

t and orientation â
j
t = (α̂x, α̂y)

j
t for vehicle v j.

Through the occupancy maps respectively for pedestrians

and vehicles, frame-by-frame heterogeneous interactions

are pooled. The predicted kinematic trajectories of pedes-

trians and vehicles at t are respectively given by:

(x̂, ŷ)i
t ∼ N (µ

(p,i)
t ,σ

(p,i)
t ,ρ

(p,i)
t )

(x̂, ŷ, α̂x, α̂y)
j
t ∼ N (µ

(v, j)
t ,θL

(v, j)
t )

(9)

Based on the sampled position ŷ
j
t = (x̂, ŷ) j

t and orienta-

tion â
j
t = (α̂x, α̂y)

j
t with Eq. 9, the input vertices of OBB,

P̂
j
∗,t+1,∗ ∈ ( f l, f r,rr,rl), at t +1 are given by:

cosβ̂ j =
(â j

t − ŷ
j
t ) · ex

||â j
t − ŷ

j
t ||

(10)

P̂
j
∗,t+1 = PO

∗

[

cosβ̂ j sinβ̂ j

−sinβ̂ j cosβ̂ j

]T

+ ŷ
j
t . (11)

ex is the unit vector along X-axis. PO
∗ = {PO

f l ,P
O
f r,P

O
rr,P

O
rl}

denotes the OBB centered at the coordinate origin and is
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Table 1. The specifications of our dataset.

Property Scenario I Scenario II

Dataset name BJI TJI

City Beijing Tianjin

Latitude 40.219049N 39.120511N

Longitude 116.220789E 117.173421E

Traffic density Low High

Height of drone (meter) 74 121

Resolution (pixel) 3840×2160 3840×2160

Total video duration 39’58” 22’01”

Frame rate (fps) 30 30

Annotated frame number 23498 8000

Annotated frame rate (fps) 10 6

Annotated

pedestrian

number

Walking 1336 690

Bike & Motor 1689 2690

Total 3025 3380

Average pedestrian number per frame 29 46

Max pedestrian number per frame 67 105

Annotated

vehicle

number

Auto 2581 3523

Bus & Truck 82 170

Articulated bus 92 30

Total 2755 3723

Average vehicle number per frame 19 34

Max vehicle number per frame 33 63

oriented the direction of positive X-axis, which is deter-

mined by the width w and length l of OBB.

As analyzed in [9], trajectory prediction is a multi-modal

problem by nature, where each sampling produces one of

multiple possible future trajectories. Apart from the vari-

ety loss function designed in [9], kv acceptable kinematic

trajectories for vehicles can be obtained by randomly sam-

pling from the distribution N (µ
(v, j)
t ,θL

(v, j)
t ) in our work.

kp possible trajectories for a pedestrian can be gener-

ated in a similar way by sampling N (µ
(p,i)
t ,σ

(p,i)
t ,ρ

(p,i)
t ).

The optimal predictions for vehicles and pedestrians at

t can be chosen with Lv = min
kv

||x̂i
t(kv)−xi

t || and Lp =

min
kp

||(ŷ j
t , α̂

j
t )(kp)− (y j

t ,α
j

t )||, respectively.

4. Vehicle-Pedestrian-Mixed Dataset

Existing human trajectory datasets [20, 25, 35, 3, 27, 33]

only focus on homogeneous pedestrians. On the other hand,

the existing vehicle trajectory dataset NGSIM [1] only cap-

tures the motion of vehicles. For this work, we specifically

build a new vehicle-pedestrian-mixed dataset, which is de-

signed for the trajectory analysis of vehicles and pedestrians

in vehicle-pedestrian-mixed scenes. The original video data

was acquired with a drone from a top-down view. We chose

two traffic scenarios, where large heterogeneous vehicles

and pedestrians pass through under different traffic densi-

ties. The trajectories in the two scenarios (called BJI and

TJI, respectively) are carefully annotated, including 6405

pedestrians and 6478 vehicles (Fig. 4). Details of the dataset

are summarized in Table 1.

Statistical Analysis. As aforementioned, the moving di-

rection of a pedestrian (treated as a particle) can be sim-

plified as its velocity. For vehicles, we calculated their γ
in Fig. 2(b) of all the trajectory sequences in BJI. Then we

show γ (in degrees) in ascending order in Fig. 5 (the solid

orange line and axis). Note that only γ in the range [0,5] are

reported, which is satisfied with vehicle kinematics. Those

(a) (b)

(c) (d)

Figure 4. (a)(b) show annotated heterogeneous vehicles and pedes-

trians of one frame in TJI under a high traffic density and BJI un-

der a low traffic density. (c)(d) separately show the examples of

pedestrian and vehicle trajectories in TJI.
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Figure 5. Analysis of BJI data. Solid and dashed orange curves

separately represent the angles of γ and ε (Fig. 2(b)). The other

three curves analyze the error Ed (Eq. 12).

cases with γ over 5 degrees, caused by noise, were omit-

ted. This shows that vehicles, including size information,

are significantly different from pedestrians, and the direc-

tions of velocities cannot represent the orientations of the

vehicles directly.

The orientation of vehicle v j at t (Fig. 2(b)) is the trajec-

tory tangent at t. In order to obtain the orientation, besides

the historical trajectory information, the positions y j at sev-

eral subsequent steps are also needed. Therefore, it is infea-

sible to obtain accurate orientations in the forecasting phase.

We also plot ε j, namely, the angle between the orientations

at two consecutive steps, for all the trajectory sequences of

the vehicles in BJI (the dashed orange line and axis). As

shown in Fig. 5, a small ε indicates a small turning angle of

a vehicle between two consecutive steps. Intuitively, we can

approximately use its known orientation at t −1 to estimate

its orientation at t.

In order to evaluate the relationship between the velocity

and the orientation of a vehicle, we define the following

error for v j:

Ed = ||y j
t −y

j
t−1||− ||P j

f m,t −P
j
f m,t−1||. (12)

P
j
f m = 1

2
(P j

f l +P
j
f r) is the midpoint of the front side, which

also corresponds to a j. We plot the results (denoted as E
gt
d )

in Fig. 5 (the solid blue line and axis). As seen from this

figure, the errors between the displacements of y j and the

average displacements of a j, denoted by P
j
f m, in two con-

secutive steps are small and consistent. However, we use
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Metric
V-LSTM

[2]

S-LSTM

[2]

SGAN[9] VP-LSTM (Ours)

1VP-1 20VP-20 OP-1 P-20 O-20 OP-20

ADE 34.01 / 40.00 11.73 / 15.16 4.80 / 7.05 4.56 / 6.52 7.72 / 10.46 5.74 / 7.95 3.90 / 5.67 2.19 / 2.99

FDE 43.87 / 52.64 20.03 / 23.64 9.17 / 11.07 9.13 / 10.99 13.02 / 18.21 10.27 / 14.34 7.12 / 10.31 3.70 / 5.20

ADEO 33.89 / 39.87 12.68 / 15.75 5.69 / 8.15 5.26 / 7.52 8.27 / 10.88 6.76 / 8.90 4.93 / 6.60 3.29 / 4.00

FDEO 43.77 / 52.50 22.59 / 24.95 11.18 / 13.33 11.07 / 13.10 13.45 / 18.43 11.39 / 15.33 8.19 / 11.19 4.88 / 6.22

Table 2. Quantitative results for the predicted positions and orientations of vehicles in NGSIM. Metrics ADE, FDE, ADEO and FDEO for

Tpred = 8 and Tpred = 12 (8/12) are reported in feet. Our method consistently outperforms the state-of-the-art methods (lower is better).

Metric Dataset Agent
V-LSTM

[2]

S-LSTM

[2]

SGAN[9] VP-LSTM (Ours)

1VP-1 20VP-20 OP-1 P-20 O-20 OP-20

ADE BJI

Vehicle 66.69 / 85.48 29.05 / 51.41 23.05 / 29.74 20.21 / 24.65 51.33 / 79.40 22.94 / 34.50 17.25 / 27.12 16.38 / 24.33

Pedestrian 34.70 / 48.91 25.26 / 46.89 19.73 / 26.06 17.82 / 20.33 23.25 / 32.29 4.84 / 6.23 4.79 / 6.21 4.92 / 6.39

Average 44.13 / 62.09 26.88 / 48.49 21.52 / 28.66 18.64 / 22.53 32.21 / 47.33 10.61 / 15.26 8.77 / 12.89 8.58 / 12.72

ADE TJI

Vehicle 142.17 / 185.93 46.17 / 85.52 40.20 / 59.30 26.82 / 39.86 64.40 / 96.91 56.21 / 89.54 26.43 / 47.66 22.38 / 29.79

Pedestrian 115.44 / 135.97 41.19 / 75.55 21.81 / 23.67 19.81 / 25.89 37.19 / 50.91 8.32 / 10.55 9.89 / 12.54 7.42 / 9.12

Average 125.27 / 154.31 43.13 / 79.22 31.30 / 46.57 24.42 / 34.73 48.67 / 70.34 24.79 / 36.48 16.86 / 27.37 13.43 / 17.32

FDE BJI

Vehicle 114.11 / 152.91 61.49 / 126.03 39.41 / 46.02 38.36 / 44.68 94.91 / 153.96 42.87 / 65.47 34.16 / 54.20 31.27 / 43.60

Pedestrian 54.64 / 81.72 56.93 / 111.05 32.90 / 41.37 32.57 / 40.52 38.82 / 56.63 7.40 / 10.15 7.28 / 10.09 7.55 / 10.44

Average 72.17 / 107.38 58.54 / 116.47 37.88 / 44.75 35.00 / 42.62 56.71 / 87.71 18.71 / 27.81 15.86 / 24.18 15.11 / 23.47

FDE TJI

Vehicle 215.94 / 303.54 103.67 / 203.90 50.62 / 59.46 48.22 / 56.95 114.79 / 181.80 109.64 / 176.37 56.59 / 102.88 35.38 / 49.31

Pedestrian 156.29 / 192.92 92.55 / 177.10 40.23 / 50.93 39.98 / 49.31 62.03 / 88.97 12.47 / 16.56 15.07 / 19.92 10.53 / 13.90

Average 178.21 / 233.52 96.91 / 186.97 46.55 / 57.89 43.42 / 55.43 84.29 / 128.17 45.89 / 69.04 32.59 / 54.95 20.51 / 27.95

ADEO
BJI vehicle 65.51 / 83.78 42.55 / 65.70 34.41 / 41.59 27.56 / 33.47 58.54 / 83.68 33.38 / 42.92 27.28 / 34.95 26.65 / 32.49

TJI vehicle 140.52 / 183.60 50.35 / 88.44 50.75 / 56.79 29.69 / 38.65 68.11 / 99.83 60.31 / 93.17 32.87 / 53.51 26.15 / 33.69

FDEO
BJI vehicle 112.01 / 149.81 76.18 / 135.49 46.28 / 51.01 43.61 / 49.59 98.74 / 153.40 53.19 / 72.42 43.26 / 60.13 40.61 / 48.02

TJI vehicle 213.04 / 299.39 105.94 / 203.24 64.69 / 79.57 50.94 / 64.49 117.21 / 182.70 112.84 / 178.57 61.89 / 107.04 38.93 / 52.73

Table 3. Quantitative results for the predicted positions and orientations of separate traffic agents based on our dataset (BJI and TJI). Each

error metric for Tpred = 8 and Tpred = 12 (8/12) is reported in pixels. The top four rows show the errors ADE and FDE for the predicted

positions of the heterogeneous traffic agents. The bottom rows show the errors ADEO and FDEO for the predicted orientations of vehicles

denoted as OBB. Our method consistently outperforms the state-of-the-art methods (lower is better).

the orientation a
j
t−1 to approximate a

j
t , and then obtain Eα

d

using Eq. 11 and Eq. 12.

In addition, we also calculated E
y
d with Eq. 11 and

Eq. 12, where a
j
t is estimated based on the direction of

the velocity (
−−−−−→
y

j
t −y

j
t−1) at t − 1. As shown in Fig. 5

(solid/dashed red lines and axis), although γ and ε are

small, the direct estimation of a
j
t from a

j
t−1 and

−−−−−→
y

j
t −y

j
t−1

will cause a larger error if we treat vehicles as rigid ob-

jects. Therefore, it is necessary to predict the orientation

together with position simultaneously in order to obtain

more accurate kinematic trajectories of vehicles in crowded

space. We also use the Pearson circular correlation coeffi-

cient [12] to measure the correlations between ||yt − yt−1||
and ||at − at−1||; the obtained correlation is 0.97. This in-

dicates that the faster a vehicle moves, the more significant

change of a will have. The above statistical analysis in-

spired us to build VP-LSTM to learn separate trajectories

for pedestrians and vehicles. Specifically, the orientations

and positions are jointly learned for vehicles in order to ob-

tain accurate kinematic trajectories.

5. Experiments and Evaluation
We compared VP-LSTM with state-of-the-art human

trajectory prediction methods and present quantitative and

qualitative evaluation results in this section.

5.1. Quantitative Evaluation

We compared VP-LSTM with state-of-the-art human tra-

jectory prediction methods including Vanilla LSTM (V-

LSTM) [2], Social LSTM (S-LSTM) [2], two Social-Gan

variants (SGAN-PV and SGAN-PV-20) [9]. To be consis-

tent with the evaluation protocol in [9], the length of the

observation period Tobs was set to 8, and we separately pre-

dicted the trajectories with two different lengths Tpred (i.e.,

8 and 12).

Evaluation Metrics. Inspired by the previous work [25],

we chose ADE (Average Displacement Error: the average

Euclidean distance error between the predicted result and

ground truth over the whole sequence) and FDE (Final Dis-

placement Error: the Euclidean distance error at the last

step between the predicted result and ground truth) as the

evaluation metrics to evaluate the prediction results on the

positions of both vehicles and pedestrians.
In order to evaluate the orientations predicted for the

kinematic trajectories of vehicles, we define ADEO and
FDEO to describe the errors between predicted orientations
and ground truth, as follows:

ADEO =

M

Σ
j=1

Tobs+Tpred

Σ
t=Tobs+1

||P̂
j
f m,t −P

j
f m,t ||

MTpred
. (13)

FDEO is the average Euclidean distance error for t =
Tobs + Tpred for P

j
f m( j ∈ [1,M]), and P̂

j
f m is the predicted

midpoint of the front of OBB oriented. Since all of V-

LSTM, S-LSTM, SGAN-PV, and SGAN-PV-20 treat each

vehicle as a particle and only predict its positions, we use

its orientations at t−1 to approximate its orientations at t in

these methods, based on the statistical analysis in Sec. 4.

We also performed an ablation study with different con-

trol settings to evaluate the contribution of each part of the

network. Our methods are referred to as VPLSTM-OP-N.

Here O denotes that the vehicles in scenes are treated as
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vehicle
pedestrian

observed predicted ground truth

vehicle
observed predicted ground truth

(1
)

(2
)

(3
)

VPLSTM-OP-20 VPLSTM-OP-20 SGAN-20VP-20SGAN-20VP-20

Figure 6. Three examples of the predicted trajectories compared with the ground truth and SGAN-20VP-20. The left and center-right

column show the position trajectories of both vehicles and pedestrians predicted by VPLSTM-OP-20 and SGAN-20VP-20, respectively.

The kinematic trajectories of vehicles illustrated in the center-left and right column are represented by OBB. Here Tobs = 8 and Tpred = 12.

In order to clearly illustrate kinematic trajectories, we sample trajectories and show vehicles at t = 3,6,9,12,15,18. More examples are

provided in the supplementary material.

OBB, whose orientations and positions are predicted jointly,

and P signifies the mixed social pooling are adopted in the

model. Assume Lv and Lp denote the optimal predictions

of vehicles and pedestrians in the test phase, respectively.

We randomly sample N times from each learned d-variate

Gaussian distributions. Note that the vehicles without pre-

dicted orientations in VPLSTM-P-N are treated as particles,

and we employ the same optimization as for pedestrians.

Scenes with Vehicles only. In order to evaluate the kine-

matic trajectory definition for vehicles, we test our model on

a publicly available dataset, NGSIM [1], that includes the

trajectories of heterogeneous vehicles with different sizes.

As shown in Table 2, V-LSTM had the highest error on

each metric in terms of position prediction and orientation

estimation, since it cannot capture the interactions among

vehicles. All of S-LSTM, SGAN-1VP-1, and SGAN-20VP-

20 can capture the interactions among vehicles and per-

form better than V-LSTM. Due to the variety loss adopted

in SGAN-20VP-20, which encourages the network to pro-

duce diverse samples, the SGAN-20VP-20 obtained bet-

ter performance than other comparative methods (except

ours). However, these models treat each vehicle as a par-

ticle and ignore the heterogeneous size information of var-

ious vehicles. VPLSTM-OP-20 significantly outperformed

VPLSTM-P-20 due to the kinematic feature of vehicles. In

a nutshell, by exploiting the OBB of each vehicle, the size

information, including positions and orientations, are im-

plicitly encoded, which helps to predict more accurate kine-

matic trajectories for vehicles.

Vehicle-Pedestrian-Mixed Scenes. We further evaluated

our model on our vehicle-pedestrian-mixed trajectories

dataset. Because V-LSTM, S-LSTM, and SGAN are built

for predicting human trajectories, and each agent in these

methods does not distinguish the difference between vehi-

cles and pedestrians. We adopted the assumption in these

methods, where each agent, treated as a particle, has the

same motion pattern.

We compared the accuracy of position prediction us-

ing ADE and FDE for vehicles and pedestrians in Table 3.

Because V-LSTM can predict the trajectory of any traf-

fic agent based on its historical trajectory, ignoring inter-

actions, it had the highest error in terms of the prediction

of both positions and orientations. Although both S-LSTM

and SGAN capture the interactions among heterogeneous

traffic agents and perform better than V-LSTM, these mod-

els treat each agent as a particle and cannot distinguish

the difference among various interactions. The pedestrians

and vehicles with different motion patterns share the same

LSTM in SGAN, which produced higher ADE and FDE

errors on the position prediction, especially for pedestri-

ans. Besides, it is apparent that the position ADE and FDE

errors of pedestrians predicted by SGAN, VPLSTM-P-20,

and VPLSTM-O-20 are small, but the position errors for

vehicles are higher due to the assumption that vehicles are

treated as particles and share the same LSTM with pedestri-

ans. VPLSTM-OP-1 obtained high errors as the predicted

trajectories can be any of the multiple possible trajectories

from the learned distributions. SGAN-20VP-20, VPLSTM-

O-20, and VPLSTM-OP-20 predicted the close position re-

sults for vehicles in the BJI dataset due to its low traffic

density. By using OBB to encode size and orientation in-

formation for the vehicle and adopting separate LSTMs to
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vehicle
observed ground truth predicted

pedestrian
observed ground truth predicted

(1) (2)

Figure 7. Two examples of comparison between our model and

ground truth (top row). For each traffic agent, we visualize its

probability distribution at one time-step in predicted duration (bot-

tom).

represent traffic agents, our VPLSTM-OP-20 captures all

possible scenarios and produces the best trajectories from

various samples for both vehicles and pedestrians. Please

refer to supplemental material for more results.

With the defined metrics ADEO and FDEO, the orienta-

tions predicted for vehicles were also compared with the es-

timated orientations in the two bottom rows of Table 3. The

predicted results of VPLSTM-OP-20 are significantly better

than the results estimated based on the last orientation. This

shows that our model can predict more accurate and stable

kinematic trajectories for vehicles, including both positions

and orientations.

Summary. The main findings from our quantitative ex-

periments include: 1) In vehicle-pedestrian-mixed scenes,

separately encoding behaviors and interactions among both

vehicles and pedestrians are indeed necessary; 2) vehi-

cles, limited with kinematics, are different from pedestri-

ans, and they should be treated as rigid bodies to predict

more accurate kinematic trajectories, which also contributes

to the prediction of pedestrian trajectories; 3) predicting the

orientations of vehicles is indeed necessary, and the pre-

dicted orientations improve the performance than the ap-

proximation of the orientations using straightforward geo-

metric methods. Our VP-LSTM model can predict the tra-

jectories of both pedestrians and vehicles simultaneously.

Not only the positions but also the orientations of vehicles

can be more accurately predicted in crowded scenes.

5.2. Qualitative Evaluation

We show some qualitative evaluation results on our

dataset in Fig. 6. As discussed above, the motions of both

pedestrians and vehicles are influenced by the neighboring

traffic agents. We report the kinematic trajectories of vehi-

cles, represented with OBB, which are computed based on

the predicted positions and orientations. As shown in Fig. 6,

pedestrians’ trajectories were predicted by both VPLSTM-

OP-20 and SGAN-20VP-20, which indicates the trajecto-

ries of pedestrians (as particles) are more straightforward

than vehicles (limited with kinematics). Although vehi-

cles, treated as particles in SGAN-20VP-20, also can fore-

cast more comparatively accurate trajectories (as shown in

the center-right column). However, the kinematic trajec-

tories estimated with the last orientation will still result in

more significant errors. Our model can learn different pat-

terns for vehicles and pedestrians involved in various in-

teractions, including following, merging, and avoiding (see

Fig. 6). When vehicles drive in a group mixed with pedes-

trians, the trajectories predicted by our VP-LSTM model is

close to the ground truth (see the examples (2)(3) in Fig. 6).

We visualize the separate probability distributions of ve-

hicles and pedestrians predicted with our model at one time-

step in Fig. 7. In the two examples, we observe that the vehi-

cles capture various heterogeneous interactions to avoid col-

lisions. Pedestrians in crowded spaces also find their ways

to keep moving forward. Hence, different distributions for

different traffic agents, learned by our model, make the

prediction suitable in widely existing, vehicle-pedestrian-

mixed scenes.

6. Conclusion

In this work, to tackle the problem of trajectory predic-

tion for vehicles and pedestrians simultaneously in crowded

vehicle-pedestrian-mixed scenes, we build a carefully-

annotated dataset under different traffic densities, and fur-

ther proposed a VP-LSTM framework to predict the trajec-

tories of both vehicles and pedestrians jointly. The trajec-

tories of vehicles in crowded spaces are limited to kinemat-

ics and involved with pedestrians. These vehicles, treated

as rigid and defined with more accurate representations

(OBBs), can be computed based on the predicted positions

and orientations. To generate the kinematic trajectories for

different traffic agents, we adopt different optimizations for

vehicles and pedestrians. We also report the performance

of our work compared with various state-of-the-art meth-

ods. Further research on a more accurate trajectory predic-

tion of vehicles involved with pedestrians and limited with

kinematics can improve the efficiency and accuracy of au-

tonomous driving.
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