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Abstract

Unsupervised domain transfer is the task of transferring

or translating samples from a source distribution to a dif-

ferent target distribution. Current solutions unsupervised

domain transfer often operate on data on which the modes

of the distribution are well-matched, for instance have the

same frequencies of classes between source and target dis-

tributions. However, these models do not perform well

when the modes are not well-matched, as would be the case

when samples are drawn independently from two different,

but related, domains. This mode imbalance is problematic

as generative adversarial networks (GANs), a successful

approach in this setting, are sensitive to mode frequency,

which results in a mismatch of semantics between source

samples and generated samples of the target distribution.

We propose a principled method of re-weighting training

samples to correct for such mass shift between the trans-

ferred distributions, which we call batch weight. We also

provide rigorous probabilistic setting for domain transfer

and new simplified objective for training transfer networks,

an alternative to complex, multi-component loss functions

used in the current state-of-the art image-to-image trans-

lation models. The new objective stems from the discrimi-

nation of joint distributions and enforces cycle-consistency

in an abstract, high-level, rather than pixel-wise, sense.

Lastly, we experimentally show the effectiveness of the pro-

posed methods in several image-to-image translation tasks.

1. Motivation

Recent developments originating from Generative Ad-

versarial Networks [GANs, 9] allow generation of high

quality images, often hardly distinguishable from the real
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images [18, 4]. Adversarial methods have also been suc-

cessfully applied in conditional image generation, where

generated samples are obtained as functions of some prior

data. When the latter is also composed of images, the prob-

lem is also called image-to-image (domain) transfer or style

transfer. In this scope, adversarial objectives are often com-

bined with other loss functions to ensure desirable proper-

ties of the transfer networks. These include variants of cycle

consistency loss, originally proposed in CycleGAN [38] and

developed further by [16, 1, 23], leading to current state-of-

the-art results in several image-to-image transfer problems.

Notwithstanding these notable results, not much atten-

tion has been paid towards understanding of unsupervised

domain transfer from probabilistic point of view. Although

original CycleGAN assumes deterministic transfer, later

works identified the necessity of learning non-deterministic

many-to-many mappings to account for features that might

be present only in one of the considered domains. A

common assumption made in such setting, sometimes di-

rectly [e.g., 16], but often implicitly, is the existence of

latent variable that covers the shared semantics between the

domains of interest. Learning the transfer function can then

be decomposed to learning deterministic encoders to and

stochastic decoders from such latent space.

This view, however, does not take into account the dis-

tributional differences that may exist between the domains

being matched. Since probability mass is preserved trough

encoders and decoders, every mode in source domain cov-

ers the same share of the distribution as its representations in

latent space and the target domain do in their respective dis-

tributions. However, we do not necessarily want to match

modes that consist the same shares of data.

For example, consider the task of transferring between

handwritten digits [MNIST, 22], and Street View House

Numbers [SVHN, 28]. These datasets are independently

sampled but share semantics expressed in the digit classes,

styless (e.g., seven with or without a cross), etc which we
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wish to correctly transfer. Since digits in MNIST are evenly

distributed, we expect the correct transfer function to pro-

duce samples in which zeros cover approximately 10% of

all generated ones. Yet, the distribution of the “correct”

transfer function (one that maintains the digit class) would

be different from the actual SVHN distribution, where ones

cover around 20% of the data. Therefore such a transfer

function would not be optimal in the Optimal Transport

sense, i.e. it would not minimize any divergence between

reference and generated distributions. Given such correct

transfer-generator, a good discriminator would need to be

insensitive to the disparity of mode (i.e., digit) frequen-

cies between the source and target distributions. If not, it

would provide a gradient signal to the transfer-generator

that would encourage it to alter some modes to account for

the missing mass of ones in its output.

We will call the described issue a mode-mass imbalance.

This issue demonstrates the view that shared seman-

tics can be modelled through a latent variable is, in gen-

eral, invalid. However, the described problem is inher-

ent in all GAN-based approaches to domain transfer, since

GAN discriminators are always trained to estimate some

kind of divergence e.g., Jensen-Shannon [9]; Wasserstein

distance [2, 11]; Maximum Mean Discrepancy [24, 3] be-

tween reference distribution and the generated samples. For

these reasons, we propose batch-weight as a solution to the

issue caused by mass-preserving property of optimal trans-

port in the context of domain transfer. Batch weight aims to

re-balance samples within each batch to account for differ-

ences in the reference and generated distributions.

2. Related Work

The need to correct for mode shift between distributions

of interest has been widely studied in machine learning.

2.1. Supervised learning

In supervised learning, it is often assumed that distribu-

tions p(x) and q(x) of the independent variable on the train-

ing and tests are different, but the conditionals p(y|x) and

q(y|x) are equal. Such situation is known as covariate shift

or sample selection bias and has been addressed in multiple

works [32, 36, 15, 10, 33].

The complimentary setting when p(x|y) = q(x|y),
termed label shift, has also been studied [37]. In more re-

cent work, [25] consider label shift correction for black box

predictors.

2.2. Importance sampling

The problem of changing probability measure in empir-

ical setting has has long been studied in the field of im-

portance sampling. This general technique has been used

in estimating properties of distribution available indirectly

through another distribution.

Importance sampling is often applied in variance reduc-

tion problems. In such, one re-weights the available sample

so that the variance of the estimated quantity under new dis-

tribution is lower than with respect to the original one.

2.3. Domain transfer

The distribution shift has undergone some limited study

in the context of domain transfer. [5] empirically showed

that the use of distribution-matching loss functions in do-

main transfer leads to issues when modes in target domain

are under- or over-represented as compared to the source.

[6] also identifies the problem of distribution mismatch in

generative modelling, however the proposed re-balancing

function is provided only in case when relation between

source and target distribution is available (directly or indi-

rectly).

[35] proposed an algorithm based on Optimal Transport

for distribution matching within a single domain, which is

then applied to image-to-image transfer by using a single

Variational Autoencoder [VAE, 20] trained on the union of

available samples. It therefore depends on the quality of re-

constructions and feasibility of encoding two different do-

mains using a single VAE. As a two-step method, it does not

directly optimize the transfer and adjustment of the imbal-

ance between the original samples, but between their em-

beddings.

State-of-the-art unsupervised image-to-image translation

models [16, 1, 23] assume that we are given samples X and

Y drawn from two domains X and Y according to some

distributions Px and Qy , and seek (possibly random) gen-

erator functions Gxy : X ! Y and Gyx : Y ! X so

that generated distributions Gxy#Px and Gyx#Qy
1 match

with Qy and Px in consistent way. Numerous techniques

have been developed to ensure that the generated samples

are consistent with their sources and that the transfer is in-

vertible. Most of them are based on simple yet powerful

cycle-consistency loss [38],

Lcyc(x, y) = kGyx(Gxy(x))� xk1

+ kGxy(Gyx(y))� yk1, (1)

along with the GAN objective [9]; [16, 23, 39] combine as

many as five different loss components to train the generator

functions.

Note that in the presence of mode-mass imbalance, the

assumption that generators should minimize the GAN ob-

jective violates the consistency between sources and tar-

gets. It can be shown that this assumption together with

cycle consistency imply that our samples are drawn from

marginals of the same distribution Pxy = Qxy on X ⇥ Y ,

i.e. Px = EyPxy,Qy = ExPxy .

1f#P denotes push-forward measure of P through function f .
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Figure 1: Scheme of the proposed model. Joint distributions

are matched adversarially, with the only supervision coming

from marginals.

More complicated loss functions used in domain transfer

still seek the generators that mimic the conditionals Py|x

and Qx|y , given marginals Px and Qy . Although they do

not imply the equality of the joint distributions Pxy,Qxy

being searched (which correspond to the correct transfer),

they do imply equality of their marginals, Px = Qx and

Py = Qy , which is impossible in the presence of mode-

mass imbalance.

Domain transfer models often assume existence of

underlying shared semantics [e.g. 16] modelled as un-

derlying latent variable U that consists common fea-

tures of X and Y . In such scenario, one aims

to train encoders Enc(U |X), Enc(U |Y ) and decoders

Dec(X|U), Dec(Y |U), and transfer between domains

through U . This, however, does not account for the pos-

sible mode-mass imbalance between X and Y : even non-

deterministic encoders and decoders preserve probability

mass between X and U , and U and Y . Therefore, the as-

sumption that such U exists is, in general, invalid. This

inherent issue of domain transfer has been noted by [21].

3. Formulation

In this section we propose a framework to perform

unsupervised domain transfer in the presence of mode-mass

imbalance, without cycle-consistency loss.

Assume that Pxy,Qxy are distributions on X ⇥ Y such

that supp Pxy = supp Qxy and that we observe samples

drawn from their marginals Px and Qy . Pxy and Qxy repre-

sent correct matchings between these domains, i.e the trans-

fer from x to y (or other way around) is considered valid if

the pair (x, y) can be drawn from Pxy and Qxy . Although

we do not assume the same marginals,we do assume the

equality of conditionals,

Py|x = Qy|x Px|y = Qx|y. (2)

This assumption is much weaker than equality of joints

Qxy = Pxy which most domain transfer models implicitly

assume.

We aim to obtain the correct transfer by learning gener-

ators Gxy : X ! Y, Gyx : Y ! X that mimic the above

marginals. Let PG
y = Gxy#Px and QG

x = Gyx#Qy .

Let M = 1

2
(Pxy + Qxy). Thanks to the assumption

of equality of the supports of Pxy and Qxy , both Radon-

Nikodym derivatives w =
dPxy

dQxy

and v =
dQxy

dPxy

exist and

satisfy,

w(x, y) = (v(x, y))
−1

, (x, y) 2 supp Pxy. (3)

Therefore

Pxy
1

2
(1 + w(X,Y )) = M

= Qxy
1

2
(1 + w−1(X,Y )). (4)

As we aim to learn the distributions Pxy and Qxy through

generators Gxy and Gyx
2,

Pxy ⇡ PG
xy :=(id⌦Gyx)#Px,

Qxy ⇡ QG
xy :=(Gxy ⌦ id)#Qy.

We can approximate distributions on the left and right

hand sides of the Eq. 4 using available samples from

marginals Px and Qy , along with weighting network W 2

W that approximates the derivative w =
dPxy

dQxy

, where

W = {W : X ⇥ Y ! R+,EX∼Px
[W (X)] = 1}. Such

constraint can easily be enforced by a softmax layer com-

puted over samples in the batch.

Therefore, at generation step we shall optimize the fol-

lowing objective:

inf
Gxy,Gyx,W

EX∼Px

Y∼Qy

L
�

PG
xy

1

2
(1 +W ),QG

xy
1

2
(1 +W−1)

�

,

(5)

where L is some loss function trained adversarially.

At this point, we introduce a joint discriminator D :
X ⇥ Y ! R, a neural network that discriminates between

distributions supported on X ⇥ Y and R is a domain that

depends on the GAN type. Similar idea has been applied

in ALI/BiGAN [8, 7]. Joint discriminator enforces cycle-

consistency on the abstract- rather that pixel-level as objec-

tive 1 does.

Assuming Wasserstein GAN setting and R = R, the full

objective implied by Eq. 5 is as follows:

inf
Gxy,Gyx,W

sup
D

�

EX∼Px

1

2
D(X,Gyx(X))⇥ (1 +W (X,Gyx(X)))

�EY∼Qy

1

2
D(Gxy(Y ), Y )⇥ (1 +W (Gxy(Y ), Y )−1)

�

.

(6)

2implicitly, by learning the conditionals
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The batch weight procedure for Wasserstein domain

transfer with joint discriminator is detailed in Algorithm 1.

Overview of the algorithm is also shown in Figure 1. From

now on, we will call the proposed architecture a Joint Dis-

criminator - Batch Weighted domain transfer or shortly JD-

BW.

Algorithm 1 Batch Weight

Given: Px and Qy - source and target distributions

Given: d - number of discriminator steps per generator

step, N - total training steps, m - batch size

Initialize generators Gxy, Gyx, discriminator D and

weighting W network parameters θG, θD, θW .

for k = 1 to n do

# generator - weight step

Sample x1, . . . , xm ⇠ P and y1, . . . , ym ⇠ Q.

w1, . . . , wm  σ([W (xi, Gyx(xi))]
m
i=1)

v1, . . . , vm  σ(�[W (Gxy(yi), yi)]
m
i=1)

L−  
Pm

i=1
D(xi, Gxy(xi)) ·

1

2
(1 + wi)

L+  
Pm

i=1
D(Gyx(yi), yi) ·

1

2
(1 + vi)

θG  Adam (rG[L
− � L+], θG)

θW  Adam
�

rW

⇥

(L− � L+)2
⇤

, θW
�

for j = 1 to d do

Sample x1, . . . , xm ⇠ P and y1, . . . , ym ⇠ Q.

w1, . . . , wm  σ([W (xi, Gyx(xi))]
m
i=1)

v1, . . . , vm  σ(�[W (Gxy(yi), yi)]
m
i=1)

L−  
Pm

i=1
D(xi, Gxy(xi)) ·

1

2
(1 + wi)

L+  
Pm

i=1
D(Gyx(yi), yi) ·

1

2
(1 + vi)

θD  Adam (�rD[L− � L+], θD)
end for

end for

3.1. Two-domain vs. single-domain batch weight

At early stage of this work we considered one-sided

batch weight, where weighting network was applied only

to samples coming from one of the domains. That ap-

proach, however, proved somewhat unstable: one-sided re-

weighting carries a risk of some training examples from the

weighted domain getting weights very close to zero, which

slows down the training (as they would have small impact

on gradients). Some examples may need to be assigned very

small weights, yet this can occur wrongly at early phase

of training, when weighting network is imperfect. For in-

stance, a possible failure mode would be when such low

weights were assigned to the samples of lowest quality (at

some point during training); in such case generator would

have very little incentive to improve them.

The advantage of re-weighting both domains is that it

ensures that every example in each training set would re-

ceive a weight no smaller than a half of what it would get

without re-weighting. Therefore it may never collapse in

the sense that some examples from one domain are fully

excluded from training, i.e. assigned zero weights.

In practice, we found re-weighting both domains much

more stable. Thanks to the symmetric formulation3, if some

mode gets lower weights in one domain, the correspond-

ing mode in the other domain is likely to receive higher

weights, eventually leading to balance between re-weighted

domains.

The original idea of one-sided batch-weight is presented

in Appendix A in supplementary material.

3.2. Non-uniqueness and implicit bias

Given empirical distributions Px and Qy there exist

many joints Pxy and Qxy satisfying equality of conditionals

(Assumption 2). For instance, P0
xy := Q0

xy := Px⌦Qy is a

valid distribution on X ⇥ Y that has all the assumed prop-

erties, except that it leads to independent transfer between

these domains. Mathematically speaking, the problem of

domain adaptation is ill-posed.

For this reason, it is worth to note the role of implicit bias

of the generator network architectures used in modelling

the conditional distributions Py|x and Qx|y . State-of-the art

image-to-image translation models [38, 16, 23] all use deep

ResNets [13] or U-Nets [30] as transfer-generators. These

architectures bias the generator mapping towards identity in

pixel-level space, which helps obtaining satisfying transfer

networks. This, however, also explains limitations of these

models: the most impressive performance has so far been

achieved in tasks with near pixel-to-pixel correspondence,

also referred to as style transfer.

Nevertheless, we follow these approaches and impose

similar architectural constraints on Gxy, Gyx to enforce the

dependence structure in learned joints PG
xy and QG

xy .

4. Experiments

In this section we discuss experiments, benchmarks and

ablation studies for the proposed JD-BW algorithm.

Although at early stage of this work we carried out ex-

periments with one-sided batch-weight mentioned in Sec-

tion 3.1, they confirmed the aforementioned issues. For this

reason, we focus on experiments with Algorithm 1.

4.1. Datasets

We carry out experiments on four dataset pairs.

1. MNIST to skewed & resized MNIST. In this experi-

ment we alter the standard MNIST dataset by introduc-

ing bias towards zeros. In the SR-MNIST (skewed and

resized MNIST) half of the samples are drawn from

the class of zeros, while the other half are drawn with

equal probabilities from the remaining digit classes.

The images are then padded, randomly rotated by the

3more precisely, the invertibility of Random-Nikodym derivative.
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(a) Joint Discriminator with Batch Weight (b) MUNIT with Batch Weight

(c) Joint Discriminator alone (d) MUNIT

Figure 2: Results for SR-MNIST to MNIST transfer. Each picture shows three rows of images: original SR-MNIST samples

in the first one, samples transferred to MNIST space in the second one, and 2nd row samples transferred back to SR-MNIST

space in the last row. Only Joint Discriminator architecture with Batch weight achieves satisfying results, while all other

models struggle with frequency of zeros in SR-MNIST dataset, which are often matched with other digits. Note that JD

models are do not directly optimize the quality of reconstructions (2nd rows), whereas MUNIT does so via cycle-consistency.

Figure 3: Moving averages of the combined batch weights

assigned to each of the digit-classes throughout MNIST to

SR-MNIST transfer training; iterations in horizontal axis.

For clarity we show values only for first five digits; xk’s -

solid lines (yk’s - dashed lines) stand for digits k in MNIST

(SR-MNIST). Even though zeros in SR-MNIST are very

frequent, their weights gradually become lower, while those

of their MNIST - counterparts - higher, eventually matching

with each other. Total weights of other digits match too,

with ones getting high weights in both datasets.

angle α 2 (� π

12
, π

12
) and randomly cropped. The re-

sulting digits are slightly smaller than the original ones

and not necessarily centered. Although changing sam-

pling frequency itself makes the case for batch weight-

ing, the alterations made to the digits so that the trans-

fer to be learnt is not trivial/deterministic.

2. MNIST to SVHN. We attempt the transfer between

MNIST to SVHN [28] without using the labels. SVHN

has a non-uniform distribution of digits and is charac-

terized by considerably more complex features, such

us font, colour, background and size. Although we use

the version of SVHN with centered digits, they also

Figure 4: MNIST to SVHN transfer with JD-BW architec-

ture and fixed noise values. Original MNIST samples on the

left; samples in each other column were obtained with the

same noise sampled from R16.

often contain side-digits coming from the whole house

number. To our best knowledge, this problem has not

yet been solved.

3. Edges to Shoes&Bags. We combine edges2shoes

and edges2handbags datasets [17] to obtain two-class

datasets of edges and photos, and alter sampling of the

latter so that large share (50%, 70 or 90%) of examples

are photos of shoes. In the edge-domain we leave sam-

pling unchanged, hence 50k out of total 188k (26%)

examples are contours of shoes. We carry out experi-

ments at 128x128 resolution.

4. CelebA to Portraits. We transfer CelebA dataset of

celebrity photos [26] to WikiArt dataset of 1714 por-

traits [23]. We randomly crop images around the faces

and resize to 128x128 resolution.
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4.2. Benchmarks and ablation study

We compare the performance of the proposed model

with MUNIT [16], which is one of the state-of-the-art mod-

els in unsupervised image-to-image transfer. We do not

compare with CycleGAN [38] and BiCycleGAN [39] as

the former does not allow multimodal transfer and MUNIT

is essentially its extension, while the latter requires paired

training examples.

Since our model has two novel components, batch

weight and joint discriminator, we also carry out two ab-

lations on the MNIST - SR-MNIST task (Section 5.1):

• MUNIT with batch weight,

• Joint discriminator architecture without batch weight.

To make our research reproducible, the code for experi-

ments is attached to the submission.

4.3. Evaluation

We propose two quantitative metrics that measure the

quality of transfer.

1. Transferred Samples Accuracy (TSAcurracy); the ac-

curacy of the classifier trained on the target domain

evaluated on transferred samples with labels from re-

spective source images.

2. Joint Fréchet Inception Distance (JointFID); a met-

ric analogous to FID [14] with the difference that

the Fréchet distance is computed on joint (concate-

nated) Inception[34]4 representations of source and

transferred images.

Both of these metrics measure sample fidelity and correct-

ness of the transfer5. JointFID additionally measures sam-

ple diversity per domain, as FID does.

TSAccuracy can only be computed if some kinds of

modes are known (e.g. if class labels are available), while

JointFID requires paired ground-truth samples. For these

reasons, we carry out evaluation on MNIST - SR-MNIST

and Edges - Shoes&Bags tasks.

Details.

We trained LeNet classifiers for MNIST and SRMNIST

datasets and simple DCGAN-discriminator-like classifier

for Edges and Shoes&Bags datasets. All of these classi-

fiers are trained for 10,000 steps, using balanced samples

and batch size of 128. At evaluation we sample datasets as

in the original transfer tasks. We collect 50,000 individual

samples for calculation of JointFID and TSAccuracy.

Results are presented in Table 1.

4For MNIST - SR-MNIST task we follow [3] and use LeNet instead,

as pre-trained Inception network is not very expressive for these domains.

The same LeNet instances are used for JointFID and TSAccuracy.
5For instance, a classifier should not recognize samples of poor quality

and, at the same time, should detect the wrongly transferred ones, regard-

less of their quality.

4.4. Network architectures

Generators

As stressed in Section 3.2, the architecture plays very im-

portant role in domain transfer. Following the successful ar-

chitectures of [38, 16] we use generators with several resid-

ual blocks [13] to bias the transfer towards identity.

Since we consider non-deterministic transfer, generator

networks take as inputs the image and noise vector, sampled

uniformly from Rd, where d = 8 for MNIST - SR-MNIST

task and d = 16 for other tasks. Noise vector is repeated

over the spacial dimensions and concatenated to convolu-

tional representation: halfway through the depth of the net-

work for 32x32 models and before the first residual block

for 128x128 architectures. We follow [4] and use spectral

normalization [27] in both generator and discriminator net-

works. 32x32 architecture is shown in details in Table 3 in

Appendix B in supplementary material. For 128x128 reso-

lution we used the same generators as in MUNIT [16]6.

Discriminator

For joint discriminator, we use somewhat more powerful

discriminator than the DCGAN [29], as it has to discrimi-

nate between joint distributions on X ⇥Y . The architecture

at each level separately computes features of each of the

images alone and of their concatenation. We use spectral

normalization [27] and gradient penalty at training points7

as in [31]. Details are shown in Table 2 in Appendix B in

supplementary material.

Weighting network

For weighting network, we considered several approaches.

Function W maps from X ⇥ Y , yet the samples it

will ever see during the training are either of the form

(x,Gyx(x)), x ⇠ Px or (Gxy(y), y), y ⇠ Qy; there are thus

multiple ways of modelling W . Overall, out of the several

strategies we considered for obtaining weights wx, wy for

the batches x ⇠ Pn
x ,y ⇠ Qn

y the following proved most

stable:

Wx : X ! R, Wy : Y ! R,

wx = 1

2
(σ(Wx(x)) + σ(�Wy(Gxy(x))) ,

wy = 1

2
(σ(�Wx(Gyx(y)) + σ(Wy(y))) ,

where the weight networks Wx,Wy are modeled using the

architecture of DCGAN discriminator [29] with four con-

volutional layers and 64 features in the first layer.

We also found useful regularizing the weighting network

training by clipping the values of W , which lets us control

(and gradually relax) the ratio between highest and lowest

weights within a batch. We discuss these further in Ap-

pendix B.1 in supplementary material.

6except that we used spectral normalization and did not use Adaptive

Instance Norm.
7instead of interpolations between training and reference samples as

originally proposed by [12]
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4.5. Training details

We train all models using Adam optimizer [19] with pa-

rameters β1 = .5,β2 = .999, but we used different hyper-

parameter settings for 32x32 and 128x128 architectures.

32x32 models. We used batch size of 128. Joint Dis-

criminator models are trained with 5 discriminator steps

per generator step, while MUNIT (benchmark) models are

trained with one generator per one discriminator step, as

in original implementation. For these reason, we train the

latter for 3x more generator steps than the proposed archi-

tectures8. After this number of iterations, MUNIT models

seemed to converge. Overall, we train JD (MUNIT) for 50k

(150k) steps in MNIST - SR-MNIST task and 250k (750k)

steps in MNIST - SVHN task.

128x128 models. We used batch size of 6, 2 discrimina-

tor steps per one generator step and trained for 300k gener-

ator steps.

5. Results

5.1. MNIST to SRMNIST

We perform the unsupervised transfer task from SR-

MNIST to MNIST (i.e., without using the labels in any

part of our objective for any network). As zeros are over-

represented in the first dataset, we anticipate this task will

be difficult without properly reweighting the GAN objec-

tive. We compare to Multimodal Unsupervised Image-to-

Image Translation [MUNIT, 16]

Results from this experiment are shown in Figure 2.

Only Joint Discriminator architecture with Batch Weight

performed well, correctly matching different digit classes.

Other models often incorrectly match some kinds of SR-

MNIST zeros with other MNIST digits. Quantitive evalua-

tion presented in Table 1 confirms this observation, as JD-

BW outperforms MUNIT in both TSAccuracy and Joint-

FID. We monitored the batch weights assigned to each

example within a batch in order to find out if weight-

ing network(s) are capable of matching frequencies of the

modes in two distributions. Figure 3 presents evolution of

the weights aggregated for each of the MNIST/SR-MNIST

classes (as these are the only modes we can clearly distin-

guish). Weighting network successfully allows the mode

frequencies to gradually match between both distributions.

We also note that the proposed model achieves cycle-

consistency in an abstract, high-level sense. The learned

transfer is non-deterministic, yet the reconstructed SR-

MNIST samples Gxy(Gyx(y)) belong to the same sub-

manifold as the original samples y, where such sub-

manifold is spanned by features non-existent in MNIST

space.

8This required slightly longer training for MUNIT anyway, due to sim-

plified JD architecture.

TSAccuarcy (%) JointFID

Task higher is better lower is better

if JD-BW MUNIT JD-BW MUNIT

MNIST → SR-MNIST .4 93 69 6.1 34.7

paired real data - 98 .02

MNIST ← SR-MNIST .4 93 44 6.0 122.9

paired real data - 98 .08

Edges → Shoes&Bags .5 97 96 43 32.7

.7 97 76 46.5 44.7

.9 95 42 52 100.6

paired real data - 98 11.5

Edges ← Shoes&Bags .5 95 91 25.3 21.7

.7 96 85 25.7 29.3

.9 91 80 33 69.5

paired real data - 97 8.7

Table 1: Quantitative results. if - imbalance factor, for

MNIST - SR-MNIST tasks it denotes the share of zeros in

SR-MNIST, for Edges - Shoes&Bags it denotes the share

of photos of shoes in the latter dataset. JD-BW (proposed)

outperforms MUNIT when imbalance is present.

5.2. MNIST to SVHN

Results from this experiment are shown in the Figure 5.

Although our model does not produce as sharp images as

expected and makes few mismatch errors, it provides rea-

sonable transfer. MUNIT, on the other hand, wrongly trans-

fers MNIST to SVHN and collapses completely in the op-

posite direction.

Our method also disentangles SVHN-specific features

from those shared with MNIST, and models the former via

noise input. Figure 4 shows samples obtained from differ-

ent MNIST digits with the same noise, for 8 different noise

values.

5.3. Edges to Shoes&Bags

In this experiment the main difficulty comes from differ-

ence in frequencies of bags and shoes between source and

target domains. As shown in Fig. 6a, the proposed model

successfully tackled the problem, producing correctly trans-

ferred samples. MUNIT (Fig. 6c), on the other hand, strug-

gled with the imbalance and often transferred bag-edges to

shoes, which were over-represented in the photo domain.

Table 1 shows evaluation metrics for this task with vary-

ing distribution skew in Shoes&Bags domain. JD-BW ob-

tained higher TSAccurracy than MUNIT regardless of that

factor and better JointFID when the imbalance was higher.

5.4. CelebA to Portraits

We present results from this experiment in Fig. 6b and

6d. In this experiment we were not able to quantify mass

shift between different modes, as no labels/additional fea-

tures are available for the Portrait dataset. However, some

of such imbalances are visible, e.g. gender proportions and
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(a) JD-BW, MNIST to SVHN (b) JD-BW, SVHN to MNIST

(c) MUNIT, MNIST to SVHN (d) MUNIT, SVHN to MNIST

Figure 5: Results for MNIST to SVHN transfer. First row in each picture shows original samples, while second the transferred

samples. For the proposed JD-BW model, the additional 3rd row presents samples transferred back to the original space.

Although MUNIT produces sharper images, the match between original and transferred samples is very poor, with SVHN to

MNIST direction suffering from mode collapse. Joint Discriminator struggles with image sharpness, however the matching

is usually correct and cycle-consistent.

(a) JD-BW (ours), Edges to Shoes&Bags (b) JD-BW (ours), Portraits to CelebA

(c) MUNIT, Edges to Shoes&Bags (d) MUNIT, Portraits to CelebA

Figure 6: Results for Portraits to CelebA and Edges to Shoes&Bags transfers. Original samples are shown in the first row,

second one shows samples transferred to the other domain while the third shows 2nd row transferred back to the original

domain. For both datasets our model yields very reasonable transfer. MUNIT, on the other hand, struggles to match domains

correctly, despite overall good quality of produced samples.

frequency of moustache are different in paintings than in

celebrity photos.

Both models produced samples of good quality, however

those coming from our model preserved much more fea-

tures of the original examples. MUNIT, in fact, preserves

only a pose, while all other features seem to be indepen-

dent of the source image. In Appendix C in supplementary

material we further discuss the nature of transfer learned by

MUNIT in this and in the previous task.

6. Conclusion

In this work, we considered unsupervised domain trans-

fer in the presence of mode imbalance, a situation when

modes to be matched have different frequencies in source

and target domains. The contributions of this paper are as

follows. Firstly, we provide probabilistic formalism of un-

supervised domain transfer. Secondly, we propose a novel

method of batch weighting to tackle the issue of mode im-

balance. Thirdly, we propose a new architecture called Joint

Discriminator, that not only largely simplifies the train-

ing objective, but also ensures cycle-consistency in multi-

modal, high-level sense, without directly enforcing qual-

ity of reconstructions. Finally, we propose two quantita-

tive evaluation metrics for domain adaptation, Transferred

Samples Accuracy and JointFID. We experimentally show

effectiveness of our model and its superiority over the ex-

isting benchmark in tasks where mode-mass imbalance is

present.
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