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Abstract

Estimating motion and surrounding geometry of a mov-

ing camera remains a challenging inference problem. From

an information theoretic point of view, estimates should get

better as more information is included, such as is done in

dense SLAM, but this is strongly dependent on the validity

of the underlying models. In the present paper, we use tri-

angular meshes as both compact and dense geometry rep-

resentation. To allow for simple and fast usage, we propose

a view-based formulation for which we predict the in-plane

vertex coordinates directly from images and then employ the

remaining vertex depth components as free variables. Flex-

ible and continuous integration of information is achieved

through the use of a residual based inference technique.

This so-called factor graph encodes all information as map-

ping from free variables to residuals, the squared sum of

which is minimised during inference. We propose the use

of different types of learnable residuals, which are trained

end-to-end to increase their suitability as information bear-

ing models and to enable accurate and reliable estimation.

Detailed evaluation of all components is provided on both

synthetic and real data which confirms the practicability of

the presented approach.

1. Introduction

While a large amount of the interest in dense visual si-

multaneous localisation and mapping (SLAM) algorithms

may be due to their ability to create fully dense 3D recon-

structions of the environment (an important requirement for

many tasks such as manipulator grasp planning, augmented

reality, and safe robotic navigation), one of the original mo-

tivations behind dense SLAM was to attain higher levels of

accuracy and robustness in localisation [23]. It was argued

that since the quality of an estimate can only improve with

additional measurements, dense approaches, which make

use of all of the pixels in the image, should be capable of

better performance than sparse systems.

This information theoretic claim, however, is only true

under the assumption that the correct probabilistic model is

Figure 1: Input images, summed feature activations, and

predicted triangular meshes for three example frames.

While the in-plane vertex coordinates are directly predicted

from the image, the remaining vertex depth coordinate is

optimisable and will be inferred based on learned residuals.

used for all of the additional data. This has usually not been

the case in practical dense SLAM systems. One key rea-

son is that the direct photometric measurements that fully

dense systems use, which depend on lighting and reflection,

have residuals which are not well modelled in many parts of

a scene by the same computationally simple Gaussian/M-

estimator models which are suitable for sparse feature re-

projection error. Further, just the large amount of mea-

surement data from all-pixels measurements has meant that

fully probabilistic inference which takes account of all cross

correlations between estimates has been approximated by

alternating pose/map optimisation. There is good discus-

sion of these issues in [9, 24]. The outcome is that sparse

feature-based SLAM with dense reconstruction as a layer

on top has become the standard practical approach, rather

than the appealing promise from [23] of using the dense

model itself as the master map.

One of the key factors determining both the computa-

tional cost and model accuracy of a dense inference al-

gorithm is the choice of geometry representation. As in
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CodeSLAM [1], we are interested in a representation that

is suitable for keyframe-based dense visual SLAM; specifi-

cally, we require a representation that is powerful enough to

capture the observed scene accurately, allows for informa-

tion fusion, and is computationally efficient. For this rea-

son, we choose to rely on triangular meshes as they are ca-

pable of representing dense geometry with few degrees of

freedom. Similar to [38, 41], we model the meshes in 2.5D

for numerical and computational considerations. In particu-

lar, we employ a view-based parameterisation that treats the

image plane coordinates as learnable quantities and the ver-

tex depth as an optimisable quantity. Specifically, a neural

network predicts the image plane coordinates of the mesh

vertices based on a single input image such that the scene

geometry can be well reconstructed when optimising depth.

The choice of representation, however, is only one part

of a full system. Measurements need to be continuously

integrated to guarantee a good exploitation of the available

information. In contrast to systems that learn to predict state

updates directly [4], we desire a more flexible approach

that allows for the continuous integration of novel informa-

tion without being constrained to a fixed number of frames

or optimisation steps. To this end, we use a factor graph

formulation, a well-established methodology in the field of

Bayesian estimation [16]. All available information is en-

coded in the form of residuals that are functions of the vari-

ables to be estimated (for example, in our case, the vertex

depths for the triangular mesh). While this can be comple-

mented with further residuals, we implement two types of

residuals: a prior residual that holds prior information (e.g.

smoothness) and a stereo residual that extracts information

from different observations of the same scene content. Dif-

fering from traditional factor graphs, however, we propose

learning the residuals within the optimisation framework

so as to promote synergy between the various components.

While this relies on the availability of large datasets, it en-

ables the use of high dimensional and strongly descriptive

models with performance beyond hand-tuned models.

In comparison with previous work and in particular

CodeSLAM [1], which also advocates for the use of a com-

pact representation to achieve dense visual SLAM, we in-

troduce the following two key novelties:

• 2.5D triangular meshes as a compact representation for

scene geometry where the image plane coordinates are

predicted by a network from a single image and where

the depth coordinates are optimisable quantities.

• A factor graph formulation that uses learnable residu-

als tailored to the proposed representation and allows

the continuous and flexible integration of sensor infor-

mation.

2. Related Work

Traditional dense monocular SLAM systems such as

DTAM [23] typically represent scene geometry using

keyframes with dense 2.5D depth maps. Estimating the per-

pixel depth values is computationally expensive and there-

fore approximations to the inference method are made, usu-

ally alternately optimising for the pose and map and ig-

noring cross-correlations. The residuals used in these sys-

tems are based on the photometric error, which is not well-

constrained in general due to homogeneous texture, occlu-

sions, or other disturbances. To account for this, a regu-

lariser is typically added, often based on smoothness [23]

or planar [5] assumptions.

Recently, in order to overcome some of these issues with

dense SLAM, a number of learning-based methods have

been proposed. Many approaches (for example, [40, 32,

33, 37, 3]) advocate for a completely end-to-end system to

predict pose and depth from video. While these systems

typically perform well on autonomous driving datasets, the

number of frames used in the estimation is fixed and there

are often no guarantees of temporal consistency between

predictions. Other approaches, notably CNN-SLAM [31],

attempt to combine network predictions with stereo con-

straints. The stereo constraints are applied on a per-pixel ba-

sis, so global consistency is not preserved, and while CNN-

SLAM performs a pose graph optimisation with each new

keyframe, the scene geometry described in past keyframes

is not optimised with new measurements. DeepTAM [39]

uses separate tracking and mapping networks, the mapping

network taking in a DTAM-style cost volume and then re-

fining the prediction with several learning-based modules.

Like traditional dense SLAM systems, DeepTAM does not

jointly optimise for the pose and depth and the geometry of

past keyframes are not updated with new information.

Due to the high computational cost of optimising fully

dense scene geometry, there have been a number of attempts

to find compact representations for dense 3D reconstruc-

tion. Most work has been based on exploiting simple reg-

ularities such as planar regions in indoor scenes [27, 15],

but such hand-designed representations will ultimately be

limited in the scenes they can accurately capture. Recently,

CodeSLAM [1], the work most closely related to our own,

proposed learning an optimisable code in the latent space

of a depth auto-encoder, enabling the joint estimation of the

pose and map in dense visual odometry. Similarly, BA-Net

[30] uses a deep neural network to predict a set of basis

depth maps using the coefficients of a linear combination

of the basis elements as an optimisable representation for

keyframe depth. They take a step further and train the repre-

sentation in combination with a Levenberg-Marquardt (LM)

optimisation with a fixed number of iterations and learnable

damping factor. Unlike our system, BA-Net is not capable

of jointly optimising several keyframes.
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Meshes are a powerful and popular method for represent-

ing scene geometry [38]. There are numerous examples of

methods that adapt meshes to image data (e.g. [12, 11])

or fit meshes to given points, depths, or disparities (e.g.

[2, 14, 26, 10]). Other work attempts to generate 3D meshes

using deep neural networks ([17, 34, 13]), optimisation

([7, 8]) or both [20], but these are typically focused on sin-

gle object reconstruction. In MeshStereo [38], the authors

emphasise the importance of obtaining meshes designed for

the task at hand (in our case, achieving the best possible

depth reconstruction). For this reason, we split the mesh

vertex coordinates into learnable in-plane coordinates and

optimisable depth coordinates and train a network to pro-

duce in-plane coordinates that minimise the reconstruction

error after optimisation with ground truth.

Recently a number of data-driven alternatives have been

proposed to the classical residuals used in dense visual

SLAM. In [28] and [35], learning-based methods are pro-

posed for developing robust features for dense image align-

ment. In [6], the authors experimented with using a “seman-

tic texture” by using pre-trained CNN features for align-

ment. In addition to dense image alignment, other work

has focused on using learning-based priors to constrain the

optimisation of dense depth maps. For example, [36] uses

network-predicted normals as a prior for dense 3D recon-

struction. Our approach to learning residuals is novel in that

the training is done directly in the optimisation framework

ensuring that they are optimised for the purpose of dense

visual SLAM using our mesh representation.

3. Image Conditioned Triangular Meshing

The relationship between representation and measure-

ments plays a key role in any inference algorithm. While

meshes can represent 3D scene structure with a small num-

ber of parameters, relating meshes to camera information

typically involves some sort of rendering. This rendering

process may be complex [18] and, if differential quanti-

ties such as Jacobians are required, too slow for real-time

dense visual SLAM. To address these issues, we choose to

use view-based 2.5D triangular meshes; that is, we express

the vertex coordinates with respect to the camera frame and

treat the in-plane and depth coordinates differently. The in-

plane coordinates are treated as learnable quantities and are

predicted by a deep neural network that conditions these

coordinates on the image content. The depth coordinates of

the vertices, however, represent the actual degree of free-

dom and are not predicted by any neural network, but are

obtained through an optimisation procedure.

3.1. Mesh Rendering in 2.5D

To ensure differentiability, we use a fixed connectivity

for the meshes and only alter the vertex coordinate vk for

every vertex k ∈ {1, . . . N}. The vertex coordinate is split

into the in-plane coordinates ck (in homogeneous represen-

tation) and inverse depth xk, such that vk = ck/xk. The

motivation for using inverse depth is twofold: firstly, the

uncertainty associated with inverse depths more closely fol-

lows a Gaussian distribution [22], and secondly, the rela-

tionship between the full inverse depth map and the inverse

depth of the individual vertices is linear when assuming the

triangles to be planar in 3D. This means that we can directly

retrieve the inverse depth map D from the vertex inverse

depths x = (x0, . . . , xN ) through a linear map:

D(x) = J(c)x, (1)

where the map (or Jacobian) J(c) is a function of the in-

plane coordinates c = (c0, . . . , cN ) and is essentially com-

posed of the barycentric weights that can be obtained via

rasterisation.

Since the in-plane coordinates are constant at inference

time, the association between pixels and triangles does not

change and the above Jacobian J(c) can be precomputed

for every frame after predicting the in-plane mesh coordi-

nates. Furthermore, and in contrast to CodeSLAM [1], the

Jacobian is a sparse matrix since the inverse depth of each

pixel only depends on three relevant vertices. Sparse opera-

tions can therefore be used to reduce the computational load

at both training and test time.

3.2. Predicting In­Plane Coordinates

The in-plane vertex coordinates c are predicted based on

the image content I of the frame, i.e. c = c(I). This is

achieved using a deep neural network that first computes

pixel-wise features using a U-Net [25] and then distorts a

regular triangular mesh based on the feature activations in

the local neighbourhood of the vertices (see Figure 2). The

regular mesh is created by defining Nr equidistant vertex

rows and then alternately distributing Nc and Nc−1 vertices

along these rows. Similar to the feature encoder network

in CodeSLAM [1], the U-Net is composed of four pairs of

down-sampling convolutions and four pairs of up-sampling

convolutions with corresponding skip layers. The first con-

volutional layer in each pair uses a stride of 2 and the size

of the feature channels are (16, 16, 32, 32, 64, 64, 128, 128)

for the encoder, with analogous settings for the decoder. All

convolutions have a kernel size of 3 (except the first, which

has a size of 7) and are followed by Rectified Linear Units.

In order to go from feature activations to vertex coordi-

nates, we extract patches around each of the regular mesh

vertices and compute perturbations to the coordinate loca-

tions. Patches of size 25×25 are extracted from all 16 chan-

nels of the last layer and are directly transformed to ver-

tex locations by passing each patch through a single fully-

connected layer and adding its output to the coordinates of

the regular mesh vertex. Border vertices are forced to stay

on the frame boundary.
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Figure 2: From image to mesh: input images are fed

through a U-Net with skip layers to produce pixel-wise fea-

tures. Patches at regular mesh vertices are extracted and

then passed through a fully-connected layer to produce per-

turbations to the vertex locations.

3.3. Training Loss

The goal of the training process is to obtain a network ca-

pable of generating meshes suitable for representing view-

based 3D geometry. We propose to do this by defining a

training loss directly on the 3D reconstruction. For a given

set of in-plane vertex coordinates, we compute the corre-

sponding vertex depths that best fit the inverse depth map in

a least squares sense. Since the relationship between the in-

verse depth coordinates of the vertices x and inverse depth

map D(x) is linear, we can compute the best fit in a single

step by solving the normal equation:

J(c)TJ(c)x = J(c)TD. (2)

As we rely on a triangular mesh to approximate the environ-

ment and, in general, this will never result in a perfect fit,

there will be some remaining reconstruction error (see the

examples in Figure 3). This can be computed by solving for

x and then substituting in eq. (1):

E =
(

I − J(c)(J(c)TJ(c))−1
J(c)T

)

D. (3)

After eliminating x, the final reconstruction error will be

a function of the predicted in-plane coordinates c. Thus,

using the reconstruction error as loss, coordinates that result

in lower reconstruction errors will be encouraged, which is

typically achieved by having the coordinates coincide with

regions of high curvature (see Figure 1).

The final loss is defined to be the squared residual er-

ror after optimisation, ‖E‖2, and this can be implemented,

including back-propagation, in most state-of-the-art deep

learning frameworks. The computation of J(c) relies on

differential rasterisation and, to allow for fast implemen-

tation, we assume that the mesh triangles cannot exceed

a certain size (half of the image height) and that there are

no overlapping triangles. This significantly simplifies and

accelerates the computations and these two extra assump-

tions are enforced through auxiliary losses. When compar-

ing to CodeSLAM [1], the inverse depth rendering takes

over the functionality of the decoder and this is conditioned

on the image content via the predicted in-plane coordinates

c. Since we do not require an encoder (as this function-

ality is now performed by the least squares optimisation),

we have the advantage that the network can be trained with

incomplete depth data where missing pixels are ignored.

4. Learning of Error Metrics and Priors

In a monocular vision setup, both the geometry of the en-

vironment and the motion of the camera are unknown. Sim-

ilar to other recent work [1, 30], we want to jointly estimate

both unknown quantities in a keyframe-based setup. This

problem can be formulated as a factor graph [16] where

each keyframe i is associated with two variables: the pose

Ti and the inverse depth of the vertices xi. Any information

concerning parts of the graph is then encoded by means of

factors that are connected to the relevant variables. In the

present setup, two types of factors are proposed:

• A prior factor that is only connected to the inverse

depths of a single keyframe. This can be used to en-

code a smoothness constraint and reduce curvature of

the mesh, for example.

• A stereo factor that is connected to the poses and in-

verse depths of two keyframes. This is used to com-

bine the information from the images with the knowl-

edge that both are observations of the same scene.

Employing a residual notation, the prior factor is en-

coded as a mapping pi(xi) and the stereo factor is encoded

as a mapping sij(xi,xj , Ti, Tj) where i and j are keyframe

indices and where the mappings may depend on the images

Ii and Ij . The advantages of this approach are that the fac-

tors can be combined to represent an arbitrary number of

frames, that additional information can be easily encoded

and added to the system (for example, from other sensor

modalities), and that other probabilistic methodologies such

as marginalisation (variable elimination) can be applied.

4.1. Prior Factor

The prior factor pi(xi) explicitly encodes prior knowl-

edge on the scene geometry and may be conditioned on

the image Ii – CodeSLAM uses a similar concept via the

KL-loss on the latent space. But the prior could also be

modelled manually and for instance penalise rough meshes

which are unlikely to correspond to real scenes. However,

here we propose to learn a data-driven prior by using a sim-

ilar setup as was employed in Section 3.2 to predict the in-

plane vertex coordinates. In particular, we use the same

U-net architecture to predict feature activations and extract

per-vertex patches. Based on these patches three differ-

ent types of linear sparse priors are computed. In order to

encode independent vertex depth information we directly
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Figure 3: Comparison of inverse depth reconstructions

based on different representations. From left to right: in-

put image, ground-truth inverse depth, mesh-based with

learned prior, mesh-based optimised against ground truth,

CodeSLAM-based with prior, CodeSLAM-based optimised

against ground truth.

transform the per-vertex patch Pk to a per-vertex residual

pvtx(xk) = avtx(Pk)xk + bvtx(Pk) where avtx and bvtx
are implemented as fully connected layers. This is extended

to allow triangle-related information to be encoded as well,

such as inclination cues. To this end, for every triangle

t = (xk, xl, xm) with stacked patch Pt = (Pk, Pl, Pm)
a linear residual of the form ptri(t) = atri(Pt) t+ btri(Pt)
is computed. Finally, the same is done for edges e =
(xk, xl, xm, xn) which includes all vertices of the two adja-

cent triangles. All components are aggregated into a sparse

matrix A(I) and a vector b(I) to obtain a combined linear

prior on all vertex inverse depths:

p(x) = A(I)x+ b(I). (4)

Figure 3 provides a visualisation of this prior by depicting

its least squares solution.

4.2. Stereo Factor

The stereo factor is used to exploit overlapping fields of

view between keyframes. It models the information from

the images when combined with the fact that they represent

observations of the same scene. The corresponding residual

sij(xi,xj , Ti, Tj) may and should depend on the images

Ii and Ij . A possible example for such a residual would

be the photometric error. This can be implemented by first

computing the dense correspondences for all pixels from

frame i to frame j

uj = π(T−1

j Tiπ
−1(ui, D(xi)[ui]), (5)

where the square bracket notation [u] stands for the lookup

at pixel u, π projects homogeneous point coordinates to

pixel coordinates, and π−1 back-projects to homogeneous

point coordinates using the inverse depth. With this,

the standard uni-directional pixel-wise photometric residual

can be formulated as [19]:

siju(xi,xj , Ti, Tj) = Ii[ui]− Ij [uj ]. (6)

While in perfectly Lambertian and smooth environments

the use of the photometric residual is appropriate, it often

has a small convergence basin and lacks robustness with re-

spect to non-Lambertian effects and occlusions. Thus we

want to go a step further and attempt to learn the stereo

residual based on its alignment performance. As a first de-

sign specification we want the residual to be scale indepen-

dent and thus choose it to be a function of the dense cor-

respondences ui,uj only. Additionally, we want the resid-

ual to be a fairly simple function of the correspondences

in order to enable pre-computation and allow fast iterations.

Therefore, we propose to first pre-process both images i and

j by Y (·), then lookup the correspondences, and finally ap-

ply some lightweight mapping r(·):

siju(xi,xj , Ti, Tj) = r(Y (Ii)[ui], Y (Ij)[uj ]). (7)

This is a slightly more general form of the feature-metric er-

ror [6, 30] and has the ability to revert to photometric error

if this is the best solution. We again exploit convolutions

and choose Y (·) to have the same architecture as discussed

in Section 3.2, except for a different number of output fea-

ture channels Ny . After predicting features in both images

and matching them via dense correspondences, the mapping

r(yi, yj) generates a residual for every pixel. It is composed

of two parts (see also Figure 4):

r(yi, yj) = (yni − ynj ) · w(yi, yj), (8)

where the first part computes the difference of the n-th el-

ements of the feature vectors and does not include any ad-

ditional learned components to avoid redundancy. The sec-

ond part is composed of a multilayer perceptron (MLP) w(·)
that generates a weighting for the residual. It is composed

of 3 hidden layers of size Nw and has a scalar output. We

experimented with different combinations of feature chan-

nels Ny , residual dimensions, and hidden layer dimension

Nw and found that a combination of Ny = 3, a single

residual, and Nw = 3 performed well. While during op-

timisation no gradients are computed through w for effi-

ciency reasons, w can take over a weighting functionality

and for instance down-weight unreliable correspondences.

Please note that the back-propagation during training will

be computed through the optimisation steps and will update

all learnable components including the MLP w.

4.3. Training Setup

It is often beneficial to keep the training as close as

possible to the test setup, and thus we train the network

weights by rolling out the internal factor graph optimisa-

tion, which is done via damped Gauss-Newton iterations.

For computational reasons, however, both the number of

variables as well as optimisation steps must be limited (see

Figure 5). We only optimise the inverse vertex depths for a
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Figure 4: Input image together with generated textures and

weightings (blue low, red high). Both are learned as part

of the stereo residual r. On the lower left example one can

observe how the specularity on the wall is down-weighted.
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Figure 5: Setup for training the learnable residuals based

on paired frames. The initial depth vertex coordinates x0

are initialised to a constant value and combined with the

mesh network output c to generate a depth map D. This is

subsequently transformed into dense correspondences U us-

ing ground truth relative pose ∆T ∗. Finally, both the prior

p and stereo residual r are evaluated and used to compute

the damped Gauss-Newton update step ∆x. Since this re-

quires computation of Jacobians, these are also computed

(highlighted arrows). During training, multiple steps are

rolled out and the reconstruction error is used to update the

residual-related weights in p, Y , and r.

uni-directional two-frame setup and take 3 iterations steps

only. That is, during training, we sample image pairs Ii
and Ij together with their camera poses Ti and Tj from the

dataset and construct the least squares problem as follows:

L(xi) = ‖p(xi)‖
2 +

∑

ui

s2iju(ui,uj) (9)

= ‖A(Ii)xi + b(Ii)‖
2 +

∑

ui

r2(Yi[ui], Yj [uj ]),

where the terms are written out using the abbreviation Yi =
Y (Ii). While xi is the variable that is affected by the opti-

misation steps, the training will backpropagate the final loss

to the learnable prior components A and b and stereo com-

ponents Y and w (via r).

The initialisation of the inverse depth plays an impor-

tant role. After observing that the network would exploit

any form of noisy initialisation procedure, we chose to ini-

tialise the inverse depth to a constant value. The final loss

for training is composed of the inverse depth reconstruction

loss on the full image and uses an L1 norm to avoid dis-

turbing effects from very near objects (which lead to very

high losses). Furthermore, rather then just using the recon-

struction error after 3 iteration steps, the errors are summed

over all iterations and weighted by the error of the previous

iteration. This again down-weights training examples with

very near objects which may disturb the training procedure.

In summary, the differences to the test setup are the lim-

ited number of iterations, the lack of pose optimisation,

the constant initialisation of the inverse depth, and the use

of two keyframes only. The following evaluation section

will investigate some of these discrepancies. However, we

would like to highlight that in comparison to many other

approaches, the use of a residual-based formulation offers a

high degree of modularity and among other benefits enables

the combination of an arbitrary number of keyframes.

5. Experimental Evaluation and Discussion

5.1. Datasets and Training Setup

During training we require paired frames with overlap-

ping fields of view. In terms of data modality, we need ac-

cess to images, depths, and poses of the associated frames.

We use SceneNet RGB-D [21] (SN) as a synthetic dataset

and TUM’s RGB-D SLAM dataset (TM) for real data [29].

For both, we transform the images to grayscale with a reso-

lution of 128 × 96 and create pairs by picking consecutive

frames (we skip 7 frames for TM to increase the baseline).

We found it necessary to augment the dataset by perturbing

the overall scale in order to avoid over-fitting the learned

prior. This step was particularly important when fine-tuning

on TM due to the limited dataset size.

We use Nr = 9 rows of vertices and Nc = 11 columns

(95 vertices). All networks are trained using the ADAM

optimiser. The mesh network is trained for 8 epochs on SN

using a batch size of 64 and an initial learning rate of 1e−4.

It is fine-tuned on TM during 30 epochs with a learning rate

of 1e-5. The residual generating network is trained for 6

epochs on SN using a batch size of 32 and an initial learning

rate of 1e-4. It is fine-tuned on TM for 40 epochs.

5.2. Meshes for Scene Depth

Qualitative examples of the predicted meshes are shown

in Figure 1. We observe how the vertices of the meshes are

attracted towards depth discontinuities or regions of high

curvature such as room corners. The figure also depicts the

summed activations from the last layer of the U-net that oc-

curs before the patch extraction. Blue regions (low activa-

tions) attract vertices while red regions repel them.

Different properties can be evaluated to analyse the suit-

ability of the proposed mesh representation for visual mo-
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Table 1: Comparison of the ability of different sparse rep-

resentations to produce dense depth maps. Learned mesh

trained on SN (Mesh SN), learned mesh trained on SN and

fine-tuned on TM (Mesh TM), a regular mesh with the same

number of vertices as the learned mesh, and CodeSLAM

are evaluated on the L1-inv error described in [39] on both

the SN and TM datasets. Each representation is optimised

against the ground truth depth map.

DS Error Mesh SN Mesh TM Reg. Mesh CodeSLAM

SN
L1 inv 0.0091 0.0105 0.0159 0.0198

L1 rel 0.0220 0.0247 0.0370 0.0464

TM
L1 inv 0.0208 0.0188 0.0267 0.0346

L1 rel 0.0462 0.0420 0.0586 0.0751

Table 2: Comparison of reconstruction performance when

using learned priors. For metrics marked AS, images have

been auto-scaled by a single factor to match ground truth.

DS Error Mesh SN Mesh TM CodeSLAM

SN

L1 inv 0.1864 0.2515 0.1692

L1 rel 0.3702 0.5907 0.3742

L1 inv AS 0.0744 0.1250 0.1243

L1 rel AS 0.1566 0.2751 0.2814

TM

L1 inv 0.2897 0.1291 0.2981

L1 rel 0.5786 0.2289 0.6056

L1 inv AS 0.1485 0.0704 0.1710

L1 rel AS 0.3053 0.1427 0.3675

tion and geometry estimation. We first look at the best pos-

sible reconstructions that can be obtained by fitting the mesh

to the ground truth inverse depth map. This is done for both

SN and TM and we compare the meshing trained on SN

only, the meshing fine-tuned on TM, a regular meshing, and

a 128D encoding based on CodeSLAM [1]. The same in-

verse L1 (L1 inv [1/m]) reconstruction metric as DeepTAM

[39] and DeMoN [32] as well as a relative error (L1 rel [1])

are reported in Table 1. All reported values are averages

over 1000 samples. For SN, these are the first examples of

the 1000 validation sequences. For TM, every 40th frame

is sampled. With an L1 inv of below 0.01 1/m for SN, the

achievable reconstruction error is very low and shows that

this is not a limitation of the proposed mesh representation.

The error is also lower than those obtained with either a reg-

ular mesh or a CodeSLAM based encoding. While rather

marginal, there is some benefit in fine-tuning the meshing

on TM, but this is overall a difficult endeavour due to the

small size of the dataset (77,555 training examples).

Figure 3 shows some example of optimised recon-

Table 3: Two frame evaluation with different optimisation

setups (Fixed: fixed pose, Free: free pose, Free + Scale:

free pose with extra residual on mean inverse depth) and

initialisation (gt: groundtruth, gtn: groundtruth with noise,

const: constant, id: identity). All L1 inv.

Loss DS Depth Pose Fixed Free Free + Scale

F
ea

tu
re

m
et

ri
c

SN gt gt 0.0439 0.1343 0.0592

SN gtn gt 0.0438 0.1342 0.0595

SN const gt 0.0499 0.1688 0.0635

SN gt gtn – 0.1731 0.0674

SN gt id – 0.1616 0.0704

SN const id – 0.2082 0.0803

TM gt id – 0.1400 0.1373

TM const id – 0.2799 0.1437

P
h

o
to

m
et

ri
c

SN gt gt 0.0581 0.0614 0.0579

SN gtn gt 0.0578 0.0639 0.0588

SN const gt 0.1321 0.2017 0.1167

SN gt gtn – 0.1341 0.1159

SN gt id – 0.1552 0.1453

SN const id – 0.2842 0.2182

Table 4: Multi-frame results, L1 inv averaged over 16 SN

samples.

Frames 1 2 4 8 16

L1 inv 0.0687 0.0509 0.0407 0.0339 0.0304

structions against ground-truth for both meshing and

CodeSLAM. It also depicts the learned priors, another set

of quantities we want to investigate. While the prior on its

own need not necessarily match a meaningful depth map,

the obtained prior based predictions suggest that this is the

case and that these could for instance be used for initiali-

sation. We quantify this in Table 2, which reports the re-

construction accuracy of the priors on SN and TM for the

learned mesh and CodeSLAM (via zero code prediction).

As expected, the obtained errors are increased when com-

pared to the optimal meshes from before. In comparison to

the optimal meshes, a larger effect can be observed when

fine-tuning on TM. Also CodeSLAM seems to achieve sim-

ilar one-shot reconstructions, but this is explained by the

stronger scale prior it encodes. After correcting for a scale

offset, our mesh method leads to significantly lower errors.

5.3. Multi­Frame Setup

The training procedure is distinct from the final setup

in multiple ways. This includes the number of employed

frames, the selection of variables, the number of iterations,

and initialisation of the variables.
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Figure 6: Single key-frame optimised against a varying number of frames.
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Figure 7: L1 inv reconstruction error over 10 iterations for

16 SN examples. Green: median, red: mean.

Table 3 collects multiple results from experiments done

in a two-frame setup. In contrast to the training, this per-

forms 20 Gauss-Newton iteration steps where the damping

has been adapted if required. Furthermore it shows the fi-

nal reconstruction error for different initialisations and dif-

ferent optimisation procedures. The later include optimi-

sation with fixed pose (analogous to training), optimisa-

tion with free pose, and optimisation with free pose but

with additional mean inverse depth constraint (implemented

as additional residual using the ground-truth mean inverse

depth). We can observe that when we open the pose de-

gree of freedom, the reconstructions are worse. This is due

to scale drift caused by the scale free training (the scale is

randomly perturbed to improve balance between prior and

stereo residual). This is confirmed by the last optimisa-

tion setup which introduces scale information via an extra

residual and achieves similar result to the setup with fixed

ground-truth pose. Furthermore, we provide results for dif-

ferent initialisations ranging from ground truth to constant

depth and identity pose. For both SN and TM (no ground

truth pose is available for validation), we observe that us-

ing the additional scale residual limits the effect of different

initialisations. In particular, identity pose initialisation can

be very far from the actual ground truth and this shows that

we attain a large convergence basin.

In Table 3 we also provide results with a hand-

engineered optimisation procedure that uses the predicted

meshes but then employs photometric error and a curvature

loss on the mesh. While this seems to achieve similar per-

formance when good initialisation is provided, its perfor-

mance deteriorates with poor initialisation. We can explain

our increased convergence basin when looking at the fea-

ture activations used for the stereo residual and the corre-

sponding weighting (see Figure 4). The visualised texture

exhibits much higher smoothness compared to the original

image, and when looking at the weighting one can observe

that disturbances such as specularities are masked out.

Figure 7 shows the error over iteration steps for multi-

ple examples. We can observe that the reconstruction er-

ror decreases consistently and does not degrade even if we

go pass the three iterations used during training. Finally,

in Figure 6 and Table 4 we report results where we opti-

mise the depth of a keyframe against multiple other frames.

With increasing number of frames the error decreases even

though during training only single pairs were ever used.

6. Conclusion

In this paper we investigated the use of triangular meshes

for joint estimation of motion and geometry using a monoc-

ular camera. We looked into how we can make the use of

meshes efficient by using a view-based formulation, pre-

dicting in-plane vertex coordinates using a deep neural net-

work, and keeping the vertex depths as optimisable quan-

tities. In a second step, this was complemented by learned

residuals to allow modular integration of the available in-

formation. This was used to learn both a purely data-driven

prior as well as a residual leveraging the information con-

tained in images resulting from observing the same scene.

Extensive experimental evaluations on both synthetic

and real datasets confirmed many of the design choices, but

also the importance of keeping the training close to the final

setup as well as the key role of the data. Continuing from

here, we want to investigate methods that reduce dataset re-

quirements, such as for instance self-supervised loss func-

tions. We also plan to scale to a fully-fledged SLAM sys-

tem, possibly investigating world-centric meshes and the

use of incremental editing and refinement procedures.
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