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Abstract

We present a simple, fully-convolutional model for real-

time instance segmentation that achieves 29.8 mAP on MS

COCO at 33.5 fps evaluated on a single Titan Xp, which is

significantly faster than any previous competitive approach.

Moreover, we obtain this result after training on only one

GPU. We accomplish this by breaking instance segmenta-

tion into two parallel subtasks: (1) generating a set of pro-

totype masks and (2) predicting per-instance mask coeffi-

cients. Then we produce instance masks by linearly combin-

ing the prototypes with the mask coefficients. We find that

because this process doesn’t depend on repooling, this ap-

proach produces very high-quality masks and exhibits tem-

poral stability for free. Furthermore, we analyze the emer-

gent behavior of our prototypes and show they learn to lo-

calize instances on their own in a translation variant man-

ner, despite being fully-convolutional. Finally, we also pro-

pose Fast NMS, a drop-in 12 ms faster replacement for stan-

dard NMS that only has a marginal performance penalty.

1. Introduction

“Boxes are stupid anyway though, I’m probably a true

believer in masks except I can’t get YOLO to learn them.”

– Joseph Redmon, YOLOv3 [36]

What would it take to create a real-time instance seg-

mentation algorithm? Over the past few years, the vi-

sion community has made great strides in instance seg-

mentation, in part by drawing on powerful parallels from

the well-established domain of object detection. State-of-

the-art approaches to instance segmentation like Mask R-

CNN [18] and FCIS [24] directly build off of advances in

object detection like Faster R-CNN [37] and R-FCN [8].

Yet, these methods focus primarily on performance over

speed, leaving the scene devoid of instance segmentation

parallels to real-time object detectors like SSD [30] and

YOLO [35, 36]. In this work, our goal is to fill that gap with

a fast, one-stage instance segmentation model in the same

way that SSD and YOLO fill that gap for object detection.

Figure 1: Speed-performance trade-off for various instance

segmentation methods on COCO. To our knowledge, ours

is the first real-time (above 30 FPS) approach with around

30 mask mAP on COCO test-dev.

However, instance segmentation is hard—much harder

than object detection. One-stage object detectors like SSD

and YOLO are able to speed up existing two-stage de-

tectors like Faster R-CNN by simply removing the sec-

ond stage and making up for the lost performance in other

ways. The same approach is not easily extendable, how-

ever, to instance segmentation. State-of-the-art two-stage

instance segmentation methods depend heavily on feature

localization to produce masks. That is, these methods “re-

pool” features in some bounding box region (e.g., via RoI-

pool/align), and then feed these now localized features to

their mask predictor. This approach is inherently sequential

and is therefore difficult to accelerate. One-stage methods

that perform these steps in parallel like FCIS do exist, but

they require significant amounts of post-processing after lo-

calization, and thus are still far from real-time.

To address these issues, we propose YOLACT1, a real-

time instance segmentation framework that forgoes an ex-

plicit localization step. Instead, YOLACT breaks up in-

stance segmentation into two parallel tasks: (1) generat-

1You Only Look At CoefficienTs
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ing a dictionary of non-local prototype masks over the en-

tire image, and (2) predicting a set of linear combination

coefficients per instance. Then producing a full-image in-

stance segmentation from these two components is simple:

for each instance, linearly combine the prototypes using the

corresponding predicted coefficients and then crop with a

predicted bounding box. We show that by segmenting in

this manner, the network learns how to localize instance

masks on its own, where visually, spatially, and semanti-

cally similar instances appear different in the prototypes.

Moreover, since the number of prototype masks is inde-

pendent of the number of categories (e.g., there can be more

categories than prototypes), YOLACT learns a distributed

representation in which each instance is segmented with a

combination of prototypes that are shared across categories.

This distributed representation leads to interesting emergent

behavior in the prototype space: some prototypes spatially

partition the image, some localize instances, some detect in-

stance contours, some encode position-sensitive directional

maps (similar to those obtained by hard-coding a position-

sensitive module in FCIS [24]), and most do a combination

of these tasks (see Figure 5).

This approach also has several practical advantages.

First and foremost, it’s fast: because of its parallel struc-

ture and extremely lightweight assembly process, YOLACT

adds only a marginal amount of computational overhead to

a one-stage backbone detector, making it easy to reach 30

fps even when using ResNet-101 [19]; in fact, the entire

mask branch takes only ∼5 ms to evaluate. Second, masks

are high-quality: since the masks use the full extent of the

image space without any loss of quality from repooling, our

masks for large objects are significantly higher quality than

those of other methods (see Figure 7). Finally, it’s gen-

eral: the idea of generating prototypes and mask coefficients

could be added to almost any modern object detector.

Our main contribution is the first real-time (> 30 fps) in-

stance segmentation algorithm with competitive results on

the challenging MS COCO dataset [28] (see Figure 1). In

addition, we analyze the emergent behavior of YOLACT’s

prototypes and provide experiments to study the speed

vs. performance trade-offs obtained with different back-

bone architectures, numbers of prototypes, and image res-

olutions. We also provide a novel Fast NMS approach that

is 12ms faster than traditional NMS with a negligible per-

formance penalty. The code for YOLACT is available at

https://github.com/dbolya/yolact.

2. Related Work

Instance Segmentation Given its importance, a lot of re-

search effort has been made to push instance segmentation

accuracy. Mask-RCNN [18] is a representative two-stage

instance segmentation approach that first generates candi-

date region-of-interests (ROIs) and then classifies and seg-

ments those ROIs in the second stage. Follow-up works

try to improve its accuracy by e.g., enriching the FPN

features [29] or addressing the incompatibility between a

mask’s confidence score and its localization accuracy [20].

These two-stage methods require re-pooling features for

each ROI and processing them with subsequent computa-

tions, which make them unable to obtain real-time speeds

(30 fps) even when decreasing image size (see Table 2c).

One-stage instance segmentation methods generate po-

sition sensitive maps that are assembled into final masks

with position-sensitive pooling [6, 24] or combine seman-

tic segmentation logits and direction prediction logits [4].

Though conceptually faster than two-stage methods, they

still require repooling or other non-trivial computations

(e.g., mask voting). This severely limits their speed, plac-

ing them far from real-time. In contrast, our assembly step

is much more lightweight (only a linear combination) and

can be implemented as one GPU-accelerated matrix-matrix

multiplication, making our approach very fast.

Finally, some methods first perform semantic segmen-

tation followed by boundary detection [22], pixel clus-

tering [3, 25], or learn an embedding to form instance

masks [32, 17, 9, 13]. Again, these methods have multi-

ple stages and/or involve expensive clustering procedures,

which limits their viability for real-time applications.

Real-time Instance Segmentation While real-time ob-

ject detection [30, 34, 35, 36], and semantic segmenta-

tion [2, 41, 33, 11, 47] methods exist, few works have

focused on real-time instance segmentation. Straight to

Shapes [21] and Box2Pix [42] can perform instance seg-

mentation in real-time (30 fps on Pascal SBD 2012 [12, 16]

for Straight to Shapes, and 10.9 fps on Cityscapes [5] and 35

fps on KITTI [15] for Box2Pix), but their accuracies are far

from that of modern baselines. In fact, Mask R-CNN [18]

remains one of the fastest instance segmentation methods

on semantically challenging datasets like COCO [28] (13.5

fps on 5502 px images; see Table 2c).

Prototypes Learning prototypes (aka vocabulary or code-

book) has been extensively explored in computer vision.

Classical representations include textons [23] and visual

words [40], with advances made via sparsity and locality

priors [44, 43, 46]. Others have designed prototypes for ob-

ject detection [1, 45, 38]. Though related, these works use

prototypes to represent features, whereas we use them to

assemble masks for instance segmentation. Moreover, we

learn prototypes that are specific to each image, rather than

global prototypes shared across the entire dataset.

3. YOLACT

Our goal is to add a mask branch to an existing one-stage

object detection model in the same vein as Mask R-CNN

[18] does to Faster R-CNN [37], but without an explicit fea-
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Figure 2: YOLACT Architecture Blue/yellow indicates low/high values in the prototypes, gray nodes indicate functions

that are not trained, and k = 4 in this example. We base this architecture off of RetinaNet [27] using ResNet-101 + FPN.

ture localization step (e.g., feature repooling). To do this,

we break up the complex task of instance segmentation into

two simpler, parallel tasks that can be assembled to form

the final masks. The first branch uses an FCN [31] to pro-

duce a set of image-sized “prototype masks” that do not de-

pend on any one instance. The second adds an extra head

to the object detection branch to predict a vector of “mask

coefficients” for each anchor that encode an instance’s rep-

resentation in the prototype space. Finally, for each instance

that survives NMS, we construct a mask for that instance by

linearly combining the work of these two branches.

Rationale We perform instance segmentation in this way

primarily because masks are spatially coherent; i.e., pixels

close to each other are likely to be part of the same instance.

While a convolutional (conv) layer naturally takes advan-

tage of this coherence, a fully-connected (fc) layer does not.

That poses a problem, since one-stage object detectors pro-

duce class and box coefficients for each anchor as an output

of an fc layer.2 Two stage approaches like Mask R-CNN get

around this problem by using a localization step (e.g., RoI-

Align), which preserves the spatial coherence of the fea-

tures while also allowing the mask to be a conv layer out-

put. However, doing so requires a significant portion of the

model to wait for a first-stage RPN to propose localization

candidates, inducing a significant speed penalty.

Thus, we break the problem into two parallel parts, mak-

ing use of fc layers, which are good at producing semantic

vectors, and conv layers, which are good at producing spa-

tially coherent masks, to produce the “mask coefficients”

and “prototype masks”, respectively. Then, because proto-

types and mask coefficients can be computed independently,

2To show that this is an issue, we develop an “fc-mask” model that pro-

duces masks for each anchor as the reshaped output of an fc layer. As our

experiments in Table 2c show, simply adding masks to a one-stage model

as fc outputs only obtains 20.7 mAP and is thus very much insufficient.

the computational overhead over that of the backbone de-

tector comes mostly from the assembly step, which can be

implemented as a single matrix multiplication. In this way,

we can maintain spatial coherence in the feature space while

still being one-stage and fast.

3.1. Prototype Generation

The prototype generation branch (protonet) predicts a set

of k prototype masks for the entire image. We implement

protonet as an FCN whose last layer has k channels (one

for each prototype) and attach it to a backbone feature layer

(see Figure 3 for an illustration). While this formulation is

similar to standard semantic segmentation, it differs in that

we exhibit no explicit loss on the prototypes. Instead, all

supervision for these prototypes comes from the final mask

loss after assembly.

We note two important design choices: taking pro-

tonet from deeper backbone features produces more ro-

bust masks, and higher resolution prototypes result in both

higher quality masks and better performance on smaller ob-

jects. Thus, we use FPN [26] because its largest feature

layers (P3 in our case; see Figure 2) are the deepest. Then,

we upsample it to one fourth the dimensions of the input

image to increase performance on small objects.

Finally, we find it important for the protonet’s output to

be unbounded, as this allows the network to produce large,

overpowering activations for prototypes it is very confident

about (e.g., obvious background). Thus, we have the option

of following protonet with either a ReLU or no nonlinearity.

We choose ReLU for more interpretable prototypes.

3.2. Mask Coefficients

Typical anchor-based object detectors have two branches

in their prediction heads: one branch to predict c class con-

fidences, and the other to predict 4 bounding box regres-
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Figure 3: Protonet Architecture The labels denote fea-

ture size and channels for an image size of 550 × 550. Ar-

rows indicate 3 × 3 conv layers, except for the final conv

which is 1 × 1. The increase in size is an upsample fol-

lowed by a conv. Inspired by the mask branch in [18].

sors. For mask coefficient prediction, we simply add a third

branch in parallel that predicts k mask coefficients, one cor-

responding to each prototype. Thus, instead of producing

4 + c coefficients per anchor, we produce 4 + c+ k.

Then for nonlinearity, we find it important to be able to

subtract out prototypes from the final mask. Thus, we apply

tanh to the k mask coefficients, which produces more sta-

ble outputs over no nonlinearity. The relevance of this de-

sign choice is apparent in Figure 2, as neither mask would

be constructable without allowing for subtraction.

3.3. Mask Assembly

To produce instance masks, we combine the work of the

prototype branch and mask coefficient branch, using a lin-

ear combination of the former with the latter as coefficients.

We then follow this by a sigmoid nonlinearity to produce

the final masks. These operations can be implemented effi-

ciently using a single matrix multiplication and sigmoid:

M = σ(PCT ) (1)

where P is an h×w×k matrix of prototype masks and C is

a n × k matrix of mask coefficients for n instances surviv-

ing NMS and score thresholding. Other, more complicated

combination steps are possible; however, we keep it simple

(and fast) with a basic linear combination.

Losses We use three losses to train our model: classifi-

cation loss Lcls, box regression loss Lbox and mask loss

Lmask with the weights 1, 1.5, and 6.125 respectively. Both

Lcls and Lbox are defined in the same way as in [30]. Then

to compute mask loss, we simply take the pixel-wise binary

cross entropy between assembled masks M and the ground

truth masks Mgt: Lmask = BCE(M,Mgt).

Cropping Masks We crop the final masks with the pre-

dicted bounding box during evaluation. During training, we

instead crop with the ground truth bounding box, and divide

Lmask by the ground truth bounding box area to preserve

small objects in the prototypes.

3.4. Emergent Behavior

Our approach might seem surprising, as the general con-

sensus around instance segmentation is that because FCNs
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Figure 4: Head Architecture We use a shallower predic-

tion head than RetinaNet [27] and add a mask coefficient

branch. This is for c classes, a anchors for feature layer Pi,

and k prototypes. See Figure 3 for a key.

are translation invariant, the task needs translation variance

added back in [24]. Thus methods like FCIS [24] and

Mask R-CNN [18] try to explicitly add translation variance,

whether it be by directional maps and position-sensitive re-

pooling, or by putting the mask branch in the second stage

so it does not have to deal with localizing instances. In

our method, the only translation variance we add is to crop

the final mask with the predicted bounding box. However,

we find that our method also works without cropping for

medium and large objects, so this is not a result of crop-

ping. Instead, YOLACT learns how to localize instances

on its own via different activations in its prototypes.

To see how this is possible, first note that the prototype

activations for the solid red image (image a) in Figure 5 are

actually not possible in an FCN without padding. Because

a convolution outputs to a single pixel, if its input every-

where in the image is the same, the result everywhere in the

conv output will be the same. On the other hand, the consis-

tent rim of padding in modern FCNs like ResNet gives the

network the ability to tell how far away from the image’s

edge a pixel is. Conceptually, one way it could accomplish

this is to have multiple layers in sequence spread the padded

0’s out from the edge toward the center (e.g., with a kernel

like [1, 0]). This means ResNet, for instance, is inherently

translation variant, and our method makes heavy use of that

property (images b and c exhibit clear translation variance).

We observe many prototypes to activate on certain “par-

titions” of the image. That is, they only activate on objects

on one side of an implicitly learned boundary. In Figure

5, prototypes 1-3 are such examples. By combining these

partition maps, the network can distinguish between differ-

ent (even overlapping) instances of the same semantic class;

e.g., in image d, the green umbrella can be separated from

the red one by subtracting prototype 3 from prototype 2.

Furthermore, being learned objects, prototypes are com-

pressible. That is, if protonet combines the functionality of
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Figure 5: Prototype Behavior The activations of the same

six prototypes (y axis) across different images (x axis). Pro-

totypes 1-3 respond to objects to one side of a soft, implicit

boundary (marked with a dotted line). Prototype 4 activates

on the bottom-left of objects (for instance, the bottom left of

the umbrellas in image d); prototype 5 activates on the back-

ground and on the edges between objects; and prototype 6

segments what the network perceives to be the ground in the

image. These last 3 patterns are most clear in images d-f.

multiple prototypes into one, the mask coefficient branch

can learn which situations call for which functionality. For

instance, in Figure 5, prototype 2 is a partitioning prototype

but also fires most strongly on instances in the bottom-left

corner. Prototype 3 is similar but for instances on the right.

This explains why in practice, the model does not degrade

in performance even with as low as k = 32 prototypes (see

Table 2b). On the other hand, increasing k is ineffective

most likely because predicting coefficients is difficult. If

the network makes a large error in even one coefficient, due

to the nature of linear combinations, the produced mask can

vanish or include leakage from other objects. Thus, the net-

work has to play a balancing act to produce the right coef-

ficients, and adding more prototypes makes this harder. In

fact, we find that for higher values of k, the network simply

adds redundant prototypes with small edge-level variations

that slightly increase AP95, but not much else.

4. Backbone Detector

For our backbone detector we prioritize speed as well

as feature richness, since predicting these prototypes and

coefficients is a difficult task that requires good features to

do well. Thus, the design of our backbone detector closely

follows RetinaNet [27] with an emphasis on speed.

YOLACT Detector We use ResNet-101 [19] with FPN

[26] as our default feature backbone and a base image size

of 550 × 550. We do not preserve aspect ratio in order to

get consistent evaluation times per image. Like RetinaNet,

we modify FPN by not producing P2 and producing P6 and

P7 as successive 3× 3 stride 2 conv layers starting from P5

(not C5) and place 3 anchors with aspect ratios [1, 1/2, 2]
on each. The anchors of P3 have areas of 24 pixels squared,

and every subsequent layer has double the scale of the pre-

vious (resulting in the scales [24, 48, 96, 192, 384]). For the

prediction head attached to each Pi, we have one 3×3 conv

shared by all three branches, and then each branch gets its

own 3 × 3 conv in parallel. Compared to RetinaNet, our

prediction head design (see Figure 4) is more lightweight

and much faster. We apply smooth-L1 loss to train box re-

gressors and encode box regression coordinates in the same

way as SSD [30]. To train class prediction, we use softmax

cross entropy with c positive labels and 1 background label,

selecting training examples using OHEM [39] with a 3:1

neg:pos ratio. Thus, unlike RetinaNet we do not use focal

loss, which we found not to be viable in our situation.

With these design choices, we find that this backbone

performs better and faster than SSD [30] modified to use

ResNet-101 [19], with the same image size.

5. Other Improvements

We also discuss other improvements that either increase

speed with little effect on performance or increase perfor-

mance with no speed penalty.

Fast NMS After producing bounding box regression coef-

ficients and class confidences for each anchor, like most ob-

ject detectors we perform NMS to suppress duplicate detec-

tions. In many previous works [35, 36, 30, 37, 18, 27], NMS

is performed sequentially. That is, for each of the c classes

in the dataset, sort the detected boxes descending by con-

fidence, and then for each detection remove all those with

lower confidence than it that have an IoU overlap greater

than some threshold. While this sequential approach is fast

enough at speeds of around 5 fps, it becomes a large barrier

for obtaining 30 fps (for instance, a 10 ms improvement at

5 fps results in a 0.26 fps boost, while a 10 ms improvement

at 30 fps results in a 12.9 fps boost).

To fix the sequential nature of traditional NMS, we in-

troduce Fast NMS, a version of NMS where every instance

can be decided to be kept or discarded in parallel. To do

this, we simply allow already-removed detections to sup-

press other detections, which is not possible in traditional

NMS. This relaxation allows us to implement Fast NMS

entirely in standard GPU-accelerated matrix operations.
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Figure 6: YOLACT evaluation results on COCO’s test-dev set. This base model achieves 29.8 mAP at 33.0 fps. All

images have the confidence threshold set to 0.3.

To perform Fast NMS, we first compute a c × n × n
pairwise IoU matrix X for the top n detections sorted de-

scending by score for each of c classes. Batched sorting

on the GPU is readily available and computing IoU can

be easily vectorized. Then, we remove detections if there

are any higher-scoring detections with a corresponding IoU

greater than some threshold t. We efficiently implement

this by first setting the lower triangle and diagonal of X to

0: Xkij = 0, ∀k, j, i ≥ j, which can be performed in one

batched triu call, and then taking the column-wise max:

Kkj = max
i

(Xkij) ∀k, j (2)

to compute a matrix K of maximum IoU values for each

detection. Finally, thresholding this matrix with t (K < t)
will indicate which detections to keep for each class.

Because of the relaxation, Fast NMS has the effect of

removing slightly too many boxes. However, the perfor-

mance hit caused by this is negligible compared to the stark

increase in speed (see Table 2a). In our code base, Fast

NMS is 11.8 ms faster than a Cython implementation of

traditional NMS while only reducing performance by 0.1

mAP. In the Mask R-CNN benchmark suite [18], Fast NMS

is 15.0 ms faster than their CUDA implementation of tradi-

tional NMS with a performance loss of only 0.3 mAP.

Semantic Segmentation Loss While Fast NMS trades a

small amount of performance for speed, there are ways to

increase performance with no speed penalty. One of those

ways is to apply extra losses to the model during training

using modules not executed at test time. This effectively

increases feature richness while at no speed penalty.

Thus, we apply a semantic segmentation loss on our fea-

ture space using layers that are only evaluated during train-

ing. Note that because we construct the ground truth for this

loss from instance annotations, this does not strictly capture

semantic segmentation (i.e., we do not enforce the standard

one class per pixel). To create predictions during training,

we simply attach a 1x1 conv layer with c output channels di-

rectly to the largest feature map (P3) in our backbone. Since

each pixel can be assigned to more than one class, we use

sigmoid and c channels instead of softmax and c + 1. This

loss is given a weight of 1 and results in a +0.4 mAP boost.

6. Results

We report instance segmentation results on MS COCO

[28] and Pascal 2012 SBD [16] using the standard metrics.

For MS COCO, we train on train2017 and evaluate on

val2017 and test-dev.

Implementation Details We train all models with batch

size 8 on one GPU using ImageNet [10] pretrained weights.

We find that this is a sufficient batch size to use batch norm,

so we leave the pretrained batch norm unfrozen but do not

add any extra bn layers. We train with SGD for 800k itera-

tions starting at an initial learning rate of 10−3 and divide by
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Figure 7: Mask Quality Our masks are typically higher quality than those of Mask R-CNN [18] and FCIS [24] because of

the larger mask size and lack of feature repooling.

10 at iterations 280k, 600k, 700k, and 750k, using a weight

decay of 5×10−4, a momentum of 0.9, and all data aug-

mentations used in SSD [30]. For Pascal, we train for 120k

iterations and divide the learning rate at 60k and 100k. We

also multiply the anchor scales by 4/3, as objects tend to

be larger. Training takes 4-6 days (depending on config) on

one Titan Xp for COCO and less than 1 day on Pascal.

Mask Results We first compare YOLACT to state-of-the

art methods on MS COCO’s test-dev set in Table 1. Be-

cause our main goal is speed, we compare against other

single model results with no test-time augmentations. We

report all speeds computed on a single Titan Xp, so some

listed speeds may be faster than in the original paper.

YOLACT-550 offers competitive instance segmentation

performance while at 3.8x the speed of the previous fastest

instance segmentation method on COCO. We also note

an interesting difference in where the performance of our

method lies compared to others. Supporting our qualitative

findings in Figure 7, the gap between YOLACT-550 and

Mask R-CNN at the 50% overlap threshold is 9.5 AP, while

it’s 6.6 at the 75% IoU threshold. This is different from

the performance of FCIS, for instance, compared to Mask

R-CNN where the gap is consistent (AP values of 7.5 and

7.6 respectively). Furthermore, at the highest (95%) IoU

threshold, we outperform Mask R-CNN with 1.6 vs. 1.3 AP.

We also report numbers for alternate model configura-

tions in Table 1. In addition to our base 550 × 550 im-

age size model, we train 400 × 400 (YOLACT-400) and

700 × 700 (YOLACT-700) models, adjusting the anchor

scales accordingly (sx = s550/550 ∗ x). Lowering the im-

age size results in a large decrease in performance, demon-

strating that instance segmentation naturally demands larger

images. Then, raising the image size decreases speed sig-

nificantly but also increases performance, as expected.

In addition to our base backbone of ResNet-101 [19],

we also test ResNet-50 and DarkNet-53 [36] to obtain even

faster results. If higher speeds are preferable we suggest

using ResNet-50 or DarkNet-53 instead of lowering the im-

age size, as these configurations perform much better than

YOLACT-400, while only being slightly slower.

Finally, we also train and evaluate our ResNet-50 model

on Pascal 2012 SBD in Table 3. YOLACT clearly out-

performs popular approaches that report SBD performance,

while also being significantly faster.

Mask Quality Because we produce a final mask of size

138 × 138, and because we create masks directly from the

original features (with no repooling to transform and poten-

tially misalign the features), our masks for large objects are

noticeably higher quality than those of Mask R-CNN [18]

and FCIS [24]. For instance, in Figure 7, YOLACT pro-

duces a mask that cleanly follows the boundary of the arm,

whereas both FCIS and Mask R-CNN have more noise.

Moreover, despite being 5.9 mAP worse overall, at the 95%

IoU threshold, our base model achieves 1.6 AP while Mask

R-CNN obtains 1.3. This indicates that repooling does re-

sult in a quantifiable decrease in mask quality.

Temporal Stability Although we only train using static

images and do not apply any temporal smoothing, we find

that our model produces more temporally stable masks on

videos than Mask R-CNN, whose masks jitter across frames

even when objects are stationary. We believe our masks are

more stable in part because they are higher quality (thus

there is less room for error between frames), but mostly be-

cause our model is one-stage. Masks produced in two-stage

methods are highly dependent on their region proposals in

the first stage. In contrast for our method, even if the model

predicts different boxes across frames, the prototypes are

not affected, yielding much more temporally stable masks.

7. Discussion

Despite our masks being higher quality and having nice

properties like temporal stability, we fall behind state-of-

the-art instance segmentation methods in overall perfor-

mance, albeit while being much faster. Most errors are

caused by mistakes in the detector: misclassification, box
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Method Backbone FPS Time AP AP50 AP75 APS APM APL

PA-Net [29] R-50-FPN 4.7 212.8 36.6 58.0 39.3 16.3 38.1 53.1

RetinaMask [14] R-101-FPN 6.0 166.7 34.7 55.4 36.9 14.3 36.7 50.5

FCIS [24] R-101-C5 6.6 151.5 29.5 51.5 30.2 8.0 31.0 49.7

Mask R-CNN [18] R-101-FPN 8.6 116.3 35.7 58.0 37.8 15.5 38.1 52.4

MS R-CNN [20] R-101-FPN 8.6 116.3 38.3 58.8 41.5 17.8 40.4 54.4

YOLACT-550 R-101-FPN 33.5 29.8 29.8 48.5 31.2 9.9 31.3 47.7

YOLACT-400 R-101-FPN 45.3 22.1 24.9 42.0 25.4 5.0 25.3 45.0

YOLACT-550 R-50-FPN 45.0 22.2 28.2 46.6 29.2 9.2 29.3 44.8

YOLACT-550 D-53-FPN 40.7 24.6 28.7 46.8 30.0 9.5 29.6 45.5

YOLACT-700 R-101-FPN 23.4 42.7 31.2 50.6 32.8 12.1 33.3 47.1

Table 1: MS COCO [28] Results We compare to state-of-the-art methods for mask mAP and speed on COCO test-dev

and include several ablations of our base model, varying backbone network and image size. We denote the backbone archi-

tecture with network-depth-features, where R and D refer to ResNet [19] and DarkNet [36], respectively. Our base

model, YOLACT-550 with ResNet-101, is 3.9x faster than the previous fastest approach with competitive mask mAP.

Method NMS AP FPS Time

YOLACT
Standard 30.0 24.0 41.6

Fast 29.9 33.5 29.8

Mask R-CNN
Standard 36.1 8.6 116.0

Fast 35.8 9.9 101.0

(a) Fast NMS Fast NMS performs only slightly

worse than standard NMS, while being around 12

ms faster. We also observe a similar trade-off im-

plementing Fast NMS in Mask R-CNN.

k AP FPS Time

8 26.8 33.0 30.4

16 27.1 32.8 30.5
∗32 27.7 32.4 30.9

64 27.8 31.7 31.5

128 27.6 31.5 31.8

256 27.7 29.8 33.6

(b) Prototypes Choices for

k. We choose 32 for its mix

of performance and speed.

Method AP FPS Time

FCIS w/o Mask Voting 27.8 9.5 105.3

Mask R-CNN (550 × 550) 32.2 13.5 73.9

fc-mask 20.7 25.7 38.9

YOLACT-550 (Ours) 29.9 33.0 30.3

(c) Accelerated Baselines We compare to other

baseline methods by tuning their speed-accuracy

trade-offs. fc-mask is our model but with 16× 16

masks produced from an fc layer.

Table 2: Ablations All models evaluated on COCO val2017 using our servers. Models in Table 2b were trained for 400k

iterations instead of 800k. Time in milliseconds reported for convenience.

Method Backbone FPS Time mAPr
50

mAPr
70

MNC [7] VGG-16 2.8 360 63.5 41.5

FCIS [24] R-101-C5 9.6 104 65.7 52.1

YOLACT-550 R-50-FPN 47.6 21.0 72.3 56.2

Table 3: Pascal 2012 SBD [16] Results Timing for FCIS

redone on a Titan Xp for fairness. Since Pascal has fewer

and easier detections than COCO, YOLACT does much bet-

ter than previous methods. Note that COCO and Pascal FPS

are not comparable because Pascal has fewer classes.

misalignment, etc. However, we have identified two typical

errors caused by YOLACT’s mask generation algorithm.

Localization Failure If there are too many objects in one

spot in a scene, the network can fail to localize each object

in its own prototype. In these cases, the network will out-

put something closer to a foreground mask than an instance

segmentation for some objects in the group; e.g., in the first

image in Figure 6 (row 1 column 1), the blue truck under

the red airplane is not properly localized.

Leakage Our network leverages the fact that masks are

cropped after assembly, and makes no attempt to suppress

noise outside of the cropped region. This works fine when

the bounding box is accurate, but when it is not, that noise

can creep into the instance mask, creating some “leakage”

from outside the cropped region. This can also happen when

two instances are far away from each other, because the net-

work has learned that it doesn’t need to localize far away

instances—the cropping will take care of it. However, if the

predicted bounding box is too big, the mask will include

some of the far away instance’s mask as well. For instance,

Figure 6 (row 2 column 4) exhibits this leakage because the

mask branch deems the three skiers to be far enough away

to not have to separate them.

Understanding the AP Gap However, localization fail-

ure and leakage alone are not enough to explain the almost

6 mAP gap between YOLACT’s base model and, say, Mask

R-CNN. Indeed, our base model on COCO has just a 2.5

mAP difference between its test-dev mask and box mAP

(29.8 mask, 32.3 box), meaning our base model would only

gain a few points of mAP even with perfect masks. More-

over, Mask R-CNN has this same mAP difference (35.7

mask, 38.2 box), which suggests that the gap between the

two methods lies in the relatively poor performance of our

detector and not in our approach to generating masks.
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