
Expert Sample Consensus Applied to Camera Re-Localization

Eric Brachmann and Carsten Rother

Visual Learning Lab

Heidelberg University (HCI/IWR)

http://vislearn.de

Abstract

Fitting model parameters to a set of noisy data points is a

common problem in computer vision. In this work, we fit the

6D camera pose to a set of noisy correspondences between

the 2D input image and a known 3D environment. We esti-

mate these correspondences from the image using a neural

network. Since the correspondences often contain outliers,

we utilize a robust estimator such as Random Sample Con-

sensus (RANSAC) or Differentiable RANSAC (DSAC) to

fit the pose parameters. When the problem domain, e.g. the

space of all 2D-3D correspondences, is large or ambiguous,

a single network does not cover the domain well. Mixture of

Experts (MoE) is a popular strategy to divide a problem do-

main among an ensemble of specialized networks, so called

experts, where a gating network decides which expert is re-

sponsible for a given input. In this work, we introduce Ex-

pert Sample Consensus (ESAC), which integrates DSAC in a

MoE. Our main technical contribution is an efficient method

to train ESAC jointly and end-to-end. We demonstrate ex-

perimentally that ESAC handles two real-world problems

better than competing methods, i.e. scalability and ambi-

guity. We apply ESAC to fitting simple geometric models to

synthetic images, and to camera re-localization for difficult,

real datasets.

1. Introduction

In computer vision, we often have a model that explains

an observation with a small set of parameters. For exam-

ple, our model is the 6D pose (translation and rotation) of

a camera, and our observations are images of a known 3D

environment. The task of camera re-localization is then to

robustly and accurately predict the 6D camera pose given

the camera image. However, inferring model parameters

from an observation is difficult because many effects are

not explained by our model. People might move through

the environment, and its appearance varies largely due to

lighting effects such as day versus night. We usually map

our observation to a representation from which we can in-

fer model parameters more easily. For example, in camera

Gating Prediction:

Environment:

Query Image:

Experts: ...

Low Sample Consensus High Sample Consensus

Expert Predictions:

O
ff

ic
e

 1

O
ff

ic
e

 2

Office 2

Office 1

Figure 1. Camera Re-Localization Using ESAC. Given an envi-

ronment consisting of several ambiguous rooms (top) and a query

image (middle), we estimate the 6D camera pose (bottom). A gat-

ing network (black) predicts a probability for each room. We dis-

tribute a budget of pose hypotheses to expert networks specialized

to each room. We choose the pose hypothesis with maximum sam-

ple consensus (green), i.e. the maximum geometric consistency.

We train all networks jointly and end-to-end.

re-localization we can train a neural network to predict cor-

respondences between the 2D input image and the 3D envi-

ronment. Inferring the camera pose from these correspon-

dences is much easier, and various geometric solvers for

this problem exist [21, 16, 26]. Because some predictions

of the network might be erroneous, i.e. we have outlier cor-

respondences, we utilize a robust estimator such as Random

Sample Consensus (RANSAC) [14], resp. its differentiable

counterpart Differentiable Sample Consensus (DSAC) [6],

or other differentiable estimators [53, 35] for training.

7525

For some tasks, the problem domain is large or ambigu-

ous. In camera re-localization, an environment could fea-

ture repeating structures that are unique locally but not glob-

ally, e.g. office equipment, radiators or windows. A single

feed-forward network cannot predict a correct correspon-

dence for such objects because there are multiple valid solu-

tions. However, if we train an ensemble of networks where

each network specializes in a local part of the environment,

we can resolve such ambiguities. This strategy is known in

machine learning as Mixture of Experts (MoE) [20]. Each

expert is a network specialized to one part of the problem

domain. An additional gating network decides which expert

is responsible for a given observation. More specifically,

the output of the gating network is a categorical distribution

over experts, which either guides the selection of a single

expert, or a weighted average of all expert outputs [30].

In this work, we extend Mixture of Experts for fitting

parametric models. Each expert specializes to a part of

all training observations, and predicts a representation to

which we fit model parameters using DSAC. We argue that

two realizations of a Mixture of Experts model are not op-

timal: i) letting the gating network select one expert only

[19, 51, 3, 43]; ii) giving as output a weighted average of

all experts [20, 1]. In the first case, we ignore that the gat-

ing network might attribute substantial probability to more

than one expert. We might choose the wrong expert, and get

a poor result. In the second case, we calculate an average

in model parameter space which can be instable in learn-

ing [6]. In our realization of a Mixture of Experts model,

we integrate the gating network into the hypothesize-and-

verify framework of DSAC. To estimate model parameters,

DSAC creates many model hypotheses by sampling small

subsets of data points, and fitting model parameters to each

subset. DSAC scores hypotheses according to their con-

sistency with all data points, i.e. their sample consensus.

One hypothesis is selected as the final estimate according to

this score. Hypothesis selection is probabilistic, and train-

ing aims at minimizing the expected task loss.

Instead of letting the gating network pick one expert, and

fit model parameters only to this expert’s prediction, we dis-

tribute model hypotheses among experts. Each expert re-

ceives a share of the total number of hypotheses according

to the gating network. For the final selection, we score each

hypothesis according to sample consensus, irrespective of

what expert it came from, see Fig 1. Therefore, as long as

the gating network attributes some probability to the cor-

rect expert, we can still get an accurate model parameter

estimate. We call this framework Expert Sample Consensus

(ESAC). We train the network ensemble jointly and end-to-

end by minimizing the expected task loss. We define the

expectation over both, hypotheses sharing according to the

gating network, and hypothesis selection according to sam-

ple consensus.

We demonstrate our method on a toy problem where the

gating network has to decide which model to fit to syn-

thetic data - a line or a circle. Compared to naive expert

selection, our method proves to be extremely robust regard-

ing the gating network’s ability to assign the correct expert.

Our method also achieves state-of-the-art results in camera

re-localization where each expert specializes in a separate,

small part of a larger indoor environment.

We give the following main contributions:

• We present Expert Sample Consensus (ESAC), an en-

semble formulation of Differentiable Sample Consen-

sus (DSAC) which we derive from Mixture of Experts

(MoE).

• A method to train ESAC jointly and end-to-end.

• We demonstrate the properties of our algorithm on

a toy problem of fitting simple parametric models to

noisy, synthetic inputs.

• Our formulation improves on two real-world aspects of

learning-based camera re-localization, scalability and

ambiguity. We achieve state-of-the-art results on diffi-

cult, public datasets for indoor re-localization.

2. Related Work

Ensemble Methods. To improve the accuracy of machine

learning algorithms, one can train multiple base-learners

and combine their predictions. A common strategy is av-

eraging, so that errors of individual learners cancel out

[10, 25, 45, 18]. To ensure that base-learners produce non-

identical predictions, they are trained using random subsets

of training data (bagging) or using random initializations

of parameters (e.g. network weights). Boosting refers to a

weighted average of predictions where the weights emerge

from each base-learners ability to classify training sam-

ples [15]. In these ensemble methods, all base-learners are

trained on the full problem domain.

In contrast, Mixture of Experts (MoE) [20] employs a

divide-and-conquer strategy where each base-learner, resp.

expert, specializes in one part of the problem domain. An

additional gating network assesses the relevancy of each ex-

pert for a given input, and predicts an associated weight.

The ensemble prediction is a weighted average of the ex-

perts’ outputs. MoE has been trained by minimizing the

expected training loss [20], maximizing the likelihood un-

der a Gaussian mixture model interpretation [20] or using

the expectation-maximization (EM) algorithm [52].

MoE has been applied to image classification where each

expert specializes to a subset of classes [51, 19, 1, 3].

Ahmed et al. [1] find disjunct subsets by an EM-style al-

gorithm. Hinton et al. [19] and Yan et al. [51] find subsets

of classes based on class confusion of a generalist base net-

work. Aljundi et al. [3] apply MoE to lifelong multi-task

learning. Whenever their system should be extended with

a new task (e.g. a new object class) they train a new expert

7526

and a new expert gate. Each expert gate measures the simi-

larity of an input with its associated task, and the gate with

the highest similarity forwards the input to its expert.

In all aforementioned methods, the experts’ outputs con-

stitute the ensemble output directly. In contrast, we are in-

terested in a scenario where experts output a representation

to which we fit parametric models in a robust fashion while

maintaining the ability to train the ensemble jointly and end-

to-end. To the best of our knowledge, this has not been

addressed, previously. Some of the aforementioned meth-

ods make use of conditional computation, i.e. the gating

network selects a subset of experts to evaluate while oth-

ers stay idle [51, 19, 3]. While this is computationally effi-

cient, routing errors can occur, i.e. selection of the incorrect

expert results in catastrophic errors. In this work, we dis-

tribute computational budget between experts based on the

potentially soft prediction of the gating network. Thereby,

we strike a good balance between efficiency and robustness.

Camera Re-Localization. Camera re-localization has been

addressed with a very diverse set of methods. Some authors

use image-based retrieval systems [41, 11, 4] to map a query

image to the nearest neighbor in a set of database images

with known pose. Pose regression methods [23, 50, 22, 5, 9]

train neural feed-forward networks to predict the 6D pose

directly from an input image. Pose-regression methods vary

in network architecture, pose parametrization, or training

loss. Both, retrieval-based and pose-regression methods,

are very efficient but limited in accuracy. Feature-based re-

localization methods [28, 36, 38, 37, 40, 47] match sparse

feature points of the input image to a sparse 3D reconstruc-

tion of the environment. The 6D camera pose is estimated

from these 2D-3D correspondences using RANSAC. These

methods are very accurate, scale well but have problems

with texture-less surfaces and image conditions like motion

blur because the feature detectors fail [44, 23].

Scene coordinate regression methods [44, 17, 49, 7, 31,

32, 6, 12, 33, 8] also estimate 2D-3D correspondences be-

tween image and environment but do so densely for each

pixel of the input image. This circumvents the need for

a feature detector with the aforementioned draw-backs of

feature-based methods. Brachmann et al. [6] combine a

neural network for scene coordinate regression with a dif-

ferentiable RANSAC for an end-to-end trainable camera

re-localization pipeline. Brachmann and Rother [8] im-

prove the pipeline’s initialization and differentiable pose

optimization to achieve state-of-the-art results for indoor

camera re-localization from single RGB images. We build

on and extend [6, 8] by combining them with our ESAC

framework. Thereby, we are able to address two real-

world problems: scalability and ambiguity in camera re-

localization. Some scene coordinate regression methods

use an ensemble of base learners, namely random forests

[44, 49, 7, 31, 32, 12, 33]. Guzman-Rivera et al. [17] train

the random forest in a boosting-like manner to diversify its

predictions. Massiceti et al. [31] map an ensemble of de-

cision trees to an ensemble of neural networks. However,

in none of these methods do the base-learners specialize in

parts of the problem domain.

In [7], Brachmann et al. train a joint classification-

regression forest for camera re-localization. The forest clas-

sifies which part of the environment an input belongs to,

and regresses relative scene coordinates for this part. More

recently, image-retrieval and relative pose regression have

been combined in one system for good accuracy in [46].

Both works, [7] and [46], bear some resemblance to our

strategy but utilize one large model without the benefit of

efficient, conditional computation. Also, their models can-

not be trained in an end-to-end fashion.

Model Selection. Sometimes, the model type has to be es-

timated concurrently with the model parameters. E.g. data

points could be explained by a line or higher order poly-

nomials. Methods for model selection implement a trade-

off between model expressiveness and fitting error [2, 42].

For illustrative purposes, we introduce ESAC on a toy prob-

lem where it learns model selection in a supervised fashion.

However, in our main application, camera re-localization,

the model type is always known to be a 6D pose.

3. Method

We start by reviewing DSAC [6] for fitting parametric

models in Sec. 3.1. Then, in Sec. 3.2, we introduce Mixture

of Experts [20] with expert selection. Finally, we present

ESAC, an ensemble formulation of DSAC in Sec. 3.3. We

will explain these concepts for a simple toy problem before

applying them to camera re-localization in Sec. 4.

3.1. Differentiable Sample Consensus

We are interested in estimating a set of model

parameters h given an observation I . For instance, the

model could be a 2D line with slope m and intercept n, i.e.

h = (m,n). Observation I is an image of the line which

also contains noise and distractors which are not explained

by our model h. See top of Fig. 2 a) for an example input I

where the distractors are boxes that partly occlude the line.

Instead of fitting model parameters h directly to I , we

deduce an intermediate representation Y from I to which

we can fit our model easily. In the case of a line, Y could

be a set of 2D points y ∈ Y with y = (y0, y1), where each

point is explained by our model: y1 = my0 + n. We can

deduce line parameters h from Y using linear regression or

Deming regression [13].

Since the image formation process is complicated and/or

unknown to us, there is no simple way to infer Y from I .

Instead, we train a neural network f with learnable param-

eters w to predict Y = f(I;w). The neural network can

learn to ignore distractors and image noise to some extent.

7527

(a) Experts

Input with Line

and Distractors

(b) Gating Network

Input Contains Line

Line Search

Expert

Estimated

Points On Line

Estimated Line

Parameters

Input with Circle

and Distractors

Circle Search

Expert

Estimated

Points On Circle

Estimated Circle

Parameters

Input with Circle or Line Gating Network Prediction

Input Contains Circle

D
if

fe
re

n
ti

a
b

le

R
A

N
S
A

C

D
if

fe
re

n
ti

a
b

le

R
A

N
S
A

C

Figure 2. Network Ensemble for a Toy Problem. a) Two expert

networks, one specialized to finding lines, one specialized to find-

ing circles. Both experts predict a set of 2D points which should

lie on the line or circle, respectively. We fit model parameters to

these points using differentiable RANSAC. b) The gating network

predicts whether an image contains either a line or a circle.

However, it is likely to make some mistakes, e.g. predict

some points y not explained by our model h. Therefore, we

employ a robust estimator ĥ, namely Random Sample Con-

sensus (RANSAC) [14], and, for neural network training,

Differentiable Sample Consensus (DSAC) [6].

RANSAC. RANSAC robustly estimates model parame-

ters by sampling a pool of N model hypotheses hj with

j ∈ {1, . . . , N}. A hypothesis is sampled by randomly

choosing a minimal set from Y and fitting model param-

eters to it. For a 2D line, a minimal set consists of two 2D

points which determine slope and intercept. Each hypoth-

esis is scored by measuring its sample consensus or inlier

count s(·), i.e. the number of data points y that agree with

the hypothesis.

s(h,Y) =
∑

y∈Y

✶(τ − d(y,h)), (1)

where d(y,h) is a measure of distance between model hy-

pothesis h and data point y, e.g. the point-line distance. Pa-

rameter τ is a threshold that encapsulates our tolerance for

inlier errors, and ✶(·) denotes the Heaviside step function.

Our final estimate is the model hypothesis with the maxi-

mum score:

ĥ = hj with j = argmax
j

s(hj ,Y) (2)

Due to the non-differentiability of the argmax selection, we

cannot use RANSAC directly in neural network training.

However, Brachmann et al. [6] proposed a differentiable

version of the algorithm which we will discuss next.

DSAC. The core idea of Differentiable Sample Consensus

[6] is to make hypothesis selection probabilistic. Instead of

choosing the hypothesis with maximum score determinis-

tically as in Eq. 2, we choose it randomly according to a

softmax distribution over scores:

ĥ = hj with j ∼ p(j) =
exp(s(hj ,Y))

∑

j′ exp(s(hj′ ,Y))
(3)

This allows us to minimize the expected task loss L(w) dur-

ing training:

L(w) = Ej∼p(j) [ℓ(hj)] , (4)

where ℓ(h) measures the error of a model hypothesis h

w.r.t. some ground truth parameters h∗. Since L(w) is a

weighted sum with a finite number of N summands, one

for each hypothesis in our pool, we can calculate it and its

gradients exactly. As one last consideration, we have to re-

place the non-differentiable inlier count of Eq. 1 by a soft

version [8].

s(h,Y) = α
∑

y∈Y

1− sig(βd(y,h)− βτ), (5)

where sig(·) denotes the Sigmoid function, and α, β are hy-

perparameters which control the softness of the score [8].

By minimizing L(w), we can train our network f(I;w)
in an end-to-end fashion using DSAC. The network learns

to predict a representation Y that yields an accurate model

estimate ĥ, although Y might still contain outliers. For the

toy problem of fitting a 2D line, we show an example run of

the full pipeline in Fig. 2 a) top.

3.2. Expert Selection

In the following, we introduce the notion of experts for

the scenario of parametric model fitting. Firstly, we apply

the original formulation of Mixture of Experts (MoE) [20]

before extending it in Sec. 3.3.

Instead of training one neural network responsible for

all inputs, we train an ensemble of M experts fe(I;w) with

e ∈ {1, . . . ,M}. We denote the output of each expert with

Ye. A gating network g(e, I;w) decides for a given input

I which expert is responsible, i.e. it predicts a probability

distribution over experts: p(e) = g(e, I;w). For notation

simplicity we stack the learnable parameters of all individ-

ual networks in a single parameter vector w.

For illustration, we change the toy problem of the previ-

ous section in the following way. Some inputs I show a 2D

line (as before) while others show a 2D circle. Therefore,

we extend our model parameters to h = (m,n, r). In case

of a circle, (m,n) is the circle center and r is its radius. In

case of a line, m and n are slope and intercept, respectively

and we set r = −1 to indicate it is not a circle.

7528

We train two experts, e.g. M = 2, one specialized for

fitting lines, one specialized for fitting circles. Additionally,

we train a gating network which should decide for an arbi-

trary input whether it shows a line or a circle, so that we can

apply the correct expert. See Fig. 2 for a visualization of all

three networks and their respective task.

Given an image I , we first choose an expert according to

the gating network prediction e ∼ p(e). We let this expert

estimate Ye, and apply DSAC, i.e. we sample a pool of hy-

potheses from Ye. We choose our estimate similar to Eq. 3

according to

ĥ = hj with j ∼ p(j|e) =
exp(s(hj ,Ye))

∑

j′ exp(s(hj′ ,Ye))
. (6)

We illustrate the forward process of the ensemble in

Fig. 3 a). To train the network ensemble, we can adapt the

training formulation of DSAC (Eq. 4) in the following way.

L(w) = Ee∼p(e)Ej∼p(j|e) [ℓ(hj)] , (7)

i.e. we minimize the expected loss over choosing the correct

expert according to p(e), and selecting a model hypothesis

from this expert according to p(j|e). Note, that we enforce

specialization of experts in this training formulation by run-

ning the appropriate version of DSAC depending on which

expert we chose, i.e. we fit either a circle or a line to Ye.

To calculate the outer expectation, we have to sum over

all M experts and run DSAC each time for the inner expec-

tation. Since DSAC is costly, and in some applications we

might have a large number of experts, this can be infeasi-

ble. However, we can re-write the gradients of the expecta-

tion as an expectation itself [6]. This allows us to efficiently

approximate the gradients via sampling.

∂

∂w
L(w) = Ee

[

Ej [ℓ]
∂

∂w
log p(e) +

∂

∂w
Ej [ℓ]

]

≈
1

K

K
∑

k=1

[

Ej [ℓ]
∂

∂w
log p(ek) +

∂

∂w
Ej [ℓ]

]

, (8)

where we sample ek ∼ p(e) K times and average the gra-

dients. We use the abbreviations Ee, Ej and ℓ for the re-

spective entities in Eq. 7. In practice, when training with

stochastic gradient descent, we can approximate the expec-

tation with K = 1 sample which means that we do one run

of DSAC per training input.

Since we select only one expert at test time, we only have

to compute this expert’s forward pass, which is computa-

tionally efficient. However, if we chose the wrong expert,

i.e. an expert not specialized to current input I , we cannot

hope to get a sensible prediction ĥ. Therefore, the accuracy

of this MoE formulation is limited by the accuracy of the

gating network. In the next section, we describe our alterna-

tive, new formulation which is more robust to inaccuracies

of the gating network.

3.3. Expert Sample Consensus

Instead of having the gating network select one expert

with the risk of selecting the wrong one, we distribute our

budget of N model hypotheses among experts. We sample

ne ≤ N hypotheses from each expert’s prediction Ye. For

this purpose, we define a vector H that expresses how many

hypotheses we assign to each expert.

H = (n1, . . . , ne, . . . , nM) with
∑

ne = N (9)

We choose H for a given input I based on the output of the

gating network. More specifically, H follows a multinomial

distribution based on the gating probabilities g(e, I;w).

p(H) =
N !

∏

e ne!

∏

e

g(e, I;w)ne (10)

Given an image I , we first choose H ∼ p(H), and

then, according to H we sample ne hypotheses h(e,j) with

j ∈ {1, . . . , ne} from each expert prediction Ye. We use

an index pair (e, j) to denote which expert a hypothesis be-

longs to, and which of the ne hypotheses of this expert it

is, specifically. We choose our estimate similar to Eq. 3 and

Eq. 6 according to

ĥ = h(e,j) with (e, j) ∼ p(e, j|H), and

p(e, j|H) =
exp(s(h(e,j),Ye))

∑

e′

∑

j′ exp(s(h(e′,j′),Ye′))
(11)

Note that p(e, j|H) is a softmax distribution over all N hy-

potheses, i.e. we choose a hypothesis solely based on its

score s(·) irrespective of which expert it came from. In

particular, the gating network does not influence hypothesis

selection directly, but only guides hypotheses distribution

among experts. Depending on the prediction of the gating

network g(e, I;w), some experts with low probability will

have no hypotheses assigned (ne = 0). For these experts,

we do not need Ye, and hence can save computing the as-

sociated forward pass, implementing conditional computa-

tion. We visualize our method in Fig. 3 b).

For training, we adapt our MoE training objective of

Eq. 7 and minimize

L(w) = EH∼p(H)E(e,j)∼p(e,j|H)

[

ℓ(h(e,j))
]

. (12)

i.e. we minimize the expected loss over distributing N hy-

potheses, and selecting a final estimate. Since p(H) is a

distribution over all possible vectors H, we again rewrite

the gradients of L(w) as an expectation, and approximate

via sampling:

∂

∂w
L(w) ≈

1

K

K
∑

k=1

[

Ee,j [ℓ]
∂

∂w
log p(Hk) +

∂

∂w
Ee,j [ℓ]

]

(13)

7529

(b) Expert Sample Consensus (Ours) Model Hypotheses

(line and circle hypotheses)
Selected Hypothesis

(a) Hard Expert Selection
Selected HypothesisModel Hypotheses

(only line hypotheses)

Gating network decides

whether line or circle.

Gating network

distributes model

hypothesis budget.

Model

Hypothesis

Sampling

Figure 3. Ensemble Interplay. Given an image of a line or a circle, we estimate the parameters of the associated model. a) The gating

network chooses one expert for a given input. We sample model hypotheses only based on this expert’s prediction. b) The gating network

predicts how the number of model hypotheses should be divided among experts, i.e. we sample line and circle hypotheses. In this example,

the estimate of a) and b) is similar, but in b) we incorporate the full prediction of the gating network, instead of only the largest probability.

In practice we found K = 1 to suffice. Throughout training,

we sample many different hypotheses splits. Whenever a re-

sponsible expert receives too few hypotheses, Eq. 12 yields

a large loss, and hence a large training signal for the gating

network. On the other hand, receiving too many hypothe-

ses will not decrease the loss further, and there will be no

training signal to reward it. Therefore, the gating network

learns the trade-off between assigning broad distributions

p(e) in ambiguous cases, and assigning sufficiently many

hypotheses to the most likely experts.

Calculating the approximate gradients of Eq. 13 involves

the derivative of the log probability for a given H which we

calculate as

∂

∂w
log p(H) =

∑

e

ne

g(e, I;w)

∂

∂w
g(e, I;w). (14)

4. ESAC for Camera Re-Localization

We estimate the 6D camera pose h = (t,θ), consisting

of 3D translation t and 3D rotation θ, from a single RGB

image. Our pipeline is based on DSAC++ of Brachmann

and Rother [8] which itself is based on the scene coordinate

regression method of Shotton et al. [44]. For each pixel

i with 2D position pi in an image, we regress a 3D scene

coordinate yi, i.e. the coordinate of the pixel in world space.

Given a minimal set of four 2D-3D correspondences

(pi,yi) we can estimate h using a perspective-n-point al-

gorithm [16, 26]. We employ a robust estimator ĥ as de-

scribed in Sec. 3. That is, we sample multiple minimal sets

to create a pool of N pose hypotheses hj , and select the best

one according to a scoring function. We follow [8], and use

a soft inlier count as score. See also Eq. 5 where we use the

re-projection error of a scene coordinate for d(y,h).

Once we have chosen a hypothesis, we refine it us-

ing the differentiable pose optimization of [8]. Refine-

ment iteratively resolves the perspective-n-point problem

on all inliers of a hypothesis. Gradients are approxi-

mated via a linearizion of the objective function in the

last refinement iteration. Our output is the refined, se-

lected hypothesis R(ĥ). As task loss for training, we use

ℓ(h) = ∠(θ,θ∗) + γ||t− t∗||, where ∠(·) denotes angle

difference. The hyperparameter γ controls the trade-off be-

tween rotation and translation errors [23]. We use γ = 100
when measuring angles in degree and translation in meters.

We estimate scene coordinates y using an ensemble of

experts fe(I;w) and a gating network g(e, I;w). When

designing the expert network architecture we were inspired

by DSAC++ [8]. Each expert is an FCN [29] which predicts

80 × 60 scene coordinates for a 640 × 480px image. Dif-

ferent from DSAC++ [8], we use a ResNet architecture [18]

instead of VGG [45]. We found ResNet to achieve simi-

lar accuracy while being more efficient in computation time

and memory (28 vs. 210MB). Each expert has 16 layers, 6M

parameters and a 81px receptive field. The gating network

has 10 layers and 100k parameters. The receptive field of

the gating network is the complete image, i.e. it incorpo-

rates more context when assigning experts. Experts have a

small receptive field to be robust to view point changes. Our

implementation is based on PyTorch [34], and we will make

it publicly available1 .

1vislearn.de/research/scene-understanding/pose-estimation/#ICCV19

7530

In
p

u
ts

E
x
p

e
rt

S
e

le
ct

io
n

E
S

A
C

a)

6
7

.2
%

8
6

.0
%

7
1

.1
%

9
7

.5
%

50%

60%

70%

80%

90%

100%

Parameter

Accuracy

Classification

Accuracy

Expert Selection

ESAC (Ours)

b)

Figure 4. Results for Toy Problem. a) Percentage of correctly

estimated model parameters (left), and percentage of correctly se-

lected model types, i.e. line or circle (right). b) Qualitative results.

The ground truth model is shown in green, the estimate is blue.

5. Experiments

We evaluate ESAC for the toy problem introduced in

Sec. 3, and camera re-localization from single RGB images.

5.1. Toy Problem

Setup. We generate images of size 64 × 64px, which show

either a line or a circle with 50% probability. We add 4 to

10 distractors to each image, which can occlude the circle

or line. Colors of lines, circles and distractors are uniformly

random. Finally, we add speckle noise to each image. Dif-

ficult example inputs are shown in Fig. 4 b).

We train one expert for lines and one for circles. Each

expert is a CNN with 2M parameters that predicts 64 2D

points. The gating network is a CNN with 5k parameters

that predicts two outputs, corresponding to the probability

for a line or a circle. As training loss for lines, we minimize

the maximum distance between the estimate and ground

truth in the image. For circles, we minimize the distance

between centers and absolute difference in radii of the esti-

mate and ground truth. We pre-train each expert using only

line or only circle images with DSAC. We pre-train the gat-

ing network using both line and circle images with a neg-

ative log likelihood classification loss. After pre-training

for 50k iterations, we train the ensemble jointly and end-to-

end for another 50k iterations, either using Expert Selection

(Sec. 3.2) or ESAC (Sec. 3.3). We train with a batch size

of 32, using Adam [24], and sampling N = 64 model hy-

potheses. For testing, we generate a set of 10,000 images.

Results. Fig. 4 a) shows the percentage of correctly esti-

mated model parameters (Parameter Accuracy). We accept

a line estimate if the maximum distance to the ground truth

line in the image is < 3px. We accept a circle estimate if

its center and radius is within 3px of ground truth. We ob-

serve a significant advantage of using ESAC over Expert

Selection (+3.9%). The gating network confuses images

with lines and circles sometimes, and might assign higher

probability to the wrong expert. ESAC runs both experts

in unclear cases, and selects the final estimate according to

sample consensus. Fig. 4 a) also shows the classification

accuracy of the ensemble, i.e. selecting the correct model

7Scenes Acc. Med. Err. 12Scenes Acc.

MapNet [9] - 18cm, 6.6° SIFT+PnP [48] 62.2%

ActiveSearch [38] - 5.1cm, 2.5° BT-RF [32] 63.6%

AC-RF [7] 55.2% 4.5cm, 2.0° MNG [48] 69.3%

DSAC++ [8] 74.4% 3.6cm, 1.1° DSAC++ [8] 96.4%

ESAC (Ours) 73.8% 3.4cm, 1.5° ESAC (Ours) 97.8%

Figure 5. Pose Accuracy when Scene ID is known. Percentage of

pose estimates with an error below 5cm and 5◦, and median errors.

type. Here, ESAC outperforms Expert Selection by 11.5%.

The good classification accuracy indicates that ESAC might

be a suitable method for model selection, although we did

not investigate this scenario further.

5.2. Camera Re­Localization

For our main application, each expert predicts the same

model type, a 6D camera pose, but specializes in different

parts of a potentially large and repetitive environment.

Datasets. The 7Scenes [44] dataset consists of RGB-D im-

ages, camera poses and 3D models of seven indoor rooms

(ca. 125m3 total). The images contain texture-less surfaces,

motion blur and repeating structures, which makes this

dataset challenging despite its limited size. The 12Scenes

[48] dataset resembles 7Scenes in structure but features

twelve larger rooms (ca. 520m3 total). The combination

of 7Scenes and 12Scenes yields one large environment

(19Scenes) comprised of 19 rooms (ca. 645m3 total, see

also Fig. 1). The data features multiple kitchens, living

rooms and offices, containing ambiguous furniture and of-

fice equipment.

Setup. Ignoring depth channels, we estimate camera poses

from RGB only. We train one expert per scene, i.e. M ∈
{7, 12, 19} depending on the dataset. We pre-train each ex-

pert for 500k iterations, using a L1 regression loss w.r.t. to

ground truth scene coordinates obtained by rendering 3D

scene models, similar to [8]. Furthermore, we pre-train the

gating network to classify scenes using negative log likeli-

hood for 100k iterations. We use Adam with a fixed learn-

ing rate of 10−4. After pre-training, we train the ensemble

of networks jointly and end-to-end using Expert Selection

(Sec. 3.2) or ESAC (Sec. 3.3) for 100k iterations. We use

a learning rate of 10−6 for experts, and 10−7 for the gat-

ing network. Otherwise, we keep the hyperparameters of

DSAC++ [8], e.g. we sample N = 256 hypotheses and use

an inlier threshold of τ = 10px.

Results on Individual Scenes. Firstly, we verify our re-

implementation of DSAC++, and our choice of network ar-

chitecture. To this end, we evaluate our expert networks

when the scene ID for a test frame is given. That is, we dis-

able the gating network, and always use the correct expert.

We achieve an accuracy similar to DSAC++, slightly worse

on 7Scenes, slightly better on 12Scenes, see Fig. 5. Note

that our networks are 7.5× smaller than those of DSAC++.

7531

5
0

.0
%

6
6

.6
%

8
3

.3
%

5
3

.3
%

6
7

.4
%

6
0

.5
%

4
7

.5
%7
0

.3
% 9

7
.1

%

8
8

.1
%

0%

20%

40%

60%

80%

100%

7Scenes 12Scenes 19Scenes

Re-Localization Accuracya) b)

AC-RF [7] DSAC++ [8] Expert Selection ESAC (Ours)

9
0

.9
%

6
2

.1
%

5
3

.0
%

9
5

.5
%

9
9

.4
%

9
8

.7
%

7Scenes 12Scenes 19Scenes

Classification Accuracy

Figure 6. Average Pose Accuracy when Scene ID is Unknown.

a) Accuracy in growing environments. The scene ID has to be in-

ferred by the method. b) Average accuracy of scene classification.

Results on Combined Scenes. To evaluate our main

contribution, we create three environments of increasing

size, combining scenes of 7Scenes, 12Scenes and both

(=19Scenes). We compare to DSAC++ by training a sin-

gle CNN for an environment. For a fair comparison, we

use our expert network architecture for DSAC++, and in-

crease its capacity to match that of ESAC’s network ensem-

ble. We also compare to an ensemble with Expert Selection

(Sec. 3.2). We show our main results in Fig. 6 a) measur-

ing the percentage of estimated poses with an error below

5◦ and 5cm. The accuracy of DSAC++ decreases notably

in larger environments, culminating in a moderate accuracy

of 53.3% re-localized images on 19Scenes. DSAC++ re-

lies solely on local image context which becomes increas-

ingly ambiguous with a growing number of visually simi-

lar scenes. An ensemble with Expert Selection fares even

worse despite using global image context in the gating net-

work when disambiguating scenes. Some of the scenes

are too similar, and the top-scoring gating prediction is in-

correct in many cases. By distributing model hypotheses

among experts, ESAC incorporates global image context in

a robust fashion, and consistently achieves best accuracy.

The margin is most distinct for 19Scenes, the largest envi-

ronment, with 88.1% correctly re-localized images. Note

that the increased environment scale hardly affects the ac-

curacy of ESAC. It looses 3.5% accuracy for 7Scenes with

known scene ID, and less than 1% for 12Scenes, cf. Fig. 5.

In the supplement, we include an ablation study about the

effect of end-to-end training.

Handling Ambiguities. In Fig. 6 b) we show the aver-

age scene classification accuracy of Expert Selection and

ESAC. In the supplement, we provide additional informa-

tion in the form of scene confusion matrices, and examples

of visually similar scenes. Expert Selection is particularly

prone to confuse offices which contain ambiguous furniture

and office equipment. ESAC can tell these scenes apart reli-

ably by combining global image context when distributing

hypotheses and geometric consistency when selecting hy-

potheses.

Method

Dubrovnik [27]

Median Accuracy

Aachen Day [39]

0.25m, 2° / 0.5m, 5° / 5m, 10°

DSAC++ [8] 2.3°, 24.0m 0.4% / 2.4% / 34.0%

ESAC (10 Experts) 1.6°, 10.1m 30.3% / 49.3% / 73.7%

ESAC (20 Experts) 1.4°, 9.4m 39.7% / 55.9% / 77.8%

ESAC (50 Experts) 1.6°, 9.1m 42.6% / 59.6% / 75.5%

PoseNet [22] 4.4°, 7.9m N/A

Active Search [38] N/A, 1.3m 57.3% / 83.7% / 96.6%

Figure 7. Large-Scale Outdoor Re-Localization. For ESAC, we

divide an environment via scene coordinate clustering, and train

an expert for each cluster. See the supplement for details.

Conditional Computation. By using a single, mono-

lithic network, inference with DSAC++ takes almost 1s on

19Scenes due to the large model capacity. ESAC needs to

evaluate only those experts relevant for a given test image.

On 19Scenes, it evaluates 6.1 experts in 555ms on average.

We can also restrict the max. number of experts per image to

trade off accuracy for speed, see the supplement for details.

Outdoor Re-Localization. We applied ESAC to outdoor

re-localization in vast connected spaces, namely to the

Dubrovnik dataset [27], and the Aachen Day dataset [39].

We refer to the supplement for details about the experimen-

tal setup, and present the main results in Fig. 7. While

we improve over DSAC++ by a large margin, we do not

completely close the performance gap to classical sparse

feature-based methods like ActiveSearch [38]. We see that

adding more experts (and therefore model capacity) helps

only to some degree. This hints towards limitations of cur-

rent scene coordinate regression methods [6, 8] beyond the

environment size. For example, the SfM ground truth re-

construction, which we use for training, contains a sub-

stantial amount of outliers, particularly for Dubrovnik. The

training of CNN-based dense regression might be sensitive

to such noisy inputs, and developing resilient training strate-

gies might be a promising direction for future research.

6. Conclusion

We have presented ESAC, an ensemble of expert net-

works for estimating parametric models. ESAC uses a gat-

ing network to distribute model hypotheses among experts.

This is more robust than formulations where the gating net-

work chooses a single expert only. We applied ESAC to

the camera re-localization task in a large indoor environ-

ment where each expert specializes to a single room, achiev-

ing state-of-the-art accuracy. For large-scale outdoor re-

localization, we made progress towards closing the gap to

classical, feature-based methods.

Acknowledgements: This project has received funding

from the European Research Council (ERC) under the Eu-

ropean Unions Horizon 2020 research and innovation pro-

gramme (grant agreement No 647769). The computations

were performed on an HPC Cluster at the Center for Infor-

mation Services and High Performance Computing (ZIH) at

TU Dresden.

7532

References

[1] Karim Ahmed, Mohammad Haris Baig, and Lorenzo Torre-

sani. Network of experts for large-scale image categoriza-

tion. In ECCV, 2016. 2

[2] Hirotugu Akaike. A new look at the statistical model identi-

fication. TAC, 1974. 3

[3] Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars.

Expert gate: Lifelong learning with a network of experts. In

CVPR, 2017. 2, 3

[4] Relja Arandjelović, Petr Gronat, Akihiko Torii, Tomas Pa-

jdla, and Josef Sivic. NetVLAD: CNN architecture for

weakly supervised place recognition. In CVPR, 2016. 3

[5] Vassileios Balntas, Shuda Li, and Victor Adrian Prisacariu.

RelocNet: Continuous metric learning relocalisation using

neural nets. In ECCV, 2018. 3

[6] Eric Brachmann, Alexander Krull, Sebastian Nowozin,

Jamie Shotton, Frank Michel, Stefan Gumhold, and Carsten

Rother. DSAC-Differentiable RANSAC for camera localiza-

tion. In CVPR, 2017. 1, 2, 3, 4, 5, 8

[7] Eric Brachmann, Frank Michel, Alexander Krull, Michael Y.

Yang, Stefan Gumhold, and Carsten Rother. Uncertainty-

driven 6D pose estimation of objects and scenes from a sin-

gle RGB image. In CVPR, 2016. 3

[8] Eric Brachmann and Carsten Rother. Learning less is more-

6D camera localization via 3D surface regression. In CVPR,

2018. 3, 4, 6, 7, 8

[9] Samarth Brahmbhatt, Jinwei Gu, Kihwan Kim, James Hays,

and Jan Kautz. Geometry-aware learning of maps for camera

localization. In CVPR, 2018. 3

[10] Leo Breiman. Random forests. Machine Learning, 2001. 2

[11] Song Cao and Noah Snavely. Graph-based discriminative

learning for location recognition. In CVPR, 2013. 3

[12] Tommaso Cavallari, Stuart Golodetz, Nicholas A Lord,

Julien Valentin, Luigi Di Stefano, and Philip HS Torr. On-

the-fly adaptation of regression forests for online camera re-

localisation. In CVPR, 2017. 3

[13] William E. Deming. Statistical Adjustment of Data. 1943. 3

[14] Martin A. Fischler and Robert C. Bolles. Random Sample

Consensus: A paradigm for model fitting with applications to

image analysis and automated cartography. Commun. ACM,

1981. 1, 4

[15] Yoav Freund and Robert E. Schapire. A short introduction to

boosting. In IJCAI, 1999. 2

[16] Xiao-Shan Gao, Xiao-Rong Hou, Jianliang Tang, and

Hang-Fei Cheng. Complete solution classification for the

perspective-three-point problem. TPAMI, 2003. 1, 6

[17] Abner Guzman-Rivera, Pushmeet Kohli, Ben Glocker, Jamie

Shotton, Toby Sharp, Andrew Fitzgibbon, and Shahram

Izadi. Multi-output learning for camera relocalization. In

CVPR, 2014. 3

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 2, 6

[19] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distill-

ing the knowledge in a neural network. In NIPS Workshops,

2015. 2, 3

[20] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and

Geoffrey E. Hinton. Adaptive mixtures of local experts. Neu-

ral Computation, 1991. 2, 3, 4

[21] Wolfgang Kabsch. A solution for the best rotation to re-

late two sets of vectors. Acta Crystallographica Section A:

Crystal Physics, Diffraction, Theoretical and General Crys-

tallography, 1976. 1

[22] Alex Kendall and Roberto Cipolla. Geometric loss functions

for camera pose regression with deep learning. In CVPR,

2017. 3

[23] Alex Kendall, Matthew Grimes, and Roberto Cipolla.

PoseNet: A convolutional network for real-time 6-DoF cam-

era relocalization. In ICCV, 2015. 3, 6

[24] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In ICLR, 2015. 7

[25] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.

ImageNet classification with deep convolutional neural net-

works. In NIPS, 2012. 2

[26] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua.

EPnP: An accurate O(n) solution to the PnP problem. IJCV,

2009. 1, 6

[27] Yunpeng Li, Noah Snavely, and Daniel P. Huttenlocher. Lo-

cation recognition using prioritized feature matching. In

ECCV, 2010. 8

[28] Hyon Lim, Sudipta N. Sinha, Michael F. Cohen, and

Matthew Uyttendaele. Real-time image-based 6-DoF local-

ization in large-scale environments. In CVPR, 2012. 3

[29] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In

CVPR, 2015. 6

[30] Saeed Masoudnia and Reza Ebrahimpour. Mixture of ex-

perts: A literature survey. Artificial Intelligence Review,

2014. 2

[31] Daniela Massiceti, Alexander Krull, Eric Brachmann,

Carsten Rother, and Philip H. S. Torr. Random forests ver-

sus neural networks - What’s best for camera localization?

In ICRA, 2017. 3

[32] Lili Meng, Jianhui Chen, Frederick Tung, James J. Little,

Julien Valentin, and Clarence W. de Silva. Backtracking re-

gression forests for accurate camera relocalization. In IROS,

2017. 3

[33] Lili Meng, Frederick Tung, James J. Little, Julien Valentin,

and Clarence W. de Silva. Exploiting points and lines in re-

gression forests for RGB-D camera relocalization. In IROS,

2018. 3

[34] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in PyTorch. In NIPS-W, 2017. 6

[35] René Ranftl and Vladlen Koltun. Deep fundamental matrix

estimation. In ECCV, 2018. 1

[36] Torsten Sattler, Michal Havlena, Filip Radenovic, Konrad

Schindler, and Marc Pollefeys. Hyperpoints and fine vocab-

ularies for large-scale location recognition. In ICCV, 2015.

3

[37] Torsten Sattler, Michal Havlena, Konrad Schindler, and Marc

Pollefeys. Large-scale location recognition and the geomet-

ric burstiness problem. In CVPR, 2016. 3

7533

[38] Torsten Sattler, Bastian Leibe, and Leif Kobbelt. Efficient

& effective prioritized matching for large-scale image-based

localization. TPAMI, 2016. 3, 8

[39] Torsten Sattler, Will Maddern, Carl Toft, Akihiko Torii,

Lars Hammarstrand, Erik Stenborg, Daniel Safari, Masatoshi

Okutomi, Marc Pollefeys, Josef Sivic, Fredrik Kahl, and

Tomas Pajdla. Benchmarking 6DoF outdoor visual localiza-

tion in changing conditions. In CVPR, 2018. 8

[40] Torsten Sattler, Akihiko Torii, Josef Sivic, Marc Pollefeys,

Hajime Taira, Masatoshi Okutomi, and Tomas Pajdla. Are

large-scale 3D models really necessary for accurate visual

localization? In CVPR, 2017. 3

[41] Grant Schindler, Matthew Brown, and Richard Szeliski.

City-scale location recognition. In CVPR, 2007. 3

[42] Gideon Schwarz. Estimating the dimension of a model. An-

nals of Statistics, 1978. 3

[43] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy

Davis, Quoc V. Le, Geoffrey E. Hinton, and Jeff Dean.

Outrageously large neural networks: The sparsely-gated

mixture-of-experts layer. In ICLR, 2017. 2

[44] Jamie Shotton, Ben Glocker, Christopher Zach, Shahram

Izadi, Antonio Criminisi, and Andrew Fitzgibbon. Scene co-

ordinate regression forests for camera relocalization in RGB-

D images. In CVPR, 2013. 3, 6, 7

[45] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. CoRR,

2014. 2, 6

[46] Hajime Taira, Masatoshi Okutomi, Torsten Sattler, Mircea

Cimpoi, Marc Pollefeys, Josef Sivic, Tomas Pajdla, and Ak-

ihiko Torii. InLoc: Indoor visual localization with dense

matching and view synthesis. In CVPR, 2018. 3

[47] Carl Toft, Erik Stenborg, Lars Hammarstrand, Lucas Brynte,

Marc Pollefeys, Torsten Sattler, and Fredrik Kahl. Seman-

tic match consistency for long-term visual localization. In

ECCV, 2018. 3

[48] Julien Valentin, Angela Dai, Matthias Nießner, Pushmeet

Kohli, Philip Torr, Shahram Izadi, and Cem Keskin. Learn-

ing to navigate the energy landscape. CoRR, 2016. 7

[49] Julien Valentin, Matthias Nießner, Jamie Shotton, Andrew

Fitzgibbon, Shahram Izadi, and Philip H. S. Torr. Exploiting

uncertainty in regression forests for accurate camera relocal-

ization. In CVPR, 2015. 3

[50] Florian Walch, Caner Hazirbas, Laura Leal-Taixé, Torsten

Sattler, Sebastian Hilsenbeck, and Daniel Cremers. Image-

based localization with spatial LSTMs. In ICCV, 2017. 3

[51] Zhicheng Yan, Vignesh Jagadeesh, Dennis DeCoste, Wei Di,

and Robinson Piramuthu. HD-CNN: hierarchical deep con-

volutional neural network for image classification. In ICCV,

2015. 2, 3

[52] Bangpeng Yao, Dirk Walther, Diane Beck, and Li Fei-fei.

Hierarchical mixture of classification experts uncovers inter-

actions between brain regions. In NIPS, 2009. 2

[53] Kwang Moo Yi, Eduard Trulls, Yuki Ono, Vincent Lepetit,

Mathieu Salzmann, and Pascal Fua. Learning to find good

correspondences. In CVPR, 2018. 1

7534

