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Abstract

We consider adversarial examples for image classifica-

tion in the black-box decision-based setting. Here, an at-

tacker cannot access confidence scores, but only the final

label. Most attacks for this scenario are either unreliable

or inefficient. Focusing on the latter, we show that a specific

class of attacks, Boundary Attacks, can be reinterpreted as

a biased sampling framework that gains efficiency from do-

main knowledge. We identify three such biases, image fre-

quency, regional masks and surrogate gradients, and eval-

uate their performance against an ImageNet classifier. We

show that the combination of these biases outperforms the

state of the art by a wide margin. We also showcase an ef-

ficient way to attack the Google Cloud Vision API, where

we craft convincing perturbations with just a few hundred

queries. Finally, the methods we propose have also been

found to work very well against strong defenses: Our tar-

geted attack won second place in the NeurIPS 2018 Adver-

sarial Vision Challenge.

1. Introduction

Ever since the term was fist coined, adversarial exam-

ples have enjoyed much attention from machine learning

researchers. The fact that tiny perturbations can lead other-

wise robust-seeming models to misclassify an input could

pose a major problem for safety and security. But when dis-

cussing adversarial examples, it is often unclear how realis-

tic the scenario of a proposed attack truly is. In this work,

we consider a threat setting with the following parameters:

Black-box. The black-box setting assumes that an at-

tacker has access only to the input and output of a model.

Compared to the white-box setting, where an attacker has

complete access to the architecture and parameters of the

model, attacks in this setting are significantly harder to con-

duct: Most state-of-the-art white-box attacks [7, 4, 13] rely

on gradients that are directly computed from the model pa-

rameters, which are not available in the black-box setting.

(a) (b)

(c) (d)
Figure 1. (a) and (b): Black-box adversarial examples obtained by

random sampling. (c) and (d): isolated perturbation patterns. (c)

is sampled from a normal distribution, and (d) is sampled from a

distribution of Perlin noise patterns, which is one of the biases we

propose. Both (a) and (b) fool the classifier, but (b) can be obtained

with fewer samples.

Decision-based classification (label-only). Depending

on the output format of the model, the problem of missing

gradients can be circumvented. In a score-based scenario,

the model provides real-valued outputs (for example, soft-

max activations). By applying tiny modifications to the in-

put, an attacker can estimate gradients by observing changes

in the output [5] and then follow this estimate to generate

adversarial examples. The decision-based setting, in con-

trast, provides only a single discrete result (the top-1 label)

on which gradient estimation is very inefficient [9]. This

form of black-box attack is much more difficult, but also

extends the range of possible targets in the real world [3].

Limited queries. Black-box attacks might not be feasi-

ble if they need millions of queries to the model, and pos-

sibly multiple hours’ time, to be successful. We therefore

consider a scenario where the attacker must find a convinc-
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ing adversarial example in less than 15000 queries.

Targeted. An untargeted attack is considered success-

ful when the classification result is any label other than the

original. Depending on the number and semantics of the

classes, it can be easy to find a label that requires little

change, but is considered adversarial (e.g. Egyptian cat vs

Persian cat). A targeted attack, in contrast, needs to produce

exactly the specified label. This task is strictly harder than

the untargeted attack, further decreasing the probability of

success.

In this setting, current state-of-the-art attacks are either

unreliable or inefficient. Our contribution is as follows:

• We show how a recently proposed method, the Bound-

ary Attack, can be re-framed as a biased sampling

framework that gains efficiency from prior beliefs

about the target domain.

• We discuss three such biases: low-frequency patterns,

regional masks and gradients from a surrogate model.

• We evaluate the effectiveness of each bias and show

that their combination drastically outperforms the pre-

vious state of the art in label-only black box attacks.

Our source code is publicly available.1

2. Related Work

There currently exist two major schools of attacks in the

threat setting we consider:

2.1. Transfer­based

It is known that adversarial examples display a high de-

gree of transferability, even between different model ar-

chitectures [19]. Transfer attacks seek to exploit this by

training substitute models that are reasonably similar to the

model under attack, and then apply regular white-box at-

tacks to them.

Typically, this is performed by iterative applications of

fast gradient-based methods such as the Fast Gradient Sign

Method (FGSM) [7] and, more generally, Projected Gradi-

ent Descent (PGD) [13]. The black-box model is used in the

forward pass, while the backward pass is performed with

the surrogate model [1]. In order to maximize the chance of

a successful transfer, newer methods use large ensembles of

substitute models, and applying adversarial training to the

substitute models has been found to increase the probability

of finding strong adversarial examples even further [18].

Although these methods currently form the state of the

art in label-only black-box attacks [11], they have one major

weakness: as soon as a defender manages to reduce trans-

ferability, direct transfer attacks often run a risk of com-

plete failure, delivering no result even after thousands of

1https://github.com/ttbrunner/biased_boundary_

attack

iterations. As a result, conducting transfer attacks is a cat-

and-mouse game between attacker and defender, where the

attacker must go to great lengths to train models that are

just as robust as the defender’s. Therefore, transfer-based

attacks can be very efficient, but also somewhat unreliable.

2.2. Sampling­based

Circumventing this problem, sampling-based attacks do

not rely on direct transfer and instead try to find adversar-

ial examples by randomly sampling perturbations from the

input space.

Perhaps the simplest attack consists of sampling a hy-

persphere around the original image, and drawing more and

more samples until an adversarial example is found. Owing

to the high dimensionality of the input space, this method

is very inefficient and has been dismissed as completely un-

viable [17]. While this is not our main focus, we show in

Appendix C that even this crude attack can be accelerated

and made competitive in certain scenarios.

Recently, a more efficient attack has been proposed: the

Boundary Attack (BA) [3]. This attack is initialized with

an input of the desired class, and then takes small steps

along the decision boundary to reduce the distance to the

original input. Previous works have established that regions

which contain adversarial examples often have the shape of

a ”cone” [18], which can be traversed from start to finish.

At each step, the BA employs random sampling to find a

sideways direction that leads deeper into this cone. From

there, it can then take the next step towards the target.

The BA has been shown to be very powerful, producing

adversarial examples that are competitive with even the re-

sults of state-of-the-art white-box attacks [3]. However, its

weakness is query efficiency: to achieve these results, the

attack typically needs to query a model hundreds of thou-

sands of times.

It should be noted that recent research on black-box at-

tacks has largely focused on classifiers that provide confi-

dence scores, which is an easier setting. Nevertheless, many

of these methods also use random sampling [5, 20, 9], and

the biases we propose could also benefit their approaches.

As an aside, Ilyas et al. [9] propose a variation of their at-

tack that manages to apply gradient estimation to discrete

labels. Although this does fit our setting, we find it to be

much less efficient than BA variants (see Section 4).

Clearly, sampling-based attacks are very flexible but of-

ten too inefficient for practical use. Barring pure random

guessing, the BA is the simplest attack for our setting. We

therefore choose to focus on this method, and show how it

can benefit from the biases we propose.
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(a) (b) (c)
Figure 2. Sampling directions for the orthogonal step. (a) Boundary Attack: uniformly distributed along the surface of the hypersphere. (b)

BA with Perlin bias: higher sample density in the direction of low-frequency perturbations. (c) BA with surrogate gradient bias: samples

further concentrate towards the direction of the projected gradient.

3. Biased Boundary Attacks

The Boundary Attack, like most sampling-based attacks,

draws perturbation candidates from a multidimensional nor-

mal distribution. This means that it performs unbiased sam-

pling, perturbing each input feature independently of the

others. While this is very flexible, it is also extremely in-

efficient when used against a robust model.

Consider the distribution of natural images: adjacent pix-

els are typically not independent of each other, but often

have similar colors. This alone is a strong indicator that

drawing perturbations from i.i.d random variables will lead

to adversarial examples that are clearly out of distribution

for natural image datasets. This, of course, renders them

vulnerable to detection and filtering - robust models have

become increasingly resilient against such patterns [11].

Therefore, it seems only logical to constrain the search

space to perturbations that we believe to have a higher

chance of success, or to bias the distribution so that the

probability of sampling them increases.

We outline three such biases for the domain of image

classification, discuss their motivation and show how to in-

tegrate them into the sampling procedure of the Boundary

Attack.

3.1. Low­frequency perturbations

When one looks at typical adversarial examples, it

quickly becomes apparent that most existing methods

yield perturbations with high image frequency. But high-

frequency patterns have a significant problem: they are eas-

ily identified and separated from the original image signal,

and are often dampened by spatial transforms. Indeed, most

of the winning defenses in the NeurIPS 2017 Adversarial

Attacks and Defences Competition were based on denois-

ing [12], simple median filters [11], and random transforms

[21]. In other words: state-of-the art defenses are designed

to filter high-frequency noise.

At the same time, we know that it is possible to synthe-

size ”robust” adversarial examples which are not easily fil-

tered in this way. Compare Athalye et al. [2]: Their robust

perturbations are largely invariant to filters and transforms,

and – interestingly enough – at first glance seem to contain

very little high-frequency noise.

Inspired by this observation, we hypothesize that image

frequency alone could be a key factor in robustness of ad-

versarial perturbations. If true, then simply limiting per-

turbations to the low-frequency domain should increase the

success chance of an attack, while incurring no extra cost.

Perlin Noise patterns. A straightforward way to gen-

erate parametrized, low-frequency patterns, is to use Per-

lin Noise [14]. Originally intended as a procedural texture

generator for computer graphics, this function creates low-

frequency noise patterns with a reasonably ”natural” look.

One such pattern can be seen in Figure 1d. But how can we

use it to create a prior for the Boundary Attack?

Let k be the dimensionality of the input space. The orig-

inal Boundary Attack (Figure 2a) works by applying an or-

thogonal perturbation ηk along the surface of a hypersphere

around the original image, in the hope of moving deeper

into an adversarial region. From there, a step is taken to-

wards the original image. In the default configuration, can-

didates for ηk are generated from samples s ∼ N (0, 1)k,

which are projected orthogonally to the source direction and

normalized to the desired step size. This leads to the direc-

tions being uniformly distributed along the hypersphere.

To introduce a low-frequency prior into the Bound-

ary Attack, we instead sample from a distribution of Per-

lin noise patterns (Figure 2b). Perlin noise is typically

parametrized with a permutation vector v of size 256, which

we randomly shuffle on every call. Effectively, this al-

lows us to sample two-dimensional noise patterns s ∼
Perlinh,w(v), where h and w are the image dimensions

(and h · w = k). As a result, the samples are now strongly

concentrated in low-frequency directions.

Our experiments in Section 4 show that this greatly im-

proves the efficiency of the attack. Therefore, we rea-

son that the distribution of Perlin noise patterns contains a

higher concentration of adversarial directions than the nor-

mal distribution.

4960



(a) (b)

(c) (d)
Figure 3. Masking based on per-pixel difference. (a) shows the

original image, (b) an image of the target class. (c) is the mask,

and (d) is a perturbation to which the mask has been applied. The

perturbation concentrates on the central region, as the background

is already quite similar between the images.

3.2. Regional masking

Currently, perturbations are evenly applied across the en-

tire image. No matter if low or high frequency, the orthog-

onal step of the Boundary Attack perturbs all pixels nearly

equally (when averaged over a large number of samples).

This seems to be a waste – could the attack benefit from

limiting the perturbation to specific regions?

The Boundary Attack is an interpolation from an image

of the target class towards the image under attack. In some

regions, these images might already be quite similar, while

being very different in others. Intuitively, we would want

an attack to take larger steps in those regions where the dif-

ference is high. We are also reluctant to perturb regions that

are already similar, as any such distortion will have to be

undone in a later step.

It turns out that this is an ideal way to reduce the search

space. We can simply create an image mask from the per-

pixel difference of the adversarial and original image (see

Figure 3):

M = |Xadv −Xorig| (1)

At each step, we recalculate this mask based on the cur-

rent position and apply it element-wise to the previously

sampled orthogonal perturbation ηk:

ηkbiased = M ⊙ ηk; ηkbiased =
ηkbiased

‖ηkbiased‖
(2)

In this way, the distortion of those pixels that have a

high difference is amplified and that of similar pixels damp-

ened, while the magnitude of the perturbation vector stays

the same.

This reduces the search space of the attack and therefore

increases its efficiency – if one assumes our intuition about

regional masking to be correct. We implement this masking

strategy as a proof of concept and our evaluation in Section

4 shows that it indeed improves efficiency by a significant

amount.

Other masks. An attacker might wish to engineer masks

from other knowledge they possess about the image con-

tents. For example, it could be worthwhile to concentrate

the perturbation on the most salient features of the target

class, reducing the search space to only the most vital di-

mensions. Such ”focused” black-box perturbations could

hold much promise, and we aim to investigate them in the

future.

3.3. Gradients from surrogate models

What other source of information contains strong hints

about directions that are likely to point to an adversarial re-

gion? Naturally – gradients from surrogate models. Trans-

fer attacks have been shown to be extremely powerful (al-

beit brittle) [18], so it should be useful to exploit surrogates

whenever they are available.

Arguably, the main weakness of transfer attacks is that

they fail when the decision boundary of the surrogate model

does not closely match the defender’s. However, even when

this is the case, the boundary may still be reasonably nearby.

Based on this intuition, some approaches extend gradient-

based attacks with limited regional sampling [1]. Here, we

do exactly the opposite and extend a sampling-based attack

with limited gradient information. This has the significant

advantage that, in the case of low transferability, our method

merely experiences a slowdown where typical transfer at-

tacks completely fail.

Our method works as follows:

• An adversarial gradient from a surrogate model is cal-

culated. Since the current position is already adversar-

ial, it can be helpful to move a small distance towards

the original image first, making sure to calculate the

gradient from inside a non-adversarial region.

• The gradient usually points away from the original im-

age, therefore we project it orthogonally to the source

direction, as shown in Figure 2c.

• This projection is on the same hyperplane as the can-

didates for the orthogonal step. We can now bias the

candidate perturbations toward the projected gradient

by any method of our choosing. Provided all vectors

are normalized, we opt for simple addition:

ηkbiased = (1− w) · ηk + w · ηkPG (3)
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• w controls the strength of the bias and is a hyperparam-

eter that should be tuned according to the performance

of our substitute model. High values for w should be

used when transferability is high, and vice versa. Were

we to choose the maximum value, w = 1, then the or-

thogonal step would be equivalent to an iteration of

the PGD attack. In our experience, w ≤ 0.5 generally

leads to good performance.

As a result, samples concentrate in the vicinity of the

projected gradient, but still cover the rest of the search space

(albeit with lower resolution). In this way, substitute mod-

els are purely optional to our attack instead of forming the

central part. It should be noted though that at least some

measure of transferability should exist. Otherwise, the gra-

dient will point in a bogus direction and using a high value

for w would reduce efficiency instead of improving it.

For the time being, this does not pose a major problem.

To the best of our knowledge, no strategies exist that suc-

cessfully eliminate transferability altogether. As we go on

to show in Section 4, even surrogate models that are too

weak for direct transfer attacks can be used in our frame-

work.

3.4. Concurrent work

Our work is concurrent with Ilyas et al. [10], who

introduce a bandit optimization framework that incorpo-

rates prior information in order to increase query efficiency.

While their approach differs from ours, it is motivated by

the same intuition - domain knowledge can be used to speed

up optimization. We note that the data-dependent prior they

propose is essentially a low-frequency bias not unlike our

own. They also introduce a time-dependent prior, which

could benefit our work in the future.

Low-frequency perturbations have also recently been de-

scribed by Guo et al. [8]. They decompose random pertur-

bations with the Discrete Cosine Transform, and then re-

move high frequencies from the spectrum. We expect these

patterns to be very similar to those produced by our Perlin

bias.

4. Evaluation

We evaluate our approach against an ImageNet classifier

and perform an ablation study to determine the effectiveness

of each bias. We also compare our results to a range of

recently proposed black-box attacks. Finally, we mount an

attack against the Google Cloud Vision API and show that

our approach can be efficiently deployed against real-world

commercial systems.

Appendix A shows a range of interesting examples pro-

duced by our attacks, Appendix B contains a listing of hy-

perparameters and Appendix C describes our winning sub-

mission to the NeurIPS 2018 Adversarial Vision Challenge

in detail.

(a) (b)

(c) (d)

(e) (f)
Figure 4. Targeted attack on ImageNet using 15000 queries. (a)

shows the original image (bell) and (b) an image of the target class

(ocarina). (c) is an adversarial example generated by the original

Boundary Attack (dℓ2 = 18.52), with (d) showing the difference

to the original image. (e) and (f) show the biased Boundary Attack

with all biases enabled (dℓ2 = 4.78)

4.1. ImageNet

ImageNet consists of images with 299x299 color pixels

and has 1000 classes. We run our attacks against a pre-

trained InceptionV3 network [16], which achieves 78% top-

1 accuracy.

Evaluation. We create an evaluation set by randomly se-

lecting 1000 images from the ImageNet validation set while

fixing a random target label for each image. We then pro-

ceed to run each attack for up to 15000 queries and measure

the success rate over all examples.

Success criteria. The Boundary Attack always starts

with an image of the adversarial class, therefore success

must be characterized by low distance to the original image.

For this, we define a threshold on the ℓ2-norm of the adver-

sarial perturbation and register success when the distance is

below. Since some of the methods we compare [9] use ℓ∞
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ACTIVE BIASES SUCCESS RATE VS NUMBER OF QUERIES MEDIAN QUERIES

PERLIN MASK SURROGATE 500 1000 2500 5000 10000 15000 UNTIL SUCCESS

NO NO NO 0.01 0.03 0.10 0.17 0.25 0.33 -

YES NO NO 0.03 0.08 0.18 0.31 0.47 0.57 10826

NO YES NO 0.03 0.04 0.13 0.22 0.35 0.44 -

YES YES NO 0.04 0.09 0.25 0.46 0.72 0.80 5485

NO NO YES 0.02 0.06 0.10 0.19 0.29 0.38 -

YES NO YES 0.05 0.08 0.17 0.32 0.50 0.60 10277

NO YES YES 0.03 0.06 0.15 0.26 0.38 0.49 -

YES YES YES 0.04 0.10 0.29 0.48 0.69 0.85 5432

Table 1. Ablation study of biases on ImageNet (targeted attack). The Perlin bias has the strongest effect, followed by the mask bias and

finally the surrogate bias. Each bias improves efficiency on its own, and the combination of all biases delivers the strongest performance.

Note: we only report the median for success rates over 0.5.

SUCCESS RATE VS NUMBER OF QUERIES

METHOD 500 1000 2500 5000 10000 15000

ILYAS ET AL. [9] (LABEL-ONLY) 0.00 0.00 0.00 0.00 0.00 0.00

CHENG ET AL. [6] 0.04 0.04 0.04 0.04 0.07 0.07

MADRY ET AL. [13] (PGD TRANSFER ATTACK) 0.07 0.08 0.08 0.09 0.09 0.09

BRENDEL ET AL. [3] (UNBIASED BOUNDARY ATTACK) 0.01 0.03 0.10 0.17 0.25 0.33

OURS (BIASED BOUNDARY ATTACK) 0.04 0.10 0.29 0.48 0.69 0.85

Table 2. Comparison with recently proposed label-only attacks. We use the original code provided by the respective authors and run all

methods with the same data and targets. The biased Boundary Attack (same as in Table 1) outperforms all other methods. Note that in the

case of Ilyas et al.[9], the number of required queries is so large that the attack never achieves success in the range we consider.

distance exclusively, we set the ℓ2-threshold to 25.89. This

corresponds to a worst-case ℓ∞-distortion of 0.05 if one as-

sumes all pixels to be maximally perturbed.

Initialization. We search the ImageNet validation set for

an image of the target class, and pick the one that is closest

to the one being attacked. From there, we perform a binary

line search to find the decision boundary. This is typically

done in less than 10 queries. We run all attacks with the

same starting points.

Surrogate model. We use a pre-trained Inception-

Resnet-v2 model [15] for the gradient bias. This model is

not adversarially trained and, as Table 2 shows, performs

poorly in a PGD transfer attack. We intentionally use this

model to demonstrate that our approach can effectively use

pre-trained surrogates without any need for modification.

Hyperparameters. See Appendix B.

4.1.1 Ablation study of biases

We first evaluate all three biases and their combinations. Ta-

ble 1 shows the result: it is apparent that each of the biases

increases the efficiency of the attack. The largest boost is

obtained by the Perlin bias, followed by the mask bias, and

finally the surrogate gradient bias.

The latter has a rather small effect, which is probably due

to the fact that our surrogate model is too weak. But still,

we are able to use what little transferability there is instead

of slowing down (or failing like a transfer attack would). At

this point, it would be interesting to see whether our method

could profit even more from better surrogates. We consider

this a direction for future work.

It is also noteworthy that all biases can be combined, and

that they do not interfere with each other. When all three

biases are active, we reach 85% success after only 15000

queries. Figure 4 shows an example of this drastic improve-

ment. This is our strongest attack, which we now compare

against other state-of-the-art methods.

4.1.2 Comparison to state of the art

We go on to benchmark our method against a range of re-

cently proposed attacks for our setting. We use publicly

available code, together with the hyperparameters recom-

mended by the authors. We modify the implementations to

use our evaluation set, therefore all attacks are run on the

same 1000 images and use the same target labels as well

as starting points (where applicable). Table 2 shows the re-

sults.

Ilyas et al. [9] propose a label-only version of their gra-

dient estimation attack. It works in our setting, but at greatly

reduced efficiency. We note that it does not produce an ad-

versarial example within 15000 queries and that no run suc-

ceeds before 276000 queries, with a median of 2.48 million

queries required. This is in line with their published results.

Their other attacks use confidence scores, and therefore re-

quire a setting that is considerably easier. Even then, our
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median number of queries is decisively lower than the one

reported by them (5432 versus 11550).

Similarly, Cheng et al. [6] re-frame the setting as a real-

valued optimization problem. In general, they report higher

efficiency than the Boundary Attack, which is not confirmed

in the setting of our experiment. We used their publicly

available source code with recommended hyperparameters.

Finally, we perform an iterative PGD transfer attack as

described by Madry et al. [13]. Our results show that

its performance is hit-and-miss: when a transfer succeeds

it does so very early, but in most cases it never succeeds.

Clearly this attack requires a stronger surrogate model.

Interestingly enough, the performance we obtain for the

original Boundary Attack (without biases) seems higher

than that observed in previous work [3, 6]. This may be

due to our initialization method or our choice of hyperpa-

rameters, which we list in Appendix B. In any case, our

evaluation shows that the biased Boundary Attack decid-

edly outperforms all other attacks in a label-only setting.

4.2. Google Cloud Vision API

To show that our method is effective even against black

boxes with unknown labels, we conduct an attack against

the Google Cloud Vision API. This is significantly harder

than attacking ImageNet, since the exact classes are un-

known. However, we also note that Google Cloud Vision

has a very high number of near-redundant class labels. Do

we really need to focus on one label alone?

Free-form attacks. We have argued earlier that untar-

geted attacks with many redundant classes are not truly ad-

versarial. However, the opposite is also true: to achieve an

adversarial effect, it is not always necessary to target one

specific class. Rather, the same effect could be achieved by

targeting a group of classes – if we want to label a dog as

a cat, we can take the union of all cat breeds to achieve the

desired effect.

To be more precise, we can formulate any adversarial

criterion, as long as it is a boolean function of the model

output. Decision-based attacks make this very simple: if

we consider this function to be part of the black box, we

can simply treat it like any other model and run our attack

on its output.

4.2.1 Turning a person into a bear

Consider, for example, a targeted attack to turn a person into

a bear. Instead of using the label ”bear”, we perform a string

comparison on the top-1 label and check for the occurrence

of ”bear”. This extends the attack to labels like ”grizzly

bear”, ”brown bear”, etc. and keeps it from getting stuck

whenever one of these labels appears in top-1 position. We

also add another condition for good measure: the words

Figure 5. Adversarial image (target ”bear”), classified by Google

Cloud Vision after 346 queries. Confidence scores are displayed,

but not used by the attack. No label hinting at a person is left (the

prediction vector contains only 3 labels).

”face”, ”facial expression”, ”skin”, ”person” must not ap-

pear in any of the output labels.

Figure 5 shows the result: after only 346 iterations, our

attack produces a perturbation that is still visible, but small

enough to fool an unsuspecting person.

Figure 6. Adversarial image (pedestrians have been removed),

classified by Google Cloud Vision after exactly 1000 queries.

Confidence scores are displayed, but not used by the attack. Per-

haps interestingly, our adversarial pattern is classified as ”Fun”.

4964



4.2.2 Making pedestrians disappear

The adversarial criterion can also be formulated as a top-k

untargeted attack on multiple labels. Consider a potentially

safety-critical scenario, where the goal is to make the model

oblivious to pedestrians. For this, we simply formulate the

condition so that the string ”pedestrian” does not appear in

the prediction vector, and that related labels such as ”per-

son, walking, head, clothes” are also absent.

We obtain Figure 6 after exactly 1000 queries. Again, the

perturbation is already small enough to fool an unsuspecting

observer. An attack with such a low number of queries can

be performed on virtually any device – even mobile – in a

matter of minutes, and is only limited by the latency of the

API under attack.

5. Conclusion

We have shown that decision-based black-box attacks

can be greatly sped up with prior knowledge. The Bound-

ary Attack can be interpreted as a biased sampling frame-

work where one merely needs to modify the distribution

from which samples are drawn.

Within this framework, we have proposed three priors

that are partially motivated by intuitions about the nature of

image classification, and partially by a desire to connect re-

search directions in the field of black-box attacks. Consider

the surrogate gradient bias: by itself, it does not yield a sub-

stantial improvement. However, the observation that we are

able to draw even a small benefit from surrogates that oth-

erwise show near-zero transferability seems very promising

for future work. We aim to study this effect of partial trans-

ferability in more detail and hope to uncover some of its

underlying properties.

And it does not end here - we have discussed only three

priors for biased sampling, but there is much more domain

knowledge that has not yet found its way into adversarial

attacks. Other perturbation patterns, spatial transforms, ad-

versarial blending strategies, or even intuitions about se-

mantic features of the target class could all be integrated

in a similar fashion.

With the biased Boundary Attack, we have outlined a ba-

sic framework into which a broad range of knowledge can

be incorporated. Our implementation significantly outper-

forms the previous state of the art in black-box label-only

attacks, which is one of the most difficult settings currently

considered. Our methods can be used to craft convincing

results after very few iterations, and the threat of black-box

adversarial examples becomes more realistic than ever be-

fore.
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