
Consensus Maximization Tree Search Revisited

Zhipeng Cai

The University of Adelaide

Tat-Jun Chin

The University of Adelaide

Vladlen Koltun

Intel Labs

Abstract

Consensus maximization is widely used for robust fitting

in computer vision. However, solving it exactly, i.e., finding

the globally optimal solution, is intractable. A* tree search,

which has been shown to be fixed-parameter tractable, is one

of the most efficient exact methods, though it is still limited to

small inputs. We make two key contributions towards improv-

ing A* tree search. First, we show that the consensus max-

imization tree structure used previously actually contains

paths that connect nodes at both adjacent and non-adjacent

levels. Crucially, paths connecting non-adjacent levels are

redundant for tree search, but they were not avoided previ-

ously. We propose a new acceleration strategy that avoids

such redundant paths. In the second contribution, we show

that the existing branch pruning technique also deteriorates

quickly with the problem dimension. We then propose a new

branch pruning technique that is less dimension-sensitive

to address this issue. Experiments show that both new tech-

niques can significantly accelerate A* tree search, making

it reasonably efficient on inputs that were previously out

of reach. Demo code is available at https://github.

com/ZhipengCai/MaxConTreeSearch.

1. Introduction

The prevalence of outliers makes robust model fitting

crucial in many computer vision applications. One of the

most popular robust fitting criteria is consensus maximiza-

tion, whereby, given outlier-contaminated data S = {si}
N
i=1,

we seek the model θ ∈ R
d that is consistent with the largest

subset of the data. Formally, we solve

maximize
θ

c(θ|S) =
N
∑

i=1

I{r(θ|si) ≤ ǫ}, (1)

where c(θ|S) is called the consensus of θ. The 0/1 valued

indicator function I{·} returns 1 only when si is consistent

with θ, which happens when the residual r(θ|si) ≤ ǫ. The

form of r(θ|si) will be defined later in Sec. 2. Constant ǫ is

the predefined inlier threshold, and d is called the “problem

dimension”. Given the optimal solution θ
∗ of (1), si is an

inlier if r(θ∗|si) ≤ ǫ and an outlier otherwise.

Consensus maximization is NP-hard [4], hence, sub-

optimal but efficient methods are generally more practi-

cal. Arguably the most prevalent methods of this type are

RANSAC [11] and its variants [8, 26, 7, 24], which itera-

tively fit models on randomly sampled (minimal) data sub-

sets and return the model with the highest consensus. How-

ever, their inherent randomness makes these methods often

distant from optimal and sometimes unstable. To address this

problem, deterministic optimization techniques [23, 14, 2]

have been proposed, which, with good initializations, usually

outperform RANSAC variants. Nonetheless, a good initial

solution is not always easy to find. Hence, these methods

may still return unsatisfactory results.

The weaknesses of sub-optimal methods motivate re-

searchers to investigate globally optimal methods; however,

so far they are effective on only small input sizes (small d,

N and/or number of outliers o). One of the most efficient

exact methods is tree search [15, 5, 6] (others surveyed later

in Sec. 1.1), which fits (1) into the framework of the LP-

type methods [25, 18]. By using heuristics to guide the tree

search and conduct branch pruning, A* tree search [5, 6]

has been demonstrated to be much faster than Breadth-First

Search (BFS) and other types of globally optimal algorithms.

In fact, tree search is provably fixed-parameter tractable

(FPT) [4]. Nevertheless, as demonstrated in the experiment

of [6] and later ours, A* tree search can be highly inefficient

for challenging data with moderate d (≥ 6) and o (≥ 10).

Our contributions. In this work, we analyze reasons be-

hind the inefficiency of A* tree search and develop improve-

ments to the algorithm. Specifically:

• We demonstrate that the previous tree search algorithm

does not avoid all redundant paths, namely, paths that

connect nodes from non-adjacent levels. Based on this ob-

servation, a new acceleration strategy is proposed, which

can avoid such non-adjacent (and redundant) paths.

• We show that the branch pruning technique in [6] is not

always effective and may sometimes slow down the tree

search due to its sensitivity to d. To address this prob-

lem, we propose a branch pruning technique that is less

dimension-sensitive and hence much more effective.

Experiments demonstrate the significant acceleration achiev-

able using our new techniques (3 orders of magnitude

1637

faster on challenging data). Our work represents signifi-

cant progress towards making globally optimal consensus

maximization practical on real data.

1.1. Related Work

Besides tree search, other types of globally optimal meth-

ods include branch-and-bound (BnB) [16, 28, 22], whose

exhaustive search is done by testing all possible θ. However,

the time complexity of BnB is exponential in the size of

the parameter space, which is often large. Moreover, the

bounding function of BnB is problem-dependent and not

always trivial to construct. Another type of methods [20, 9]

enumerate and fit models on all possible bases, where each

basis is a data subset of size p, where p<<N and p is usually

slightly larger than d, e.g., p = d + 1. The number of all

possible bases is
(

N
p

)

, which scales poorly with N and d.

Besides differences in actual runtime, what distinguishes

tree search from the other two types of methods is that tree

search is FPT [4]: its worst case runtime is exponential in d
and o, but polynomial in N .

2. Consensus maximization tree search

We first review several concepts that are relevant to con-

sensus maximization tree search.

2.1. Application range

Tree search requires the residual r(θ|si) to be pseudo-

convex [6]. A simple example is the linear regression residual

r(θ|si) = |a
T
i θ − bi|, (2)

where each datum si = {ai, bi}, ai ∈ R
d and bi ∈ R.

Another example is the residual used in common multiview

geometry problems [21, 2], which are of the form

r(θ|si) =

∥

∥A
T
i θ − bi

∥

∥

p

cTi θ − di
, (3)

where each datum si = {Ai,bi, ci, di}, Ai ∈ R
d×m,bi ∈

R
m, ci ∈ R

d and di ∈ R. Usually, p is 1, 2 or∞.

2.2. LP­type problem

The tree search algorithm for (1) is constructed by solving

a series of minimax problems, which are of the form

minimize
θ

max
i∈S1

r(θ|si). (4)

Problem (4) minimizes the maximum residual for all data

in S1, which is an arbitrary subset of S. For convenience,

we define f(S1) as the minimum objective value of (4) com-

puted on data S1, and θ(S1) as the (exact) minimizer.

Throughout the paper, we will assume that r(·) is pseudo-

convex and S is non-degenerate (otherwise infinitestimal per-

turbations can be applied to remove degeneracy [18, 6]). Un-

der this assumption, problem (4) has a unique optimal solu-

tion and can be solved efficiently with standard solvers [10].

Furthermore, (4) is provably an LP-type problem [25, 1, 10],

which is a generalization of the linear programming (LP)

problem. An LP-type problem has the following properties:

Property 1 (Monotonicity). For every two sets

S1 ⊆ S2 ⊆ S , f(S1) ≤ f(S2) ≤ f(S).

Property 2 (Locality). For every two sets S1 ⊆ S2 ⊆ S
and every si ∈ S, f(S1) = f(S2) = f(S2 ∪ {si}) ⇒
f(S1) = f(S1 ∪ {si}).

With the above properties, the concept of basis, which is

essential for tree search, can be defined.

Definition 1 (Basis). A basis B in S is a subset of S such

that for every B′ ⊂ B, f(B′) < f(B).

For an LP-type problem (4) with pseudo-convex residuals,

the maximum size of a basis, which we call combinatorial

dimension, is d+ 1.

Definition 2 (Violation set, level and coverage). The vi-

olation set of a basis B is defined as V(B) = {si ∈ S|
r(θ(B)|si) > f(B)}. We call l(B) = |V(B)| the level of B
and C(B) = S\V(B) the coverage of B.

By the above definition,

c(θ(B)|S) = |S| − l(B). (5)

An important property of LP-type problems is that solv-

ing (4) on C(B) and B return the same solution.

Definition 3 (Support set). The level-0 basis for S is called

the support set of S , which we represent as τ(S).

Assume we know the maximal inlier set I for (1), where

|I| = c(θ∗|S). Define B∗ = τ(I) as the support set of I;

B∗ can be obtained by solving (4) on I. Then, l(B∗) is the

size of the minimal outlier set. Our target problem (1) can

then be recast as finding the optimal basis

B∗ = argmin
B⊆S

l(B), s.t. f(B) ≤ ǫ, (6)

and θ(B∗) is the maximizer of (1). Intuitively, B∗ is the

lowest level basis that is feasible, where a basis B is called

feasible if f(B) ≤ ǫ.

2.3. A* tree search algorithm

Matoušek [18] showed that the set of bases for an LP-

type problem can be arranged in a tree, where the root node

is τ(S), and the level occupied by a node B on the tree is

l(B) = |V(B)|. Another key insight is that there exists a

path from τ(S) to any higher level basis, where a path is

formed by a sequence of adjacent bases, defined as follows.

1638

Algorithm 1 A* tree search of Chin et al. [6] for (6)

Require: S = {si}
N
i=1, threshold ǫ.

1: Insert B = τ(S) with priority e(B) into queue q.

2: Initialize hash table T to NULL.

3: while q is not empty do

4: Retrieve from q the B with the lowest e(B).
5: if f(B) ≤ ǫ then

6: return B∗ = B.

7: end if

8: Br ← Attempt to reduce B by TOD method.

9: for each s ∈ Br do

10: if indices of V(B) ∪ {s} do not exist in T then

11: Hash indices of V(B) ∪ {s} into T.

12: B′ ← τ(C(B)\{s}).
13: Insert B′ with priority e(B′) into q.

14: end if

15: end for

16: end while

17: Return error (no inlier set of size greater than p).

Definition 4 (Basis adjacency). Two bases B′ and B are

adjacent if V(B′) = V(B) ∪ {si} for some si ∈ B.

Intuitively, B′ is a direct child of B in the tree. We say

that we “follow the edge” from B to B′ when we compute

τ(C(B)\{si}). Chin et al. [6] solve (6) by searching the

tree structure using the A* shortest path finding technique

(Algorithm 1). Given input data S, A* tree search starts

from the root node τ(S) and iteratively expands the tree

until B∗ is found. The queue q stores all unexpanded tree

nodes. And in each iteration, a basis B with the lowest

evaluation value e(B) is expanded. The expansion follows

the basis adjacency, which computes τ(C(B)\{s}) for all

s ∈ B (Line 12 in Algorithm 1).

The evaluation value is defined as

e(B) = l(B) + h(B), (7)

where h(B) is a heuristic which estimates the number of

outliers in C(B). A* search uses only admissible heuristics.

Definition 5 (Admissibility). A heuristic h is admissible if

h(B) ≥ 0 and h(B) ≤ h∗(B), where h∗(B) is the minimum

number of data that must removed from C(B) to make the

remaining data feasible.

Note that setting e(B) = l(B) (i.e., h(B) = 0) for all B
reduces A* search to breadth-first search (BFS). With an

admissible heuristic, A* search is guaranteed to always find

B∗ before other sub-optimal feasible bases (see [6] for the

proof). Algorithm 2 describes the heuristic hins used in [6].

Intuitively, the algorithm for hins removes a sequence of

bases in the first round of iteration until a feasible subset

F ⊆ C(B) is found. After that, the algorithm iteratively in-

serts each removed basis point s back into F . If the insertion

Algorithm 2 Admissible heuristic hins for A* tree search

Require: B
1: If f(B) ≤ ǫ, return 0.

2: O ← ∅.
3: while f(B) > ǫ do

4: O ← O ∪ B, B ← τ(C(B)\B).
5: end while

6: hins ← 0, F ← C(B).
7: for each B ∈ O do

8: for each s ∈ B do

9: B′ ← τ(F ∪ {s}).
10: if f(B′) ≤ ǫ then

11: F ← F ∪ {s}.
12: else

13: hins ← hins + 1, F ← F ∪ {s}\B′.
14: end if

15: end for

16: end for

17: return hins.

of s makes F infeasible, τ(F ∪ {s}) is removed from the

expanded F and the heuristic value hins is increased by 1.

The admissibility of hins is proved in [6, Theorem 4]. In

brief, denote F∗ as the largest feasible subset of C(B). If

F ∪ {s} is infeasible, τ(F ∪ {s}) must contain at least one

point in F∗. Since we only add 1 to hins when this happens,

then h∗(B) ≥ hins(B).

2.4. Avoiding redundant node expansions

Algorithm 1 employs two strategies to avoid redundant

node expansions. In Line 8, before expanding B, a fast

heuristic called True Outlier Detection (TOD) [6] is used to

attempt to identify and remove true outliers from B (more

details in Sec. 4), which has the potential to reduce the size

of the branch starting from B. In Line 10, a repeated basis

check heuristic is performed to prevent bases that have been

explored previously to be considered again (details in Sec. 3).

Our main contributions are two new strategies that im-

prove upon the original methods above, as we will describe

in Secs. 3 and 4. In each of the sections, we will first carefully

analyze the weaknesses of the existing strategies. Sec. 5 will

then put our new strategies in an overall algorithm. Sec. 6

presents the results.

3. Non-adjacent path avoidance

Recall Definition 4 on adjacency: for B and B′ to be

adjacent, their violation sets V(B) and V(B′) must differ by

one point; in other words, it must hold that

|l(B′)− l(B)| = 1. (8)

Given a B, Line 12 in Algorithm 1 generates an adjacent

“child” basis of B by removing a point s from B and solving

1639

(a) Root node Broot. (b) Level-1 node B. (c) Level-1 node B. s2 ∈ C(B). (d) Tree structure

Figure 1. (a–c) Path between non-adjacent bases (B → B′). B′ can be generated from both B and Broot, but it is not adjacent to B since

l(B′) = l(B). Note that Line 10 in Algorithm 1 cannot avoid this non-adjacent path since V(B′) ∪ {s2} = {s1, s2} 6= V(B′) = {s1}.

Panel (d) shows the relationship between the three bases during tree search. In the proposed Non-Adjacent Path Avoidance (NAPA) strategy,

the path drawn in red is not followed. As we will show in Sec. 6, this simple idea provides a massive reduction in runtime of A* tree search.

the minimax problem (4) on C(B)\{s}. In this way,

l(B′) = l(B) + 1. (9)

Iterating the s to be removed thus generates all the adjacent

child bases of B, which allows the tree to be explored.

However, an important phenomenon that is ignored in

Algorithm 1 is, while the above process generates all the

adjacent child bases of B, not all B′ generated in the pro-

cess are adjacent child bases. Figure 1 shows a concrete

example from line fitting (2): from a root node Broot, two

child bases B and B′ are generated by respectively removing

points s2 and s1. However, by further removing s1 from B
and solving (4) on C(B \ {s1}), we obtain B′ again! Since

l(B′) = l(B), these two bases are not adjacent.

In general, non-adjacent paths occur in Algorithm 1 when

some elements of V(B) are in C(B′) after solving the mini-

max problem on C(B \ {s}). While inserting a non-adjacent

B′ into the queue does not affect global optimality, it does

reduce efficiency. This is because the repeated basis check

heuristic in Algorithm 1 assumes that the level of the child

node B′ is always lower than the parent B by 1; this assump-

tion does not hold if the generated basis B′ is not adjacent.

More formally, if B′ is not adjacent to B, then

V(B) ∪ {s} 6= V(B′) (10)

and the repeated basis check in Line 8 in Algorithm 1 fails.

Since the same B′ could be generated from its “real” parent

(e.g., in Figure 1, B′ was also generated by Broot), the same

basis can be inserted into the queue more than once.

Since tree search only needs adjacent paths, we can safely

skip traversing any non-adjacent path without affecting the

final solution. To do this, we propose a Non-Adjacent Path

Avoidance (NAPA) strategy for A* tree search; see Fig. 1(d).

Given a basis B, any non-adjacent basis generated from it

cannot have a level that is higher than l(B). Therefore, we

can simply discard any newly generated basis B′ (Line 12) if

l(B′) ≤ l(B). Though one redundant minimax problem (4)

(a) TOD (b) DIBP

Figure 2. (a) In TOD, on current node B, if s2 is identified as the

true outlier, then the shortest path towards a feasible basis B∗ must

pass through s2 (path rendered in red). All the the other |B| − 1
branches (leading from s1 and s3 in this example) can be skipped.

(b) In DIBP, instead of attempting to identify a single true outlier, a

group SB that contains at least one true outlier (SB = {s1, s2} in

this example) is identified; if this is successful, the other |B|− |SB|
paths (corresponding to s3 in this example) can be skipped. DIBP

is more effective than TOD because it is easier to reject a subset

than a single point as outlier; see Sec. 4.2 for details.

still needs to be solved when finding B′, a much larger cost

for computing e(B′) (which requires to solve multiple prob-

lems (4)) is saved along with all the computation required

for traversing the children of B′. The effectiveness of this

strategy will be demonstrated later in Sec. 6.

4. Dimension-insensitive branch pruning

Our second improvement to A* tree search lies in a

new branch pruning technique. We first review the origi-

nal method (TOD) and then describe our new technique.

4.1. Review of true outlier detection (TOD)

Referring to Line 8 in Algorithm 1 [6], let F∗ be the

largest feasible subset of C(B). A point s ∈ B is said to be

a true outlier if s /∈ F∗, otherwise we call it a true inlier.

Given an infeasible node B, one of the elements in B must

be a true outlier. The goal of TOD is to identify one such

true outlier in B. If s ∈ B is successfully identified as a

1640

true outlier, we can skip the child generation for all the other

points in B without hurting optimality, since s must be on

the shortest path to feasibility via B; see Fig. 2(a). If such

an s can be identified, the reduced subset Br is simply {s}.
The principle of TOD is as follows: define h∗(B|s) as the

minimum number of data points that must be removed from

C(B) to achieve feasibility, with s forced to be feasible. We

can conclude that s ∈ B is a true outlier if and only if

h∗(B|s) > h∗(B); (11)

see [6] for the formal proof. Intuitively, if s is a true inlier,

forcing its feasibility will not change the value of h∗. On

the other hand, if forcing s to be feasible leads to the above

condition, s cannot be a true inlier.

Bound computation for TOD. Unsurprisingly h∗(B|s) is

as difficult to compute as h∗(B). To avoid directly comput-

ing h∗(B|s), TOD computes an admissible heuristic h(B|s)
of h∗(B|s) and an upper bound g(B) of h∗(B). Given s ∈ B,

h(B|s) and g(B), if

h(B|s) > g(B), (12)

then it must hold that

h∗(B|s) ≥ h(B|s) > g(B) ≥ h∗(B), (13)

which implies that s is a true outlier.

As shown in [6], g(B) can be computed as a by-product

of computing hins(B), and h(B|s) is computed by a con-

strained version of hins, which we denote as hins(B|s).
Computing hins(B|s) is done by the constrained version

of Algorithm 2, where all minimax problems (4) required to

solve are replaced by their constrained versions, which are

in the following form:

minimize
θ

max
si∈S1

r(θ|si), (14a)

s.t. r(θ|s′j) ≤ ǫ, ∀s′j ∈ S
′. (14b)

The only difference between (14) and (4) is the constraint

that all data in S ′ must be feasible. And similar to (4), (14)

is also an LP-type problem which can be solved by standard

solvers [10]. Similar as in (4) we also define f(S1|S ′) as

the minimum objective value of (14) and θ(S1|S ′) as the

corresponding optimal solution.

With the above definition, changing Algorithm 2 to its

constrained version can be simply done by replacing f(B)
(Line 3) and f(B′) (Line 10) by f(B|{s}) and f(B′|{s}).

Why is TOD ineffective? The effectiveness of TOD in

accelerating Algorithm 1 depends on how frequent TOD

can detect a true outlier. When a true outlier for B is de-

tected, TOD prunes |B|−1 branches; on the flipside, if TOD

cannot identify an s ∈ B as the true outlier, the runtime to

compute hins(B|s) will be wasted. In the worst case where

no true outlier is identified for B, Algorithm 2 has to be

executed redundantly for |B| times. Whether TOD can find

the true outlier is largely decided by how well hins(B|s)
approximates h∗(B|s).

We now show that hins(B|s) is usually a poor estimator

of h∗(B|s). Define O∗(B|s) as the smallest subset that must

be removed from C(B)\s to achieve feasibility, with s forced

to be feasible, i.e., |O∗(B|s)| = h∗(B|s). Then, hins(B|s)
and h∗(B|s) will be different if a basis Brem removed during

Algorithm 2 contains multiple elements in O∗(B|s), since

we only add 1 to hins when actually more than 1 points in

Brem should be removed. And the following lemma shows

that the difference between hins(B|s) and h∗(B|s) will be

too large for TOD to be effective if the rate of true outliers

in C(B), i.e.,
h∗(B)
C(B) , is too large.

Lemma 1. Condition (12) is always false when

h∗(B)

C(B)
≥

1

φ
·
|C(B)| − 1

|C(B)|
, (15)

where φ is the average size of all Brem during Algorithm 2.

Proof. Since hins(B|s) is the number of Brem during Algo-

rithm 2, hins(B|s) · φ ≤ |C(B)\{s}| = |C(B)| − 1. Hence,

hins(B|s) ≤
|C(B)| − 1

φ
, (16)

Therefore, condition (12) can never be true if

h∗(B) ≥
|C(B)| − 1

φ
. (17)

Dividing both sides of (17) by C(B) leads to (15).

Intuitively, when (15) happens, there are too many out-

liers in C(B) hence too many Brem that include multiple ele-

ments in O∗(B|s), making hins(B|s) too far from h∗(B|s).
In addition, φ is positively correlated with d, and in the

worst case can be d + 1, which makes TOD sensitive to d.

Figure 3 shows the effectiveness of TOD as a function of

d, for problems with linear residual (2). As can be seen,

the outlier rate where TOD can be effective reduces quickly

with d (<15% when d≥7). Note that since g(B) is only an

estimation of h∗(B), the actual range where TOD is effective

can be smaller than the region above the dashed line.

4.2. New pruning technique: DIBP

Due to the above limitation, TOD is often not effective in

pruning; the cost to carry out Line 8 in Algorithm 1 is thus

usually wasted. To address this issue, we propose a more

effective branch pruning technique called DIBP (dimension-

insensitive branch pruning).

DIBP extends the idea of TOD, where instead of search-

ing for one true outlier, we search for a subset SB of B that

1641

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1 d = 1

d = 2

d = 3

d = 4

d = 5

d = 6

d = 7

d = 8

d = 9

d = 10

Figure 3. Effectiveness of TOD as a function of d. All problem

instances are generated randomly and each solid curve contains

data with true outlier rates
h
∗(B)
C(B)

from 0 to 90%. Note that (15) is

true for a d when the solid curve for the d is below the dashed line.

2 3 4 5 6 7

50

100

150

aaa

aaa

aaa

aaaaaaaaaaaaaaaaaaaaaa

aaa

Figure 4. Effectiveness of DIBP when d = 8. |C(B)| = 200.

hins(B|SB) increases stably along with |SB| and is effective even

when the true outlier rate is 90%. Though only the 50% case

is shown, changing the outlier rate in practice merely affects the

values of hins(B|SB) as long as the data distribution is similar.

must contain at least one true outlier. If such a subset can

be identified, the children of B corresponding to removing

points not in SB can be ignored during node expansion—

again, this is because the shortest path to feasibility via B
must go via SB; Fig. 2(b) illustrates this idea.

To find such an SB, we greedily add points from B into

SB to see whether enforcing the feasibility of SB contradicts

the following inequality

hins(B|SB) > g(B), (18)

which is the extension of (12), with h = hins. Similar

to hins(B|s), hins(B|SB) is computed by the constrained

version of Algorithm 2 with S ′ = SB in problem (14).

The insight is that by adding more and more constraints

into problem (14), the average basis size φ will gradually

reduce, making the right hand side of (15) increase until it

exceeds the left hand side, so that even with large d, branch

pruning will be effective with high true outlier rate. Fig-

ure 4 shows the effectiveness of DIBP for an 8-dimensional

problem with linear residuals. Observe that hins(B|SB) in-

creases steadily along with |SB| and can tolerate more than

90% of true outliers when |SB| = |B| − 1 = 8.

During DIBP, we want to add true outliers into SB as soon

as possible, since (18) can never be true if SB contains no

true outliers. To do so, we utilize the corresponding solution

θg(B) that leads to g(B). During DIBP, the s ∈ B with the

largest residual r(θg(B)|s) will be added into SB first, since

a larger residual means a higher chance that s is a true outlier.

In practice, this strategy often enables DIBP to find close to

minimal-size SB.

For problems with linear residuals, we can further com-

pute an adaptive starting value z(B) of |SB|, where DIBP

can safely skip the first z(B)−1 computations of hins(B|SB)
without affecting the branch pruning result. The value of

z(B) should be max{1, d + 2 − |C(B)|−1
g(B) }. The reason is

demonstrated in the following lemma:

Lemma 2. For problems with linear residuals, (18) cannot

be true unless

|SB| > d+ 1−
|C(B)| − 1

g(B)
. (19)

Proof. As in (16), we have hins(B|SB) < |C(B)|−1
φ

. To

ensure that (18) can be true, we must have g(B) < |C(B)|−1
φ

,

which we rewrite as

φ <
|C(B)| − 1

g(B)
. (20)

And for problems with linear residuals, (14) with S ′ = SB is

a linear program, whose optimal solution resides at a vertex

of the feasible polytope [19, Chapter 13]. This means that

for problem (14), the basis size plus the number of active

constraints at the optimal solution must be d + 1. And

since each absolute-valued constraint in (14b) can at most

contribute one active linear constraint, the maximum number

of active constraints is |SB|. Thus during the computation

of hins(B|SB), the average basis size φ ≥ d + 1 − |SB|.
Substituting this inequality into (20) results in (19).

5. Main algorithm

Algorithm 3 summarizes the A* tree search algorithm

with our new acceleration techniques. A reordering is done

so that cheaper acceleration techniques are executed first.

Specifically, given the current basis B, we iterate through

each element s ∈ B and check first whether it leads to a

repeated adjacent node and skip s if yes (Line 8). Otherwise,

we check whether the node B′ generated by s is non-adjacent

to B and discard B′ if yes (Line 11). If not, we insert B′

into the queue since it cannot be pruned by other techniques.

After that, we perform DIBP (Line 14) and skip the other

elements in B if condition (18) is satisfied. Note that we can

still add s into SB even though it leads to repeated bases.

This strategy makes DIBP much more effective in practice.

6. Experiments

To demonstrate the effectiveness of our new techniques,

we compared the following A* tree search variants:

1642

Algorithm 3 A* tree search with NAPA and DIBP

Require: S = {si}
N
i=1, threshold ǫ.

1: Insert B = τ(S) with priority e(B) into queue q.

2: Initialize hash table T to NULL.

3: while q is not empty do

4: Retrieve from q the B with the lowest e(B).
5: If f(B) ≤ ǫ then return B∗ = B.

6: SB ← ∅; Sort B descendingly based on r(θg(B)|s).
7: for each s ∈ B do

8: if indices of V(B) ∪ {s} do not exist in T then

9: Hash indices of V(B) ∪ {s} into T.

10: B′ ← τ(C(B)\{s}).
11: if l(B′) > l(B) then.

12: SB ← SB ∪ {s}.
13: Insert B′ with priority e(B′) into q.

14: If |SB| = |B| ∨ (18) is true then break.

15: end if

16: else

17: SB ← SB ∪ {s}.
18: end if

19: end for

20: end while

21: Return error (no inlier set of size greater than p).

• Original A* tree search (A*) [5].

• A* with TOD for branch pruning (A*-TOD) [6].

• A* with non-adjacenct path avoidance (A*-NAPA).

• A*-NAPA with TOD branch pruning (A*-NAPA-TOD).

• A*-NAPA with DIBP branch pruning (A*-NAPA-DIBP).

All variants were implemented in MATLAB 2018b, based

on the original code of A*. For problems with linear resid-

uals, we use the self-implemented vertex-to-vertex algo-

rithm [3] to solve the minimax problems (4) and (14). And

in the non-linear case, these two problems were solved by

the matlab function fminimax. All experiments were exe-

cuted on a laptop with Intel Core 2.60GHz i7 CPU, 16GB

RAM and Ubuntu 14.04 OS.

6.1. Controlled experiment on synthetic data

To analyze the effect of o and N to different methods,

we conducted a controlled experiment on the 8-dimensional

robust linear regression problem with different N and o.

The residual of linear regression is in the form of (2). To

generate data S = {ai, bi}
N
i=1, a random model θ ∈ R

d

was first generated and N data points that perfectly fit the

model were randomly sampled. Then, we randomly picked

N − o points as inliers and assigned to the bi of these points

noise uniformly distributed between [−0.1, 0.1]. Then we

assigned to the other o points noise uniformly distributed

from [−5,−0.1) ∪ (0.1, 5] to create a controlled number of

outliers. The inlier threshold ǫ was set to 0.1.

To verify the superior efficiency of tree search com-

pared to other types of globally optimal methods, we also

tested the Mixed Integer Programming-based BnB algorithm

(MIP) [28] in this experiment. The state-of-the-art Gurobi

solver was used as the optimizer for MIP. MIP was par-

allelized by Gurobi using 8 threads, while all tree search

methods were executed sequentially.

As shown in Figure 5, all A* tree search variants are much

faster than MIP, even though MIP was significantly acceler-

ated by parallel computing. Both NAPA and DIBP brought

considerable acceleration to A* tree search, which can be

verified by the gaps between the variants with and without

these techniques. Note that when N = 200, A*-NAPA had

similar performance with and without TOD, while DIBP

provided stable and significant acceleration for all data.

Interestingly, having a larger N made A* tree search

efficient for a much larger o. This can be explained by

condition (15). With the same o, a larger N meant a lower

true outlier rate, which made (15) less likely.

6.2. Linearized fundamental matrix estimation

Experiments were also conducted on real data. We ex-

ecuted all tree seach variants for linearized fundamental

matrix estimation [6], which used the algebaric error [13,

Sec.11.3] as the residual and ignored the non-convex rank-

2 constraints. 5 image pairs (the first 5 crossroads) were

selected from the sequence 00 of the KITTI Odometry

dataset [12]. For each image pair, the input was a set of

SIFT [17] feature matches generated using VLFeat [27].

The inlier threshold ǫ was set to 0.03 for all image pairs.

The result is shown in Table 1. We also showed the

number of unique nodes (NUN) generated and the num-

ber of branch pruning steps (NOBP) executed before the

termination of each algorithm. A*-NAPA-DIBP found the

optimal solution in less than 10s for all data, while A* and

A*-TOD often failed to finish in 2 hours. A*-NAPA-DIBP

was faster by more than 500 times on all data compared

to the fastest method among A* and A*-TOD. For the ef-

fectiveness of each technique, applying NAPA to A* of-

ten resulted in more than 10x acceleration. And applying

DIBP further sped up A*-NAPA by more than 1000x on

challenging data (e.g. Frame-198-201). This signifi-

cant acceleration is because many elements in SB were the

ones that led to redundant nodes, which made most non-

redundant paths effectively pruned. TOD was much less ef-

fective than DIBP and introduced extra runtime to A*-NAPA

on Frame-104-108 and Frame-198-201. We also at-

tached oLRS , the estimated number of outliers returned from

LO-RANSAC [8], which is an effective RANSAC variant.

None of the LO-RANSAC results were optimal. A visual-

ization of the tree search result is shown in Figure 6.

1643

0 10 20 30 40

o

0

500

1000

1500

2000

2500

3000

3500

ru
n

ti
m

e
 (

s
)

MIP (parallelized)

A*

A*-TOD

A*-NAPA

A*-NAPA-TOD

A*-NAPA-DIBP

(a) N = 200

0 20 40 60 70

o

0

500

1000

1500

2000

2500

3000

3500

ru
n

ti
m

e
 (

s
)

MIP (parallelized)

A*

A*-TOD

A*-NAPA

A*-NAPA-TOD

A*-NAPA-DIBP

(b) N = 400

Figure 5. Runtime vs o for robust linear regression on synthetic data. d = 8.

Figure 6. (Top) Fundamental matrix estimation result

of A*-NAPA-DIBP on Frame-738-742. (Bottom)

Homography estimation result of A*-NAPA-DIBP on

data BruggeTower. The inliers (in green) in the top

figure were down-sampled to 100 for clarity.

data Frame-104-108 Frame-198-201 Frame-417-420 Frame-579-582 Frame-738-742

d = 8 o = 13 (oLRS = 23); N = 302 o = 13 (oLRS = 19); N = 309 o = 19 (oLRS = 23); N = 385 o = 22 (oLRS = 25); N = 545 o = 14 (oLRS = 32); N = 476

NUN/NOBP runtime (s) NUN/NOBP runtime (s) NUN/NOBP runtime (s) NUN/NOBP runtime (s) NUN/NOBP runtime (s)

A* 163232/0 > 6400 169369/0 > 6400 144560/0 > 6400 136627/0 > 6400 160756/0 > 6400

A*-TOD 134589/119871 > 6400 129680/126911 > 6400 80719/92627 3712.99 55764/58314 2709.21 49586/50118 1729.34

A*-NAPA 35359/0 561.81 23775/0 351.07 175806/0 5993.68 147200/0 > 6400 29574/0 471.15

A*-NAPA-TOD 33165/22275 770.08 19308/13459 451.39 15310/10946 429.06 15792/12073 576.82 14496/10752 373.36

A*-NAPA-DIBP 205/311 7.63 105/160 3.88 172/216 6.85 60/84 3.49 52/77 2.00

A*-NAPA-DIBP vs best previous method faster by best previous method faster by best previous method faster by best previous method faster by best previous method faster by

previous best method A*/A*-TOD > 839x A*/A*-TOD > 1648x A*-TOD 541x A*-TOD 775x A*-TOD 864x

Table 1. Linearized fundamental matrix estimation result. The names of the data are the image indices in the sequence. oLRS is the estimated

outlier number returned by LO-RANSAC. NUN: number of unique nodes generated. NOBP: number of branch pruning steps executed. The

last row shows how much faster A*-NAPA-DIBP was, compared to the fastest previously proposed variants (A* and A*-TOD).

data Adam City Boston Brussels BruggeTower

d = 8 o = 38 (oLRS = 40); N = 282 o = 19 (oLRS = 22); N = 87 o = 43 (oLRS = 44); N = 678 o = 9 (oLRS = 25); N = 231 o = 17 (oLRS = 26); N = 208

NUN/NOBP runtime (s) NUN/NOBP runtime (s) NUN/NOBP runtime (s) NUN/NOBP runtime (s) NUN/NOBP runtime (s)

A* 224/0 538.91 7072/0 > 6400 406/0 2455.03 397/0 437.25 5003/0 > 6400

A*-TOD 38/37 156.98 462/514 910.51 7/6 74.63 359/281 499.77 333/260 298.39

A*-NAPA 168/0 404.77 6481/0 > 6400 234/0 1284.14 264/0 268.85 3731/0 4740.68

A*-NAPA-TOD 38/37 156.98 286/241 485.36 7/6 74.63 249/191 297.91 201/151 161.95

A*-NAPA-DIBP 38/37 156.98 34/40 64.44 7/6 74.63 30/42 50.13 40/48 68.20

A*-NAPA-DIBP vs best previous method faster by best previous method faster by best previous method faster by best previous method faster by best previous method faster by

previous best method A*-TOD same runtime A*-TOD 13.1x A*-TOD same runtime A* 7.7x A*-TOD 3.4x

Table 2. Homography estimation result. oLRS is the estimated outlier number returned by LO-RANSAC. NUN: number of unique nodes

generated. NOBP: number of branch pruning steps executed. The last row shows how much faster A*-NAPA-DIBP was, compared to the

fastest previously proposed variants (A* and A*-TOD).

6.3. Homography estimation (non­linear)

To test all methods on non-linear problems, another exper-

iment for homography estimation [13] was done on “homogr”

dataset1. As before, we picked 5 image pairs, computed the

SIFT matches and used them as the input data. The transfer

error in one image [13] was used as the residual, which was

in the form of (3). ǫ was set to 4 pixels.

Table 2 shows the result of all methods. Compared to

the linear case, solving non-linear minimax problems (4)

and (14) was much more time-consuming (can be 100x

slower with fminimax). Thus with similar NUN and

NOBP, the runtime was much larger. However, the value

of φ in the non-linear case was usually also much smaller,

which made the heuristic hins and in turn all branch prun-

ing techniques much more effective than in the linear case.

And for easy data such as Boston and Adam, perform-

1http://cmp.felk.cvut.cz/data/geometry2view/

index.xhtml

ing either TOD or DIBP was enough to achieve the highest

speed. Nonetheless, DIBP was still much more effective

than TOD on other data. And DIBP never slowed down the

A* tree search as TOD sometimes did (e.g., in Brussels).

A*-NAPA-DIBP remained fastest on all image pairs. An

example of the visual result is provided in Figure 6.

7. Conclusion

We presented two new acceleration techniques for con-

sensus maximization tree search. The first avoids redundant

non-adjacent paths that exist in the consensus maximiza-

tion tree structure. The second makes branch pruning much

less sensitive to the problem dimension, and therefore much

more reliable. The significant acceleration brought by the

two techniques contributes a solid step towards practical and

globally optimal consensus maximization.

Acknowledgements. We thank Dr. Nan Li for his valu-

able suggestions.

1644

References

[1] Nina Amenta, Marshall Bern, and David Eppstein. Optimal

point placement for mesh smoothing. Journal of Algorithms,

30(2):302–322, 1999.

[2] Zhipeng Cai, Tat-Jun Chin, Huu Le, and David Suter. De-

terministic consensus maximization with biconvex program-

ming. In European Conference on Computer Vision (ECCV),

2018.

[3] E. W. Cheney. Introduction to Approximation Theory.

McGraw-Hill, 1966.

[4] Tat-Jun Chin, Zhipeng Cai, and Frank Neumann. Robust

fitting in computer vision: Easy or hard? In European Con-

ference on Computer Vision (ECCV), 2018.

[5] Tat-Jun Chin, Pulak Purkait, Anders Eriksson, and David

Suter. Efficient globally optimal consensus maximisation

with tree search. In Computer Vision and Pattern Recognition

(CVPR), 2015.

[6] Tat-Jun Chin, Pulak Purkait, Anders Eriksson, and David

Suter. Efficient globally optimal consensus maximisation

with tree search. IEEE Transactions on Pattern Analysis and

Machine Intelligence (TPAMI), 39(4):758–772, 2017.

[7] Ondrej Chum and Jiri Matas. Matching with prosac-

progressive sample consensus. In Computer Vision and Pat-

tern Recognition (CVPR), 2005.

[8] Ondřej Chum, Jiřı́ Matas, and Josef Kittler. Locally optimized

RANSAC. In Joint Pattern Recognition Symposium, 2003.

[9] Olof Enqvist, Erik Ask, Fredrik Kahl, and Kalle Åström.

Robust fitting for multiple view geometry. In European Con-

ference on Computer Vision (ECCV), 2012.

[10] David Eppstein. Quasiconvex programming. Combinatorial

and Computational Geometry, 52(3):287–331, 2005.

[11] Martin A. Fischler and Robert C. Bolles. Random sample

consensus: a paradigm for model fitting with applications to

image analysis and automated cartography. Communications

of the ACM, 24(6):381–395, 1981.

[12] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? the kitti vision benchmark

suite. In Computer Vision and Pattern Recognition (CVPR),

2012.

[13] Richard Hartley and Andrew Zisserman. Multiple View Ge-

ometry in Computer Vision. Cambridge University Press,

2003.

[14] Huu Le, Tat-Jun Chin, and David Suter. An exact penalty

method for locally convergent maximum consensus. In Com-

puter Vision and Pattern Recognition (CVPR), 2017.

[15] Hongdong Li. A practical algorithm for L∞ triangulation

with outliers. In Computer Vision and Pattern Recognition

(CVPR), 2007.

[16] Hongdong Li. Consensus set maximization with guaranteed

global optimality for robust geometry estimation. In Interna-

tional Conference on Computer Vision (ICCV), 2009.

[17] David G Lowe. Object recognition from local scale-invariant

features. In International Conference on Computer Vision

(ICCV), 1999.

[18] Jiřı́. Matoušek. On geometric optimization with few vio-

lated constraints. Discrete and Computational Geometry,

14(4):365–384, 1995.
[19] Jorge Nocedal and Stephen Wright. Numerical Optimization.

Springer Science & Business Media, 2006.

[20] Carl Olsson, Olof Enqvist, and Fredrik Kahl. A polynomial-

time bound for matching and registration with outliers. In

Computer Vision and Pattern Recognition (CVPR), 2008.

[21] Carl Olsson, Anders P Eriksson, and Fredrik Kahl. Efficient

optimization for L∞-problems using pseudoconvexity. In

International Conference on Computer Vision (ICCV), 2007.

[22] Alvaro Parra Bustos and Tat-Jun Chin. Guaranteed outlier

removal for rotation search. In International Conference on

Computer Vision (ICCV), 2015.

[23] Pulak Purkait, Christopher Zach, and Anders Eriksson. Maxi-

mum consensus parameter estimation by reweighted L1 meth-

ods. In Energy Minimization Methods in Computer Vision

and Pattern Recognition (EMMCVPR), 2017.

[24] Rahul Raguram, Ondrej Chum, Marc Pollefeys, Jiri Matas,

and Jan-Michael Frahm. USAC: a universal framework for

random sample consensus. IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), 35(8):2022–

2038, 2013.

[25] Micha Sharir and Emo Welzl. A combinatorial bound for lin-

ear programming and related problems. In Annual Symposium

on Theoretical Aspects of Computer Science, 1992.

[26] Ben J Tordoff and David W Murray. Guided-MLESAC: Faster

image transform estimation by using matching priors. IEEE

Transactions on Pattern Analysis and Machine Intelligence

(TPAMI), 27(10):1523–1535, 2005.

[27] Andrea Vedaldi and Brian Fulkerson. VLFeat: An open

and portable library of computer vision algorithms. In ACM

International Conference on Multimedia, 2010.

[28] Yinqiang Zheng, Shigeki Sugimoto, and Masatoshi Okutomi.

Deterministically maximizing feasible subsystems for robust

model fitting with unit norm constraints. In Computer Vision

and Pattern Recognition (CVPR), 2011.

1645

