Hierarchical Shot Detector

Jiale Cao¹, Yanwei Pang¹*, Jungong Han², Xuelong Li³
¹Tianjin University ²University of Warwick ³Northwestern Polytechnical University
connor@tju.edu.cn, pyw@tju.edu.cn, jungong.han@warwick.ac.uk, li@nwpu.edu.cn

Abstract

Single shot detector simultaneously predicts object categories and regression offsets of the default boxes. Despite of high efficiency, this structure has some inappropriate designs: (1) The classification result of the default box is improperly assigned to that of the regressed box during inference, (2) Only regression once is not good enough for accurate object detection. To solve the first problem, a novel reg-offset-clss (ROC) module is proposed. It contains three hierarchical steps: box regression, the feature sampling location predication, and the regressed box classification with the features of offset locations. To further solve the second problem, a hierarchical shot detector (HSD) is proposed, which stacks two ROC modules and one feature enhanced module. The second ROC treats the regressed boxes and the feature sampling locations of features in the first ROC as the inputs. Meanwhile, the feature enhanced module injected between two ROCs aims to extract the local and non-local context. Experiments on the MS COCO and PASCAL VOC datasets demonstrate the superiority of proposed HSD. Without the bells or whistles, HSD outperforms all one-stage methods at real-time speed.

1. Introduction

Object detection based on deep convolutional neural network can be mainly divided into two classes: two-stage methods [15, 40, 16] and one-stage methods [39, 31, 28]. Two-stage methods firstly extract some candidate object proposals and then classify and regress these proposals. One-stage methods directly predict object categories and regression offsets of dense default boxes (anchors). Compared with two-stage methods, one-stage methods are more efficient but inferiorly accurate.

In one-stage methods, class imbalance problem between the positive and negative samples is considered as a main challenge, which has been solved by OHEM [42] and focal loss [28] in some degree. Besides class imbalance problem, there are two inappropriate designs which can be further improved: (1) Most one-stage methods simultaneously conduct the classification and regression of default box during training. As a result, the classification result of default box is improperly assigned to that of the regressed box during inference. In fact, we want to output the true classification result of the regressed box. Meanwhile, training the classification task with the default boxes ignores some accurately regressed boxes, which are helpful for object detection. (2) Only one regression of the default box is not good enough to accurately detect the object. Recently, cascade structure has been proposed for accurate detection in both two-stage methods and one-stage methods [54, 2]. However, each stage in the cascade structure still suffers from the above problem of classification inconsistency.

To better solve the above problems, a novel hierarchical shot detector (HSD) is proposed in Fig. 1 to hierarchically conduct regression and classification. In HSD, the key and novel architecture is the reg-offset-clss (ROC) module. Instead of simultaneous classification and regression, ROC firstly
predicts regression offsets of the default box (b0), then generates the feature sampling offsets, and finally classifies the regressed box (b1) by the features of offset locations. Based on ROC module, the features of accurate sampling locations for classification and the more accurately regressed boxes can be used to boost performance. To further improve detection, HSD hierarchically stacks two ROC modules. The regressed boxes (b1) and the feature sampling offsets generated by the first ROC are used as the inputs. Meanwhile, to enhance the feature discrimination, a feature enhanced (FE) module is injected before the second ROC to exploit more local and non-local contextual information. The main contributions of this paper can be summarized as follows:

1. A novel reg-offset-cls (ROC) module is proposed. It reconstructs simultaneous classification and regression by three hierarchical steps: the default box regression, the feature sampling offset predication, and the regressed box classification with offset features. Moreover, it is light-weight.

2. Based on the proposed ROC module, the hierarchical shot detector (HSD) is proposed, which hierarchically stacks two ROC modules and one feature enhanced (FE) module. The proposed HSD can be seen as a generalization of one-stage methods for accurate object detection.

3. Experimental results on the MS COCO [29] and PASCAL VOC [11] demonstrate the effectiveness of proposed HSD. Moreover, the proposed HSD achieves state-of-the-art performance at real-time speed.

2. Related works

In the past few years, object detection has achieved the great success based on deep convolutional neural networks [24, 43, 18, 46, 37]. Depending on whether or not the candidate proposals (i.e., ROI) are used, the methods are split into the two-stage methods [15, 40, 27, 16] and the one-stage methods [39, 31, 28, 49].

Two-stage methods are proposal-based methods, which firstly generate some candidate object proposals and then use a ROI head-network to classify and regress these proposals. RCNN [15] and its extensions (Fast RCNN [14] and Faster RCNN [40]) are the most representative two-stage methods. After that, many variants have been proposed. To encode position information and reduce computational cost of Faster RCNN, R-FCN [8] replaces the ROI pooling by the position-sensitive ROI (PSROI) pooling. GA-RPN [48] leverages semantic features to guide the anchor generation. To solve scale variance problem, some feature pyramid methods (e.g., MSCNN [1], MCF [3], and FPN [27]) and image pyramid methods (e.g., SNIP [44] and SNIPER [45]) detect objects by multi-scale feature maps or multi-scale images. Mask R-CNN [16] extends object detection to instance segmentation by an extra segmentation branch.

One-stage methods are proposal-free methods, which simultaneously output classification scores and regression offsets of dense default boxes (see Fig. 2(a)). YOLO [39] and SSD [31] are two representative methods. YOLO [39] splits the original image into the $N \times N$ grids and predicts object probabilities existed in each grid. SSD [31] uses the different layers of the backbone to detect the objects of different scales. Different from two-stage methods, one-stage methods need to process a large number of positive and negative samples and face the class imbalance problem. To address this problem, OHEM [42] and focal loss [28] pay more attention to the hard samples. Recently, many works have been proposed to promote the progress of one-stage methods. Some methods [12, 23, 20, 57] aim to enhance the feature semantics of predication layers. Some methods [55, 10, 34, 4, 7] add segmentation supervision to boost detection performance. To avoid the handcrafted anchors, some anchor-free methods [25, 59, 47] are proposed recently. Compared with two-stage methods, one-stage methods are of high efficiency and low accuracy. Thus, we aim to improve detection accuracy of one-stage methods with high efficiency.

Cascade structure is very useful for accurate object detection [2, 19, 54, 32, 60, 35]. Specifically, two-stage detectors Cascade RCNN [2] and IoU-Net [19] have a sequence of ROI detectors, while one-stage detectors RefineDet [54] and ALFNet [32] use multiple fully-convolutional head-networks for predication (see Fig. 2(b)). At each stage, these methods conduct simultaneous classification and re-
gression. As a result, they do not consider that there exists the classification inconsistency between the default box and regressed box. Recently, ConRetinaNet [22] uses both the default box and the regressed box for classification (see Fig. 2(c)) at the training stage, which is an initial attempt to solve the inconsistency. Compared with ConRetinaNet, our method (see Fig. 2(d)) further considers two important inconsistency: the feature inconsistency between default box and regressed box, and the threshold inconsistency of the positive/negative samples for regression and classification.

Contextual information has been demonstrated to be helpful for object detection and semantic segmentation. On the one hand, some methods [21, 27, 26, 51, 50] use the encoder-decoder structure to combine the feature maps of different scales. On the other hand, some methods [17, 5, 56, 38, 36, 6] adopt the spatial pyramid structure with multiple branches to extract multi-scale contextual information. Meanwhile, non-local contextual information extracted by self-attention module [52, 13] is also useful. Thus, a natural idea is to combine local and non-local contextual information for object detection. In our cascade structure, the local and non-local contextual information is added before the second ROC which needs more discriminative features for more accurate object detection.

3. Our proposed method

In this section, we give a detailed description about our proposed method (HSD). Fig. 3(a) shows the overall architecture. Given an image, the backbone network (e.g., VGG16 [43]) and two extra convolutional blocks are used to generate the feature maps of different resolutions. Then, the head-network, which contains two **cls-offset-reg** (ROC) modules and one feature enhanced (FE) module, is respectively attached at these feature maps. Finally, the detection results of each head-network are combined by the non-maximum suppression.

In the following section, we firstly introduce the core **reg-offset-cls** (ROC) module. Then, we explain how to hierarchically stack two ROCs and how to extract the local and non-local context by the feature enhanced (FE) module.

3.1. The reg-offset-cls (ROC) module

Generally, one-stage methods simultaneously predict object category and regression offset of the default box b_0 during training, which have some following drawbacks: (1) the classification score of the default box b_0 is mistakenly assigned to that of regressed box b_1 during inference; (2) some regressed boxes accurately detecting objects may be labelled as the negative samples during training, which can be used to improve detection performance. To solve the above problems, a novel **reg-offset-cls** (ROC) module is proposed, which reconstructs regression and classification by three hierarchical steps: firstly predicts the regression offset of default box b_0, secondly calculates the feature sampling offsets upon the regression output, and finally classifies the regressed box b_1 with the features of offset locations.

The regression loss (i.e., L_{reg}^1) of the ROC module is the same as that of SSD [31]:

$$L_{reg}^1 = \frac{1}{N_{reg}^1} \sum_i L_{reg}(r_i, t_i, \mathbf{w}_{reg}^{01}(x^1)),$$

where r_i and t_i are respectively the true regression offset and the predicted regression offset of the default box b_0. \mathbf{w}_{reg}^{01} and x^1 are respectively the regression convolutional weights and the input features of the ROC. N_{reg}^1 is the number of samples for box regression.

Based on the regressed box b_1, the classification loss (i.e., L_{cls}^1) of the ROC module can be expressed as follows:

$$L_{cls}^1 = \frac{1}{N_{cls}^1} \sum_i L_{cls}(y_i, p_i, \mathbf{w}_{cls}^{11}(x^1(\Delta b^1))),$$

where y_i and p_i are respectively the true label and the predicted score of the regressed box b_1. N_{cls}^1 is the number of samples for box classification. With the technique of deformable convolution [9], the predicted score p_i can
be calculated by convolving the classification weights $w^{b_1}_{cb}$, with the features $x^1(\Delta b_1)$ of offset locations.

The feature sampling offset Δb_1 of regressed box b_1 is 18-d, which is learned from the regression output t^{b_0} (i.e., $\Delta x^0, \Delta y^0, \Delta u^0, \Delta b^0$) of the default box b_0 as follows:

$$\Delta b_1 = w^1_1 \otimes (w^1_2 \otimes t^{b_0}),$$

where w^1_1 and w^1_2 respectively represent the weights of two 1×1 convolutional layers.

The structure of the ROC module is shown at the left of Fig. 3(b). The feature maps from the main network are fed to a 3×3 convolutional layer to generate the input feature maps (F1) of the first ROC. After that, the regression branch uses a 3×3 convolution to predict the regression offsets. The channel number of regression output is $4N$, where N is the number of anchors. Based on the regression offsets, the feature sampling offset (O1) is calculated by two 1×1 convolutions. To simplify, one convolution is shown. The channel number of sampling offset is $18N$. With F1 and O1, the classification branch uses a 3×3 deformable convolution of group N to output classification results. If HSD uses only one ROC module, the channel number of classification output is equal to $(C + 1)N$, where C is the number of object categories. If HSD uses two stacked ROC modules, the channel number of classification output in the first ROC is equal to $2N$, which aims to filter many negative boxes.

Compared with simultaneous regression and classification of default box, our ROC can use more accurately regressed boxes for better training and use the features of more accurate sampling locations for better classification. Moreover, the proposed ROC merely adds two 1×1 convolutions, which is relatively light-weight.

3.2. Two hierarchical ROC modules

For accurate object detection, multiple consecutive regressions and classifications with cascade structure have been demonstrated to be effective [54, 2]. In this paper, two ROC modules are hierarchically stacked to further improve detection accuracy. Based on the regressed boxes and the feature sampling offsets generated by the first ROC module, the second ROC module further predicts the box regression and classifies the regressed boxes by the features of offset locations. At the training stage, the training loss is equal to the loss sum of the two ROC modules.

For the first ROC module, the regression loss (i.e., L^1_{reg}) and the classification loss (i.e., L^1_{cls}) have been shown in Section 3.1. For the second ROC module, the regression loss (i.e., L^2_{reg}) can be written as follows:

$$L^2_{reg} = \frac{1}{N^2_{reg}} \sum_i L_{reg}(v^{b_1}_i, t^{b_1}_i (w^{b_1}_{reg}, x^2(\Delta b_1))),$$

where v^{b_1} and t^{b_1} are respectively the true regression offset and the predicted regression offset of the box b_1 by the first ROC module. Similarly, the deformable convolution [9] is used to predict the regression offset t^{b_1} of box b_1 by convolving the regression weights $w^{b_1}_{reg}$, with the features $x^2(\Delta b_1)$ of offset locations.

For the second module, the classification loss (i.e., L^2_{cls}) can then be expressed as

$$L^2_{cls} = \frac{1}{N^2_{cls}} \sum_i L_{cls}(u^{b_2}_i, p^b_2 (w^{b_2}_{cls}, x^2(\Delta b_1 + k^b_2))),$$

where u^{b_2} and p^b_2 are the true label and the predicted score of the regressed box b_2. The feature sampling offset $\Delta b_1 + k^b_2$ for the box b_2 is $\Delta b_1 + b^2$, where Δb_1 is calculated by Equation 3 and Δb_2 is calculated by

$$\Delta b_2 = w^2_1 \otimes (w^2_2 \otimes t^{b_1}),$$

where t^{b_1} is regression output (i.e., $\Delta x^1, \Delta y^1, \Delta u^1, \Delta b^1$) of the box b_1. Similar to the convolutional weights (i.e., w^1_1 and w^1_2) in Equation 3, the weights (i.e., w^2_1 and w^2_2) of the convolutional layers are also learned in the training stage.

The detailed structure of two stacked ROC modules can be seen in Fig. 3(b). The detection pipeline of two ROCs is first regression \rightarrow first sampling offset \rightarrow first classification \rightarrow second regression \rightarrow second sampling offset \rightarrow second classification. The first classification uses a 3×3 deformable convolution to consider the feature sampling offset caused by the first regression of default box, while the second classification uses a 3×3 deformable convolution to consider the feature sampling offset caused by both the first regression and the second regression of default box.

3.3. Feature enhanced module

In HSD, the second ROC module aims to generate more accurate classification and location. To further improve feature discrimination, a feature enhanced (FE) module is injected between the two ROC modules, which extracts more local and non-local contextual information to enrich the input features of the second ROC module.

Fig. 3(c) shows the structure of the FE module. Specifically, it consists of three different branches: a convolutional branch, a local context branch, and a non-local context branch. The convolutional branch has a 3×3 convolution. To reduce computational cost, the local context branch and the non-local context branch firstly go through a 1×1 convolutional layer to reduce the channel number of the feature maps. After that, the local context branch goes through a 3×3 convolution with dilation rate of 3, and the non-local context branch goes through a non-local module used in [52]. After that, the output maps of three branches are concatenated together and fed to a 3×3 convolutional layer to generate the input for the second ROC. To achieve a little better performance when the input size is of 512×512, the FE module concatenates the feature map at current scale and the upsampled map at next scale as the input.
4. Experiments

In this section, the experiments on the challenging MS COCO [29] and the classic PASCAL VOC [11] are conducted to demonstrate the effectiveness of proposed method and compare with some state-of-the-art methods.

4.1. Datasets and evaluation metrics

MS COCO [29] is a famous and challenging computer vision benchmark for object detection and instance segmentation, which contains about 115k images for training (i.e., trainval35k), 5k images for ablation experiments (i.e., minival), and about 20k images for comparing with other methods (i.e., test-dev). There are 80 object categories. Mean average precision under different IoU thresholds (0.5:0.95) is used for performance evaluation.

PASCAL VOC [11] is the classic object detection dataset, which mainly contains VOC2007 and VOC2012. VOC2007 has 5011 images for training and 4952 images for testing, while VOC2012 has 5717 images for training, 5823 images for validation, and 10991 images for testing. There are 20 object categories. In this paper, the train set in VOC2007 and the train and validation sets in VOC2012 are used for training, while the test set in VOC2007 is used for testing. The average precision with the IoU threshold of 0.5 is used for performance evaluation.

4.2. Implementation details

The proposed HSD adopts the VGG16 [43], ResNet101 [18], or ResNext101 [53] pre-trained on the ImageNet [41] as the backbone, and further fine-tunes the pre-trained network on the specific object detection datasets. For the COCO benchmark [29], there are 160 epochs at the training stage. The initial learning rate is 0.004. It decreases by a factor of 10 at 90, 120, and 140 epochs for small input size and at 90 and 140 epochs for large input size. For the PASCAL VOC dataset [11], there are 250 epochs at the training stage. The initial learning rate is 0.004 and decreases by a factor of 10 at the 150 and 200 epochs. On both the COCO and PASCAL VOC datasets, each mini-batch has 32 images for training. At the test stage, the threshold of non-maximum suppression (NMS) is 0.45, and the top 200 maximum scoring boxes per image after NMS are saved.

4.3. Ablation experiments

The effectiveness of the proposed HSD The baseline (SSD-like) in Table 1(a) simultaneously predicts object category and regression offset of the default box. Compared with SSD [31], SSD-like removes the L2-Norm object category and regression offset of the default box and adds the 3×3 convolutional layer before each prediction head-network. Compared with the baseline, HSD firstly regresses the default box and then classifies the regressed box with the features of offset locations. The local and non-local contextual information extracted by the feature enhanced (FE) module is injected before the second ROC. Table 1(b)-(e) give the detection results of the proposed HSD. For fair comparisons, they are implemented with the similar parameter settings. The analysis of Table 1 is given as follows:

1. The HSD in Table 1(b) and the baseline in Table 1(a) both have one regression and one classification. By comparing Table 1(a) and 1(b), it can be seen that HSD with one ROC module outperforms the baseline by 2.5%. Meanwhile, HSD with one ROC module outperforms the baseline at all the scales (see AP_l, AP_m, and AP_l). It can be concluded that the proposed ROC is more effective than the baseline (i.e., simultaneous classification and regression). Compared with the baseline, the proposed ROC only adds two 1×1 convolutions to predict feature sampling offsets. Thus, it does not add many network parameters.

2. When two ROC modules are stacked together, the performance of HSD can be significantly improved. By comparing Table 1(c) and Table 1(b), HSD with two ROCs outperforms that with one ROC by 2.3%. It is further found that the improvement of AP_l has a large improvement. It means that two stacked ROC modules can provide more precise detection than one ROC module.

3. When injecting the feature enhanced (FE) module into the two stacked ROC modules, the performance can be further improved, which mainly comes from the improvement of small-scale object detection. The reason may be that detecting small-scale objects is more difficult and needs more contextual information.

4. With the large input size of 512×512 during training and inference, HSD achieves a better accuracy (i.e., 38.5%).

Comparison with related one-stage methods To further demonstrate the effectiveness of proposed method, some related one-stage methods (i.e., SSD [31] and Re-

<table>
<thead>
<tr>
<th>method</th>
<th>backbone</th>
<th>input size</th>
<th>#reg</th>
<th>#cls</th>
<th>context</th>
<th>AP</th>
<th>AP@0.5</th>
<th>AP@0.75</th>
<th>AP$_l$</th>
<th>AP$_m$</th>
<th>AP$_l$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) baseline (SSD-like)</td>
<td>VGG16</td>
<td>320×320</td>
<td>1</td>
<td>1</td>
<td>✓</td>
<td>27.8</td>
<td>46.7</td>
<td>28.4</td>
<td>10.3</td>
<td>27.8</td>
<td>43.1</td>
</tr>
<tr>
<td>(b) one ROC</td>
<td>VGG16</td>
<td>320×320</td>
<td>1</td>
<td>1</td>
<td>✓</td>
<td>30.3</td>
<td>51.2</td>
<td>31.0</td>
<td>13.1</td>
<td>32.2</td>
<td>46.4</td>
</tr>
<tr>
<td>(c) two ROCs</td>
<td>VGG16</td>
<td>320×320</td>
<td>2</td>
<td>2</td>
<td>✓</td>
<td>32.6</td>
<td>51.5</td>
<td>34.7</td>
<td>15.0</td>
<td>34.9</td>
<td>49.1</td>
</tr>
<tr>
<td>(d) two ROCs+FE</td>
<td>VGG16</td>
<td>320×320</td>
<td>2</td>
<td>2</td>
<td>✓</td>
<td>33.3</td>
<td>52.8</td>
<td>36.1</td>
<td>16.1</td>
<td>35.3</td>
<td>49.3</td>
</tr>
<tr>
<td>(e) two ROCs+FE</td>
<td>VGG16</td>
<td>512×512</td>
<td>2</td>
<td>2</td>
<td>✓</td>
<td>38.5</td>
<td>57.8</td>
<td>42.2</td>
<td>22.2</td>
<td>42.3</td>
<td>52.3</td>
</tr>
</tbody>
</table>

Table 1. The ablation study of the proposed HSD on the COCO minival set [29]. ‘#reg’ and ‘#cls’ means the number of classification and regression. ‘context’ means the local and non-local context extracted by the proposed FE module.
Table 2. Comparison with two related one-stage methods (i.e., SSD [31] and RefineDet [54]). ‘T’ means the forward time. For fair comparison, FE module is not used in our HSD.

<table>
<thead>
<tr>
<th>method</th>
<th>backbone</th>
<th>cascade</th>
<th>AP</th>
<th>AP@0.5</th>
<th>AP@0.75</th>
<th>T (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) SSD [31]</td>
<td>VGG16</td>
<td></td>
<td>25.3</td>
<td>42.0</td>
<td>26.2</td>
<td>10</td>
</tr>
<tr>
<td>(b) our HSD</td>
<td>VGG16</td>
<td></td>
<td>30.3</td>
<td>51.2</td>
<td>31.0</td>
<td>12</td>
</tr>
<tr>
<td>(c) RefineDet [54]</td>
<td>VGG16</td>
<td>✓</td>
<td>29.9</td>
<td>50.2</td>
<td>31.1</td>
<td>13</td>
</tr>
<tr>
<td>(d) our HSD</td>
<td>VGG16</td>
<td>✓</td>
<td>32.6</td>
<td>51.5</td>
<td>34.7</td>
<td>16</td>
</tr>
</tbody>
</table>

Table 3. Ablation study of the ROC module. Box offset means that it firstly conducts box regression and secondly conducts regressed box classification. Sampling offset means that it considers the feature sampling offset for classification due to the box regression.

<table>
<thead>
<tr>
<th>method</th>
<th>box offset</th>
<th>sampling offset</th>
<th>AP</th>
<th>AP@0.5</th>
<th>AP@0.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) baseline</td>
<td></td>
<td></td>
<td>27.8</td>
<td>46.7</td>
<td>28.4</td>
</tr>
<tr>
<td>(b) baselineθ=0.4</td>
<td></td>
<td></td>
<td>28.4</td>
<td>48.2</td>
<td>28.8</td>
</tr>
<tr>
<td>(c) baselineθ=0.6</td>
<td></td>
<td></td>
<td>27.1</td>
<td>45.8</td>
<td>27.4</td>
</tr>
<tr>
<td>(d) ROCθ=0.5</td>
<td>✓</td>
<td>✓</td>
<td>28.0</td>
<td>49.1</td>
<td>27.9</td>
</tr>
<tr>
<td>(e) ROCθ=0.6</td>
<td>✓</td>
<td>✓</td>
<td>29.9</td>
<td>50.2</td>
<td>31.0</td>
</tr>
<tr>
<td>(f) ROCθ=0.7</td>
<td>✓</td>
<td>✓</td>
<td>29.8</td>
<td>49.0</td>
<td>31.3</td>
</tr>
<tr>
<td>(g) ROCθ=0.8</td>
<td>✓</td>
<td>✓</td>
<td>28.2</td>
<td>45.5</td>
<td>30.9</td>
</tr>
<tr>
<td>(h) ROC—one conv</td>
<td>✓</td>
<td>✓</td>
<td>30.2</td>
<td>50.8</td>
<td>31.0</td>
</tr>
<tr>
<td>(i) ROC—two conv</td>
<td>✓</td>
<td>✓</td>
<td>30.3</td>
<td>51.2</td>
<td>31.0</td>
</tr>
</tbody>
</table>

Table 4. The effect of feature sampling offset which means whether or not the offset features are used for classification.

<table>
<thead>
<tr>
<th>method</th>
<th>sampling offset</th>
<th>AP</th>
<th>AP@0.5</th>
<th>AP@0.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) one ROC</td>
<td></td>
<td>29.9</td>
<td>50.2</td>
<td>31.0</td>
</tr>
<tr>
<td>(b) one ROC</td>
<td></td>
<td>30.3</td>
<td>51.2</td>
<td>31.0</td>
</tr>
<tr>
<td>(c) two ROCs</td>
<td></td>
<td>31.1</td>
<td>49.4</td>
<td>33.2</td>
</tr>
<tr>
<td>(d) two ROCs</td>
<td></td>
<td>32.6</td>
<td>51.5</td>
<td>34.7</td>
</tr>
</tbody>
</table>

Figure 4. The progress of box regression and the feature sampling locations. The green rectangle means the detection box, the red point means the feature sampling center of 3×3 convolution, and the red point means other sampling locations of 3×3 convolution. (a) the default box b_0 and feature locations for the first regression. (b) the regressed box b_1 and feature sampling locations for the first classification and second regression. (c) the regressed box b_2 and feature sampling locations for the second classification.

fineDet [54]) are compared with our HSD in Table 2. They are re-implemented with similar parameter settings. (1) SSD and our HSD with one ROC are both one regression/classification. By comparing Table 2(a) and (b), HSD with one ROC outperforms SSD by 5.0%. (2) RefineDet and our HSD with two ROCs are both two regressions/classifications. By comparing Table 2(c) and (d), HSD with two ROCs outperforms RefineDet by 2.7%.

Meanwhile, compared with SSD and RefineDet, our HSD greatly improves detection accuracy nearly without additional computational cost. For example, our HSD outperforms SSD by 5.0% with a merely extra 2ms forward time. Meanwhile, the proposed HSD nearly does not increase network parameters. Based on the above analysis, the proposed HSD is superior to other classical and state-of-the-art one-stage methods (i.e., SSD and RefineDet).

Ablation study of the ROC module

Because the ROC module reconstructs the regression and the classification into three hierarchical steps, using the original designs in one-stage methods is not good enough for proposed ROC. The detailed differences are two following folds:

(1) The first one is that how to set the IoU threshold θ of positive/negative samples for the classification after regression. A natural idea is to use the same threshold (0.5) as the regression like most one-stage methods [31, 22]. By comparing Table 3(d) and (a), it can be seen that using the same threshold (e.g., $\theta=0.5$) has very limited improvements. The accuracy of AP@0.75 even decreases. The reason may be that more inaccurately regressed boxes (merely above 0.5 IoU with GT) interfere the training. With the stricter IoU threshold for classification, the performance becomes much better. When the threshold θ is 0.6 in Table 2(c), the performance is 2.0% better than that of baseline. It means that the classification of accurately regressed box by the ROC is better than the classification of default box by the baseline.

Moreover, the detection results that the baseline uses the IoU thresholds of 0.4 and 0.6 are shown in Table 3(b) and (c), which are inferior to that of our ROC. It means that the improvement of ROC cannot be simply achieved by the baseline with more positives or the stricter threshold θ.

(2) The second one is that how to predict the sampling offset based on the regression output. Table 3(h) uses one 1×1 convolution, and Table 3(i) uses two 1×1 convolutions. By comparing Table 3(h) and (i), it can be seen that ROC with two convolutions has a little better performance.

The effect of sampling offsets Table 4 compares the effect of feature sampling offsets on the proposed HSD. It can be seen that the performances of one ROC and two ROCs respectively have 0.4% and 1.5% improvements by using the offset features. It can be explained that using the feature sampling offset can extract more accurate features to classify the regressed box.

Visualization of box regression and sampling locations

Fig. 4 visualizes the regressed box and the feature
(a) default boxes (b_0) (b) regressed boxes (b_1) (c) regressed boxes (b_2) (d) sampling locations 0 (e) sampling locations 1 (f) sampling locations 2

Figure 5. Detection boxes recognized as objects and the sampling locations of features before NMS. The green rectangle means the detection box, the green point means the feature sampling center of 3×3 convolution, and the red point means the other sampling location of 3×3 convolution. (a)-(c) show the progress of box regression ($b_0 \rightarrow b_1 \rightarrow b_2$). (d)-(f) show the change of feature sampling locations.

<table>
<thead>
<tr>
<th>method</th>
<th>AP</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) FE for the second ROC</td>
<td>33.3</td>
</tr>
<tr>
<td>(b) FE for the first ROC</td>
<td>32.7</td>
</tr>
<tr>
<td>(c) FE without non-local context for the second ROC</td>
<td>33.0</td>
</tr>
</tbody>
</table>

Table 5. The ablation study of feature enhanced (FE) module in the proposed HSD.

sampling locations of the proposed HSD. It can be seen that the box (green rectangle) can accurately detect the objects after two regressions. Meanwhile, the sampling locations of features coincide with the regressed box, which means that the sampling offsets can be accurately predicted by the regression output. Fig. 5 further gives more complete samples of box regression and feature sampling locations before NMS. It can be seen that many boxes become around the objects after two regressions. As a result, the features for box classification are accurately extracted around objects.

Feature enhanced (FE) module To demonstrate the importance of the proposed FE module, Table 5 gives some experiments as follows: (1) The FE module is added to only the first ROC. By comparing Table 5(a) and (b), it can be seen that the FE module is more important to the second ROC. The reason is that the second ROC needs more discriminative features to deal with many hard boxes around objects. (2) Without the non-local context (Table 5(c)), the performance decreases by 0.3%.

Detection results Fig. 6 gives some detection results of the proposed HSD (Table 1(e)). It can be seen that the proposed method achieves a good performance on both small-scale objects and occluded objects in complex scene.

4.4. Comparisons on the COCO benchmark

In this section, the proposed HSD is compared with some state-of-the-art methods on the test-dev set of the COCO benchmark in Table 6. With the same VGG16 and the input size of 512×512, HSD respectively outperforms RefineDet [54] and RFBNet [30] by 5.8% and 4.4%. With the same ResNet101 and the input size of 512×512, HSD respectively outperforms DFPR [21] by 5.6%. Based on the
strong backbone Hourglass [33], CornerNet [25] has a little better performance compared to our HSD with the backbone ResNet101. By using a strong backbone ResNet101 [53], our HSD can also outperform CornerNet [25] and ExtremeNet [59] by 1.4% and 1.7%. Meanwhile, the proposed method has a faster detection speed. With the input size of 768 × 768, our HSD can outperform RetinaNet [28], CornerNet [22], and FSAF [60].

Table 6. Detection results and detection time of some state-of-the-art methods on COCO test-dev set. All results reported are based on single-scale test. † means detection time, including forward time and NMS time, tested by us with Pytorch0.40 on NVIDIA Titan Xp.

Table 7. Detection results of the single-stage methods on the VOC 2007 test set without COCO pre-training and multi-scale test.

4.5. Comparisons on the VOC2007 dataset

In this section, the proposed HSD is compared with some state-of-the-art methods on the VOC2007 test set in Table 7. With the small input size of 300 × 300 or 320 × 320, HSD respectively outperforms RFBNet [30] and RetinaNet [54] by 1.2% and 1.7%. With the large input size of 512 × 512, HSD respectively outperforms RFBNet and RetinaNet by 0.8% and 1.2%.

5. Conclusion

In this paper, we proposed a novel pipeline for accurate object detection (called ROC). Instead of simultaneous classification and regression, ROC firstly conducts box regression, secondly predicts the feature sampling locations for box classification, and finally classifies regressed boxes with the features of offset locations. To achieve the better detection accuracy, a hierarchical shot detector is proposed by stacking two ROC modules. Meanwhile, the contextual information is also incorporated to enrich the features of the second ROC module. HSD achieves the state-of-art performance on both the COCO and PASCAL VOC datasets.

Acknowledgments This work was supported by National Natural Science Foundation of China (Nos. 61632018, 61876140), Postdoctoral Program for Innovative Talents (No. BX20180214), and China Postdoctoral Science Foundation (No. 2018M641647).
References

