
Hierarchical Shot Detector

Jiale Cao1, Yanwei Pang1∗, Jungong Han2, Xuelong Li3

1Tianjin University 2University of Warwick 3Northwestern Polytechnical University

connor@tju.edu.cn, pyw@tju.edu.cn, jungong.han@warwick.ac.uk, li@nwpu.edu.cn

Abstract

Single shot detector simultaneously predicts object cate-

gories and regression offsets of the default boxes. Despite

of high efficiency, this structure has some inappropriate de-

signs: (1) The classification result of the default box is im-

properly assigned to that of the regressed box during infer-

ence, (2) Only regression once is not good enough for ac-

curate object detection. To solve the first problem, a novel

reg-offset-cls (ROC) module is proposed. It contains three

hierarchical steps: box regression, the feature sampling lo-

cation predication, and the regressed box classification with

the features of offset locations. To further solve the second

problem, a hierarchical shot detector (HSD) is proposed,

which stacks two ROC modules and one feature enhanced

module. The second ROC treats the regressed boxes and

the feature sampling locations of features in the first ROC

as the inputs. Meanwhile, the feature enhanced module

injected between two ROCs aims to extract the local and

non-local context. Experiments on the MS COCO and PAS-

CAL VOC datasets demonstrate the superiority of proposed

HSD. Without the bells or whistles, HSD outperforms all

one-stage methods at real-time speed.

1. Introduction

Object detection based on deep convolutional neural net-

work can be mainly divided into two classes: two-stage

methods [15, 40, 16] and one-stage methods [39, 31, 28].

Two-stage methods firstly extract some candidate object

proposals and then classify and regress these proposals.

One-stage methods directly predict object categories and

regression offsets of dense default boxes (anchors). Com-

pared with two-stage methods, one-stage methods are more

efficient but inferiorly accurate.

In one-stage methods, class imbalance problem between

the positive and negative samples is considered as a main

challenge, which has been solved by OHEM [42] and focal

loss [28] in some degree. Besides class imbalance problem,

∗Yanwei Pang is the corresponding author. Code will be available at

https://github.com/JialeCao001/HSD.

A1

C1
O1

F1 T1 F2

A2

C2
 O2

A1

C1
O1

F1 T1 F2

A2

C2
 O2

layer i

Input image

regression offset features classification

regression 1 offset features classification

regression 2offset features 2classification 2

regression 1 offset features classification

regression 2offset features 2classification 2

default box (b0)

regressed box (b1)

regressed box (b2)

features for reg1

offset features for cls1

offset features for reg1

offset features for cls2

box regression sampling offset 1 classification 1

regression 2sampling offset 2classification 2

default box (b0)

regressed box (b1)

regressed box (b2)

features for reg1

offset features for cls1

offset features for reg2

offset features for cls2

R1

C1

F1
(a) SSD

R1

C1

F1 F2

R2

C2

R1

C1

F1

b0

R1

C1
O1

F1 T1 F2

R2

C2

O2
b2b0 b1 b0

b1
b1

conv

input

conv conv conv

input input input

(b) RefineDet (c) CoRetinaNet (c) HSD

b0 b0 b1 b0
R2

F2 b1 b0 b1

ROC1

FE

ROC2

ROC1

FE

ROC2

ROC1

FE

ROC2

ROC1

FE

ROC2

ROC1

reg1 reg2

FEInput image
HSD HSD HSD HSD

(a) The overall architecuture of HSD (b) The head-network HSD

(c) The feature enhanced module

(c) The FE module

Input image
HSD HSD HSD HSD

(a) The overall architecuture of HSD (b) The head-network HSD (c) The FE module

R1

C1
O1

F1 T1 F2

R2

C2

O2
b2b1

conv

input
b0 b1

reg1 reg2

FEInput image head head head head

(a) The overall architecuture of HSD (b) The head-network (c) The FE module

R1

C1

H1
(a) SSD

R1

C1

H1 H2

R2

C2

R1

C1

H1

b0

R1

C1
O1

H1 FE H2

R2

C2

O2
b2b0 b1 b0

b1
b1

conv

input

conv conv conv

input input input

(b) RefineDet (c) CoRetinaNet (d) our proposed HSD

b0 b0 b1 b0
R2

H2 b1 b0 b1

legend

ROC1
(b0→b1) →

(c) The FE module

Figure 1. The detection pipeline. HSD consists of two stacked

reg-offset-cls (ROC) modules. Each ROC firstly regresses the box,

secondly calculates the feature sampling offset based on the box

offset, and finally classifies the regressed box by the features of

offset sampling locations. The feature sampling locations for the

first classification and second regression are the same. To simplify,

the feature enhanced module between two ROCs is not shown.

there are two inappropriate designs which can be further

improved: (1) Most one-stage methods simultaneously con-

duct the classification and regression of default box during

training. As a result, the classification result of default box

is improperly assigned to that of the regressed box during

inference. In fact, we want to output the true classification

result of the regressed box. Meanwhile, training the classi-

fication task with the default boxes ignores some accurately

regressed boxes, which are helpful for object detection. (2)

Only one regression of the default box is not good enough

to accurately detect the object. Recently, cascade structure

has been proposed for accurate detection in both two-stage

methods and one-stage methods [54, 2]. However, each

stage in the cascade structure still suffers from the above

problem of classification inconsistency.

To better solve the above problems, a novel hierarchical

shot detector (HSD) is proposed in Fig. 1 to hierarchically

conduct regression and classification. In HSD, the key and

novel structure is the reg-offset-cls (ROC) module. Instead

of simultaneous classification and regression, ROC firstly

9705

A1

C1
O1

F1 T1 F2

A2

C2
O2

A1

C1
O1

F1 T1 F2

A2

C2
O2

layer i

Input image

regression offset features classification

regression 1 offset features classification

regression 2offset features 2classification 2

regression 1 offset features classification

regression 2offset features 2classification 2

default box (b0)

regressed box (b1)

regressed box (b2)

features for reg1

offset features for cls1

offset features for reg1

offset features for cls2

box regression sampling offset 1 classification

regression 2sampling offset 2classification 2

default box (b0)

regressed box (b1)

regressed box (b2)

features for reg1

offset features for cls1

offset features for reg2

offset features for cls2

R1

C1

F1
(a) SSD

R1

C1

F1 F2

R2

C2

R1

C1

F1

b0

R1

C1
O1

F1 T1 F2

R2

C2
O2
b2b0 b1 b0

b1
b1

conv

input

conv conv conv

input input input

(b) RefineDet (c) CoRetinaNet (c) HSD

b0 b0 b1 b0
R2

F2 b1 b0 b1

ROC1

FE

ROC2

ROC1

FE

ROC2

ROC1

FE

ROC2

ROC1

FE

ROC2

ROC1

reg1 reg2

FEInput image
HSD HSD HSD HSD

(a) The overall architecuture of HSD (b) The head-network HSD

(c) The feature enhanced module

(c) The FE module

Input image
HSD HSD HSD HSD

(a) The overall architecuture of HSD (b) The head-network HSD (c) The FE module

R1

C1
O1

F1 T1 F2

R2

C2
O2
b2b1

conv

input
b0 b1

reg1 reg2

FEInput image head head head head

(a) The overall architecuture of HSD (b) The head-network (c) The FE module

R1

C1

H1
(a) SSD

R1

C1

H1 H2

R2

C2

R1

C1

H1

b0

R1

C1
O1

H1 FE H2

R2

C2
O2
b2b0 b1 b0

b1
b1

conv

input

conv conv conv

input input input

(b) RefineDet (c) CoRetinaNet (d) our proposed HSD

b0 b0 b1 b0
R2

H2 b1 b0 b1

legend

ROC1
(b0→b1) →

(c) The FE module

R1

C1

H1
(a) SSD

R1

C1

H1 H2

R2

C2

R1

C1

H1

b0

R1

C1
O1

H1 FE H2

R2

C2
O2

b2b0 b1 b0

b1
b1

conv

input

conv conv conv

input input input

(b) RefineDet (c) ConRetinaNet (d) our proposed HSD

b0 b0 b1 b0
R2

H2 b1 b0 b1

Figure 2. The architectures of some one-stage methods. ‘conv’ means the backbone network. ‘H’ is the convolution head. ‘C’ is the

predication of classification branch. ‘R’ is the predication of regression branch. ‘b’ is the box (b0 7→ b1 7→ b2), where b0 is the default

box, and b1 and b2 are the regressed boxes. ‘O’ in (d) is the convolutional module to calculate feature sampling offset by the box regression

output. ‘ր’ in (d) means the convolutional operation for classification or regression by considering the feature sampling offset.

predicts regression offsets of the default box (b0), then gen-

erates the feature sampling offsets, and finally classifies the

regressed box (b1) by the features of offset locations. Based

on ROC module, the features of accurate sampling locations

for classification and the more accurately regressed boxes

can be used to boost performance. To further improve de-

tection, HSD hierarchically stacks two ROC modules. The

regressed boxes (b1) and the feature sampling offsets gen-

erated by the first ROC are used as the inputs. Meanwhile,

to enhance the feature discrimination, a feature enhanced

(FE) module is injected before the second ROC to exploit

more local and non-local contextual information. The main

contributions of this paper can be summarized as follows:

(1) A novel reg-offset-cls (ROC) module is proposed. It

reconstructs simultaneous classification and regression by

three hierarchical steps: the default box regression, the fea-

ture sampling offset predication, and the regressed box clas-

sification with offset features. Moreover, it is light-weight.

(2) Based on the proposed ROC module, the hierarchi-

cal shot detector (HSD) is proposed, which hierarchically

stacks two ROC modules and one feature enhanced (FE)

module. The proposed HSD can be seen as a generalization

of one-stage methods for accurate object detection.

(3) Experimental results on the MS COCO [29] and PAS-

CAL VOC [11] demonstrate the effectiveness of proposed

HSD. Moreover, the proposed HSD achieves state-of-the-

art performance at real-time speed.

2. Related works

In the past few years, object detection has achieved the

great success based on deep convolutional neural networks

[24, 43, 18, 46, 37]. Depending on whether or not the can-

didate proposals (i.e., ROI) are used, the methods are split

into the two-stage methods [15, 40, 27, 16] and the one-

stage methods [39, 31, 28, 49].

Two-stage methods are proposal-based methods, which

firstly generate some candidate object proposals and then

use a ROI head-network to classify and regress these pro-

posals. RCNN [15] and its extensions (Fast RCNN [14] and

Faster RCNN [40]) are the most representative two-stage

methods. After that, many variants have been proposed.

To encode position information and reduce computational

cost of Faster RCNN, R-FCN [8] replaces the ROI pooling

by the position-sensitive ROI (PSROI) pooling. GA-RPN

[48] leverages semantic features to guide the anchor gener-

ation. To solve scale variance problem, some feature pyra-

mid methods (e.g., MSCNN [1], MCF [3], and FPN [27])

and image pyramid methods (e.g., SNIP [44] and SNIPER

[45]) detect objects by multi-scale feature maps or multi-

scale images. Mask R-CNN [16] extends object detection

to instance segmentation by an extra segmentation branch.

One-stage methods are proposal-free methods, which

simultaneously output classification scores and regression

offsets of dense default boxes (see Fig. 2(a)). YOLO [39]

and SSD [31] are two representative methods. YOLO [39]

splits the original image into the N ×N grids and predicts

object probabilities existed in each grid. SSD [31] uses the

different layers of the backbone to detect the objects of dif-

ferent scales. Different from two-stage methods, one-stage

methods need to process a large number of positive and neg-

ative samples and face the class imbalance problem. To

address this problem, OHEM [42] and focal loss [28] pay

more attention to the hard samples. Recently, many works

have been proposed to promote the progress of one-stage

methods. Some methods [12, 23, 20, 57] aim to enhance

the feature semantics of predication layers. Some meth-

ods [55, 10, 34, 4, 7] add segmentation supervision to boost

detection performance. To avoid the handcrafted anchors,

some anchor-free methods [25, 59, 47] are proposed re-

cently. Compared with two-stage methods, one-stage meth-

ods are of high efficiency and low accuracy. Thus, we aim

to improve detection accuracy of one-stage methods with

high efficiency.

Cascade structure is very useful for accurate object de-

tection [2, 19, 54, 32, 60, 35]. Specifically, two-stage detec-

tors Cascade RCNN [2] and IoU-Net [19] have a sequence

of ROI detectors, while one-stage detectors RefineDet [54]

and ALFNet [32] use multiple fully-convolutional head-

networks for predications (see Fig. 2(b)). At each stage,

these methods conduct simultaneous classification and re-

9706

A1

C1
O1

F1 T1 F2

A2

C2
 O2

A1

C1
O1

F1 T1 F2

A2

C2
 O2

layer i

Input image

regression offset features classification

regression 1 offset features classification

regression 2offset features 2classification 2

regression 1 offset features classification

regression 2offset features 2classification 2

default box (b0)

regressed box (b1)

regressed box (b2)

features for reg1

offset features for cls1

offset features for reg1

offset features for cls2

box regression sampling offset 1 classification

regression 2sampling offset 2classification 2

default box (b0)

regressed box (b1)

regressed box (b2)

features for reg1

offset features for cls1

offset features for reg2

offset features for cls2

R1

C1

F1
(a) SSD

R1

C1

F1 F2

R2

C2

R1

C1

F1

b0

R1

C1
O1

F1 T1 F2

R2

C2

O2
b2b0 b1 b0

b1
b1

conv

input

conv conv conv

input input input

(b) RefineDet (c) CoRetinaNet (c) HSD

b0 b0 b1 b0
R2

F2 b1 b0 b1

ROC1

FE

ROC2

ROC1

FE

ROC2

ROC1

FE

ROC2

ROC1

FE

ROC2

ROC1

reg1 reg2

FEInput image
HSD HSD HSD HSD

(a) The overall architecuture of HSD (b) The head-network HSD

(c) The feature enhanced module

(c) The FE module

Input image
HSD HSD HSD HSD

(a) The overall architecuture of HSD (b) The head-network HSD (c) The FE module

R1

C1
O1

F1 T1 F2

R2

C2

O2
b2b1

conv

input
b0 b1

reg1 reg2

FEInput image head head head head

(a) The overall architecuture of HSD (b) The head-network (c) The FE module

R1

C1

H1
(a) SSD

R1

C1

H1 H2

R2

C2

R1

C1

H1

b0

R1

C1
O1

H1 FE H2

R2

C2

O2
b2b0 b1 b0

b1
b1

conv

input

conv conv conv

input input input

(b) RefineDet (c) CoRetinaNet (d) our proposed HSD

b0 b0 b1 b0
R2

H2 b1 b0 b1

legend

ROC1
(b0→b1) →

R1

C1

H1
(a) SSD

R1

C1

H1 H2

R2

C2

R1

C1

H1

b0

R1

C1
O1

H1 FE H2

R2

C2

O2

b2b0 b1 b0

b1
b1

conv

input

conv conv conv

input input input

(b) RefineDet (c) CoRetinaNet (d) our proposed HSD

b0 b0 b1 b0
R2

H2 b1 b0 b1

3x3,
256

3x3(d),
2N

cls1

3x3,
4N

reg1

1x1,
18N

3x3,
256

3x3(d),
(C+1)N

cls2

3x3(d),
4N

reg2

1x1,
18N

FEInput image head head head head

(a) The overall architecuture of HSD (b) The head-network

1x1,
64

3x3,
128

Non-
local

3x3(2),
64

3x3,
256

3x3,256

cat

(c) The FE module

ROC1
(b0→b1)

ROC2
(b1→b2)

1x1,
64

Figure 3. The overall architecture of HSD in (a), which detects objects at multiple layers by multiple head-networks. The head-network in

(b) consists of two stacked ROC modules and one feature enhanced (FE) module in (c). ‘d’ means the deformable convolution. ‘C’ means

the number of object categories. ‘N’ means the number of anchors.

gression. As a result, they does not consider that there ex-

ists the classification inconsistency between the default box

and regressed box. Recently, ConRetinaNet [22] uses both

the default box and the regressed box for classification (see

Fig. 2(c)) at the training stage, which is an initial attempt to

solve the inconsistency. Compared with ConRetinaNet, our

method (see Fig. 2(d)) further considers two important in-

consistency: the feature inconsistency between default box

and regressed box, and the threshold inconsistency of the

positive/negative samples for regression and classification.

Contextual information has been demonstrated to be

helpful for object detection and semantic segmentation. On

the one hand, some methods [21, 27, 26, 51, 50]) use

the encoder-decoder structure to combine the feature maps

of different scales. On the other hand, some methods

[17, 5, 56, 38, 36, 6]) adopt the spatial pyramid structure

with multiple branches to extract multi-scale contextual in-

formation. Meanwhile, non-local contextual information

extracted by self-attention module [52, 13] is also useful.

Thus, a natural idea is to combine local and non-local con-

textual information for object detection. In our cascade

structure, the local and non-local contextual information is

added before the second ROC which needs more discrimi-

native features for more accurate object detection.

3. Our proposed method

In this section, we give a detailed description about our

proposed method (HSD). Fig. 3(a) shows the overall ar-

chitecture. Given an image, the backbone network (e.g.,

VGG16 [43]) and two extra convolutional blocks are used

to generate the feature maps of different resolutions. Then,

the head-network, which contains two cls-offset-reg (ROC)

modules and one feature enhanced (FE) module, is respec-

tively attached at these feature maps. Finally, the detec-

tion results of each head-network are combined by the non-

maximum suppression.

In the following section, we firstly introduce the core

reg-offset-cls (ROC) module. Then, we explain how to hier-

archically stack two ROCs and how to extract the local and

non-local context by the feature enhanced (FE) module.

3.1. The reg­offset­cls (ROC) module

Generally, one-stage methods simultaneously predict ob-

ject category and regression offset of the default box b0
during training, which have some following drawbacks: (1)

the classification score of the default box b0 is mistakenly

assigned to that of regressed box b1 during inference; (2)

some regressed boxes accurately detecting objects may be

labelled as the negative samples during training, which can

be used to improve detection performance. To solve the

above problems, a novel reg-offset-cls (ROC) module is pro-

posed, which reconstructs regression and classification by

three hierarchical steps: firstly predicts the regression offset

of default box b0, secondly calculates the feature sampling

offsets upon the regression output, and finally classifies the

regressed box b1 with the features of offset locations.

The regression loss (i.e., L1
reg) of the ROC module is the

same as that of SSD [31]:

L1
reg =

1

N1
reg

∑

i

Lreg(v
b0
i , tb0i (wb0

reg,x
1)), (1)

where vb0 and tb0 are respectively the true regression off-

set and the predicted regression offset of the default box

b0. w
b0
reg and x

1 are respectively the regression convolu-

tional weights and the input features of the ROC. N1
reg is

the number of samples for box regression.

Based on the regressed box b1, the classification loss

(i.e., L1
cls) of the ROC module can be expressed as follows:

L1
cls =

1

N1
cls

∑

i

Lcls(u
b1
i , pb1i (wb1

cls,x
1(∆b1))), (2)

where ub1 and pb1 are respectively the true label and the

predicted score of the regressed box b1. N1
cls is the num-

ber of samples for box classification. With the technique

of deformable convolution [9], the predicted score pb1 can

9707

be calculated by convolving the classification weights wb1
cls

with the features x1(∆b1) of offset locations.

The feature sampling offset ∆b1 of regressed box b1 is

18-d, which is learned from the regression output tb0 (i.e.,

∆x0,∆y0,∆w0,∆h0) of the default box b0 as follows:

∆
b1 = w

1
1 ⊗ (w1

2 ⊗ tb0), (3)

where w1
1 and w

1
2 respectively represent the weights of two

1× 1 convolutional layers.

The structure of the ROC module is shown at the left of

Fig. 3(b). The feature maps from the main network are fed

to a 3 × 3 convolutional layer to generate the input feature

maps (F1) of the first ROC. After that, the regression branch

uses a 3 × 3 convolution to predict the regression offsets.

The channel number of regression output is 4N , where N

is the number of anchors. Based on the regression offsets,

the feature sampling offset (O1) is calculated by two 1 × 1
convolutions. To simplify, one convolution is shown. The

channel number of sampling offset is 18N . With F1 and O1,

the classification branch uses a 3×3 deformable convolution

of group N to output classification results. If HSD uses

only one ROC module, the channel number of classification

output is equal to (C + 1)N , where C is the number of

object categories. If HSD uses two stacked ROC module,

the channel number of classification output in the first ROC

is equal to 2N , which aims to filter many negative boxes.

Compared with simultaneous regression and classifica-

tion of default box, our ROC can use more accurately re-

gressed boxes for better training and use the features of

more accurate sampling locations for better classification.

Moreover, the proposed ROC merely adds two 1×1 convo-

lutions, which is relatively light-weight.

3.2. Two hierarchical ROC modules

For accurate object detection, multiple consecutive re-

gressions and classifications with cascade structure have

been demonstrated to be effective [54, 2]. In this paper, two

ROC modules are hierarchically stacked to further improve

detection accuracy. Based on the regressed boxes and the

feature sampling offsets generated by the first ROC module,

the second ROC module further predicts the box regression

and classifies the regressed boxes by the features of offset

locations. At the training stage, the training loss is equal to

the loss sum of the two ROC modules.

For the first ROC module, the regression loss (i.e., L1
reg)

and the classification loss (i.e., L1
cls) have been shown in

Section 3.1. For the second ROC module, the regression

loss (i.e., L2
reg) can be written as follows:

L2
reg =

1

N2
reg

∑

i

Lreg(v
b1
i , tb1i (wb1

reg,x
2(∆b1))), (4)

where vb1 and tb1 are respectively the true regression off-

set and the predicted regression offset of the box b1 by the

first ROC module. Similarly, the deformable convolution

[9] is used to predict the regression offset tb1 of box b1 by

convolving the regression weights w
b1
reg with the features

x
2(∆b1) of offset locations.

For the second module, the classification loss (i.e., L2
cls)

can be then expressed as

L2
cls =

1

N2
cls

∑

i

Lcls(u
b2
i , pb2i (wb2

cls,x
2(∆b1+b2))), (5)

where ub2 and pb2 are the true label and the predicted score

of the regressed box b2. The feature sampling offset ∆b1+b2

for the box b2 is ∆b1+b2 = ∆
b1 +∆b2, where ∆

b1 is cal-

culated by Equation 3 and ∆
b2 is calculated by

∆
b2 = w

2
1 ⊗ (w2

2 ⊗ tb1), (6)

where tb1 is regression output (i.e., ∆x1, ∆y1, ∆w1, ∆h1)

of the box b1. Similar to the convolutional weights (i.e., w1
1

and w
1
2) in Equation 3, the weights (i.e., w2

1 and w
2
2) of the

convolutional layers are also learned at the training stage.

The detailed structure of two stacked ROC modules can

be seen in Fig. 3(b). The detection pipeline of two ROCs

is first regression 7→ first sampling offset 7→ first classifi-

cation 7→ second regression 7→ second sampling offset 7→

second classification. The first classification uses a 3×3 de-

formable convolution to consider the feature sampling offset

caused by the first regression of default box, while the sec-

ond classification uses a 3 × 3 deformable convolution to

consider the feature sampling offset caused by both the first

regression and the second regression of default box.

3.3. Feature enhanced module

In HSD, the second ROC module aims to generate more

accurate classification and location. To further improve fea-

ture discrimination, a feature enhanced (FE) module is in-

jected between the two ROC modules, which extracts more

local and non-local contextual information to enrich the in-

put features of the second ROC module.

Fig. 3(c) shows the structure of the FE module. Specif-

ically, it consists of three different branches: a convolu-

tional branch, a local context branch, and a non-local con-

text branch. The convolutional branch has a 3× 3 convolu-

tion. To reduce computational cost, the local context branch

and the non-local context branch firstly go through a 1 × 1
convolutional layer to reduce the channel number of the fea-

ture maps. After that, the local context branch goes through

a 3 × 3 convolution with dilation rate of 3, and the non-

local context branch goes through a non-local module used

in [52]. After that, the output maps of three branches are

concatenated together and fed to a 3×3 convolutional layer

to generate the input for the second ROC. To achieve a little

better performance when the input size is of 512× 512, FE

module concatenates the feature map at current scale and

the upsampled map at next scale as the input.

9708

method backbone input size #reg #cls context AP AP@0.5 AP@0.75 APs APm APl

(a) baseline (SSD-like) VGG16 320×320 1 1 % 27.8 46.7 28.4 10.3 27.8 43.1

(b) one ROC VGG16 320×320 1 1 % 30.3 51.2 31.0 13.1 32.2 46.4

(c) two ROCs VGG16 320×320 2 2 % 32.6 51.5 34.7 15.0 34.9 49.1

(d) two ROCs+FE VGG16 320×320 2 2 ! 33.3 52.8 36.1 16.1 35.3 49.3

(e) two ROCs+FE VGG16 512×512 2 2 ! 38.5 57.8 42.2 22.2 42.3 52.3

Table 1. The ablation study of the proposed HSD on the COCO minival set [29]. ‘#reg’ and ‘#cls’ means the number of classification

and regression. ‘context’ means the local and non-local context extracted by the proposed FE module.

4. Experiments

In this section, the experiments on the challenging MS

COCO [29] and the classic PASCAL VOC [11] are con-

ducted to demonstrate the effectiveness of proposed method

and compare with some sate-of-the-art methods.

4.1. Datasets and evaluation metrics

MS COCO [29] is a famous and challenging computer

vision benchmark for object detection and instance seg-

mentation, which contains about 115k images for training

(i.e., trainval35k), 5k images for ablation experiments

(i.e., minival), and about 20k images for comparing with

other methods (i.e., test-dev). There are 80 object cate-

gories. Mean average precision under different IoU thresh-

olds (0.5:0.95) is used for performance evaluation.

PASCAL VOC [11] is the classic object detection

dataset, which mainly contains VOC2007 and VOC2012.

VOC2007 has 5011 images for training and 4952 images

for testing, while VOC2012 has 5717 images for training,

5823 images for validation, and 10991 images for testing.

There are 20 object categories. In this paper, the train set in

VOC2007 and the train and validation sets in VOC2012 are

used for training, while the test set in VOC2007 is used for

testing. The average precision with the IoU threshold of 0.5

is used for performance evaluation.

4.2. Implementation details

The proposed HSD adopts the VGG16 [43], ResNet101

[18], or ResNext101 [53] pre-trained on the ImageNet [41]

as the backbone, and further fine-tunes the pre-trained net-

work on the specific object detection datasets. For the

COCO benchmark [29], there are 160 epochs at the train-

ing stage. The initial learning rate is 0.004. It deceases by a

factor of 10 at 90, 120, and 140 epochs for small input size

and at 90 and 140 epochs for large input size. For the PAS-

CAL VOC dataset [11], there are 250 epochs at the train-

ing stage. The initial learning rate is 0.004 and deceases

by a factor of 10 at the 150 and 200 epochs. On both the

COCO and PASCAL VOC datasets, each mini-batch has

32 images for training. At the test stage, the threshold of

non-maximum suppression (NMS) is 0.45, and the top 200

maximum scoring boxes per image after NMS are saved.

4.3. Ablation experiments

The effectiveness of the proposed HSD The baseline

(SSD-like) in Table 1(a) simultaneously predicts object cat-

egory and regression offset of the default box. Compared

with SSD [31], SSD-like removes the L2-Norm layer and

adds the 3 × 3 convolutional layer before each prediction

head-network. Compared with the baseline, HSD firstly re-

gresses the default box and then classifies the regressed box

with the features of offset locations. The local and non-local

contextual information extracted by the feature enhanced

(FE) module is injected before the second ROC. Table 1(b)-

(e) give the detection results of the proposed HSD. For fair

comparisons, they are implemented with the similar param-

eter settings. The analysis of Table 1 is given as follows:

(1) The HSD in Table 1(b) and the baseline in Table 1(a)

both have one regression and one classification. By com-

paring Table 1(a) and 1(b), it can be seen that HSD with

one ROC module outperforms the baseline by 2.5%. Mean-

while, HSD with one ROC module outperforms the base-

line at all the scales (see APs, APm, and APl). It can be

concluded that the proposed ROC is more effective than the

baseline (i.e., simultaneous classification and regression).

Compared with the baseline, the proposed ROC only adds

two 1 × 1 convolutions to predict feature sampling offsets.

Thus, it does not add many network parameters.

(2) When two ROC modules are stacked together, the

performance of HSD can be significantly improved. By

comparing Table 1(c) and Table 1(b), HSD with two ROCs

outperforms that with one ROC by 2.3%. It is further found

that the improvement of AP@0.75 has a large improvement.

It means that two stacked ROC modules can provide more

precise detection than one ROC module.

(3) When injecting the feature enhanced (FE) module

into the two stacked ROC modules, the performance can be

further improved, which mainly comes from the improve-

ment of small-scale object detection. The reason may be

that detecting small-scale objects is more difficult and needs

more contextual information.

(4) With the large input size of 512×512 during training

and inference, HSD achieves a better accuracy (i.e., 38.5%).

Comparison with related one-stage methods To fur-

ther demonstrate the effectiveness of proposed method,

some related one-stage methods (i.e., SSD [31] and Re-

9709

method backbone cascade AP AP@05 AP@075 T (ms)

(a) SSD [31] VGG16 % 25.3 42.0 26.2 10

(b) our HSD VGG16 % 30.3 51.2 31.0 12

(c) RefineDet [54] VGG16 ! 29.9 50.2 31.1 13

(d) our HSD VGG16 ! 32.6 51.5 34.7 16

Table 2. Comparison with two related one-stage methods (i.e.,

SSD [31] and RefineDet [54]). ‘T’ means the forward time. For

fair comparison, FE module is not used in our HSD.

method box offset sampling offset AP AP@0.5 AP@0.75

(a) baseline % % 27.8 46.7 28.4

(b) baselineθ=0.4 % % 28.4 48.2 28.8

(c) baselineθ=0.6 % % 27.1 45.8 27.4

(d) ROCθ=0.5 ! % 28.0 49.1 27.9

(e) ROCθ=0.6 ! % 29.9 50.2 31.0

(f) ROCθ=0.7 ! % 29.8 49.0 31.3

(g) ROCθ=0.8 ! % 28.2 45.5 30.9

(h) ROCone conv ! ! 30.2 50.8 31.0

(i) ROCtwo convs ! ! 30.3 51.2 31.0

Table 3. Ablation study of the ROC module. Box offset means that

it firstly conducts box regression and secondly conducts regressed

box classification. Sampling offset means that it considers the fea-

ture sampling offset for classification due to the box regression.

fineDet [54]) are compared with our HSD in Table 2.

They are re-implemented with similar parameter settings.

(1) SSD and our HSD with one ROC are both one re-

gression/classification. By comparing Table 2(a) and (b),

HSD with one ROC outperforms SSD by 5.0%. (2) Re-

fineDet and our HSD with two ROCs are both two re-

gressions/classifications. By comparing Table 2(c) and (d),

HSD with two ROCs outperforms RefineDet by 2.7%.

Meanwhile, compared with SSD and RefineDet, our

HSD greatly improves detection accuracy nearly without

additional computational cost. For example, our HSD out-

performs SSD by 5.0% with a merely extra 2ms forward

time. Meanwhile, the proposed HSD nearly does not in-

crease network parameters. Based on the above analysis,

the proposed HSD is superior to other classical and state-

of-the-art one-stage methods (i.e., SSD and RefineDet).

Ablation study of the ROC module Because the ROC

module reconstructs the regression and the classification

into three hierarchical steps, using the original designs in

one-stage methods is not good enough for proposed ROC.

The detailed differences are two following folds:

(1) The first one is that how to set the IoU threshold θ of

positive/negative samples for the classification after regres-

sion. A natural idea is to use the same threshold (0.5) as the

regression like most one-stage methods [31, 22]. By com-

paring Table 3(d) and (a), it can be seen that using the same

threshold (e.g., θ=0.5) has very limited improvements. The

accuracy of AP@0.75 even decreases. The reason may be

method sampling offset AP AP@0.5 AP@0.75

(a) one ROC % 29.9 50.2 31.0

(b) one ROC ! 30.3 51.2 31.0

(c) two ROCs % 31.1 49.4 33.2

(d) two ROCs ! 32.6 51.5 34.7

Table 4. The effect of feature sampling offset which means

whether or not the offset features are used for classification.

(a) (b) (c)

(a) (b) (c)

Figure 4. The progress of box regression and the feature sampling

locations. The green rectangle means the detection box, the red

point means the feature sampling center of 3× 3 convolution, and

the red point means other sampling locations of 3×3 convolution.

(a) the default box b0 and feature locations for the first regression.

(b) the regressed box b1 and feature sampling locations for the first

classification and second regression. (c) the regressed box b2 and

feature sampling locations for the second classification.

that more inaccurately regressed boxes (merely above 0.5

IoU with GT) interfere the training. With the stricter IoU

threshold for classification, the performance becomes much

better. When the threshold θ is 0.6 in Table 2(e), the per-

formance is 2.0% better than that of baseline. It means that

the classification of accurately regressed box by the ROC is

better than the classification of default box by the baseline.

Moreover, the detection results that the baseline uses the

IoU thresholds of 0.4 and 0.6 are shown in Table 3(b) and

(c), which are inferior to that of our ROC. It means that

the improvement of ROC cannot be simply achieved by the

baseline with more positives or the stricter threshold θ.

(2) The second one is that how to predict the sampling

offset based on the regression output. Table 3(h) uses one

1×1 convolution, and Table 3(i) uses two 1×1 convolutions.

By comparing Table 3(h) and (i), it can be seen that ROC

with two convolutions has a little better performance.

The effect of sampling offsets Table 4 compares the ef-

fect of feature sampling offsets on the proposed HSD. It can

be seen that the performances of one ROC and two ROCs

respectively have 0.4% and 1.5% improvements by using

the offset features. It can be explained that using the fea-

ture sampling offset can extract more accurate features to

classify the regressed box.

Visualization of box regression and sampling loca-

tions Fig. 4 visualizes the regressed box and the feature

9710

(a) default boxes (b0) (b) regressed boxes (b1) (c) regressed boxes (b2) (d) sampling locations 0 (e) sampling locations 1 (f) sampling locations 2

Figure 5. Detection boxes recognized as objects and the sampling locations of features before NMS. The green rectangle means the

detection box, the green point means the feature sampling center of 3× 3 convolution, and the red point means the other sampling location

of 3× 3 convolution. (a)-(c) show the progress of box regression (b0 7→b1 7→b2). (d)-(f) show the change of feature sampling locations.

method AP

(a) FE for the second ROC 33.3

(b) FE for the first ROC 32.7

(c) FE without non-local context for the second ROC 33.0

Table 5. The ablation study of feature enhanced (FE) module in

the proposed HSD.

sampling locations of the proposed HSD. It can be seen that

the box (green rectangle) can accurately detect the objects

after two regressions. Meanwhile, the sampling locations

of features coincide with the regressed box, which means

that the sampling offsets can be accurately predicted by the

regression output. Fig. 5 further gives more complete sam-

ples of box regression and feature sampling locations before

NMS. It can be seen that many boxes become around the

objects after two regressions. As a result, the features for

box classification are accurately extracted around objects.

Feature enhanced (FE) module To demonstrate the im-

portance of the proposed FE module, Table 5 gives some ex-

periments as follows: (1) The FE module is added to only

the first ROC. By comparing Table 5(a) and (b), it can be

seen that the FE module is more important to the second

ROC. The reason is that the second ROC needs more dis-

criminative features to deal with many hard boxes around

objects. (2) Without the non-local context (Table 5(c)), the

performance decreases by 0.3%.

Detection results Fig. 6 gives some detection results of

the proposed HSD (Table 1(e)). It can be seen that the pro-

Figure 6. Detection results of the proposed HSD on the COCO

minival set. It can be seen that the proposed HSD has a good de-

tection performance on small-scale objects and occluded objects.

posed method achieves a good performance on both small-

scale objects and occluded objects in complex scene.

4.4. Comparisons on the COCO benchmark

In this section, the proposed HSD is compared with

some state-of-the-art methods on the test-dev set of the

COCO benchmark in Table 6. With the same VGG16 and

the input size of 512 × 512, HSD respectively outperforms

RefineDet [54] and RFBNet [30] by 5.8% and 4.4%. With

the same ResNet101 and the input size of 512 × 512, HSD

respectively outperforms DFPR [21] by 5.6%. Based on the

9711

method backbone input size time AP AP@0.5 AP@0.75 APs APm APl

Two-stage methods

FPN [27] ResNet101 ∼ 1000× 600 172ms 36.2 59.1 39.0 18.2 39.0 48.2

Cascade RCNN [2] ResNet101 ∼ 1333× 800 140ms 42.8 62.1 46.3 23.7 45.5 55.2

One-stage methods

SSD [31] VGG16 300× 300 12ms 25.1 43.1 25.8 6.6 25.9 41.4

DSSD [12] ResNet101 321× 321 - 28.0 46.1 29.2 7.4 28.1 47.6

STDN [58] DenseNet169 300× 300 - 28.0 45.6 29.4 7.9 29.7 45.1

DES [55] VGG16 300× 300 - 28.3 47.3 29.4 8.5 29.9 45.2

RefineDet [54] VGG16 320× 320 19ms† 29.4 49.2 31.3 10.0 32.0 44.4

RFBNet [30] VGG16 300× 300 15ms 30.3 49.3 31.8 11.8 31.9 45.9

SSD [31] VGG16 512× 512 28ms 28.8 48.5 30.3 10.9 31.8 43.5

DSSD [12] ResNet101 512× 512 - 33.2 53.3 35.2 13.0 35.4 51.1

STDN [58] DenseNet169 512× 512 - 31.8 51.0 33.6 14.4 36.1 43.4

DES [55] VGG16 512× 512 - 32.8 53.2 34.6 13.9 36.0 47.6

RefineDet [54] VGG16 512× 512 40ms† 33.0 54.5 35.5 16.3 36.3 44.3

RFBNet [30] VGG16 512× 512 33ms 34.4 55.7 36.4 17.6 37.0 47.6

DFPR [21] ResNet101 512× 512 - 34.6 54.3 37.3 14.7 38.1 51.9

TripleNet [4] ResNet101 512× 512 - 37.4 59.3 39.6 18.5 39.0 52.7

CornerNet [25] Hourglass104 511× 511 244ms 40.5 56.5 43.1 19.4 42.7 53.9

ExtremeNet [59] Hourglass104 511× 511 322ms 40.2 55.5 43.2 20.4 43.2 53.1

RetinaNet [28] ResNet101 ∼ 1333× 800 198ms 39.1 59.1 42.3 21.8 42.7 50.2

ConRetinaNet [22] ResNet101 ∼ 1333× 800 - 40.1 59.6 43.5 23.4 44.2 53.3

FSAF [60] ResNet101 ∼ 1333× 800 - 40.9 61.5 44.0 24.0 44.2 51.3

our HSD VGG16 320× 320 25ms† 33.5 53.2 36.1 15.0 35.0 47.8

our HSD VGG16 512× 512 43ms† 38.8 58.2 42.5 21.8 41.9 50.2

our HSD ResNet101 512× 512 48ms† 40.2 59.4 44.0 20.0 44.4 54.9

our HSD ResNext101 512× 512 66ms† 41.9 61.1 46.2 21.8 46.6 57.0

our HSD ResNet101 768× 768 92ms† 42.3 61.2 46.9 22.8 47.3 55.9

Table 6. Detection results and detection time of some state-of-the-art methods on COCO test-dev set. All results reported are based on

single-scale test. † means detection time, including forward time and NMS time, tested by us with Pytorch0.40 on NVIDIA Titan Xp.

method backbone input size mAP

SSD [31] VGG16 300 × 300 77.5

DES [55] VGG16 300 × 300 79.7

DSSD [12] ResNet101 321 × 321 78.6

STDN [58] DenseNet169 300 × 300 79.3

BlitzNet [10] ResNet50 300 × 300 79.1

DFPR [21] VGG16 300 × 300 79.6

RFBNet [30] VGG16 300 × 300 80.5

RefineDet [54] VGG16 320 × 320 80.0

SSD [31] VGG16 512 × 512 79.5

DES [55] VGG16 512 × 512 81.7

DSSD [12] ResNet101 512 × 512 81.5

STDN [58] DenseNet169 512 × 512 80.9

BlitzNet [10] ResNet50 512 × 512 81.5

DFPR [21] VGG16 512 × 512 81.1

RFBNet [30] VGG16 512 × 512 82.2

RefineDet [54] VGG16 512 × 512 81.8

our HSD VGG16 320 × 320 81.7

our HSD VGG16 512 × 512 83.0

Table 7. Detection results of the single-stage methods on the VOC

2007 test set without COCO pre-training and multi-scale test.

strong backbone Hourglass [33], CornerNet [25] has a little

better performance compared to our HSD with the back-

bone ResNet101. By using a strong backbone ResNext101

[53], our HSD can also outperform CornerNet [25] and Ex-

tremeNet [59] by 1.4% and 1.7%. Meanwhile, the proposed

method has a faster detection speed. With the input size of

768 × 768, our HSD can outperform RetinaNet [28], Con-

RetinaNet [22], and FSAF [60].

4.5. Comparisons on the VOC2007 dataset

In this section, the proposed HSD is compared with some

state-of-the-art methods on the VOC2007 test set in Table 7.

With the small input size of 300× 300 or 320× 320, HSD

respectively outperforms RFBNet [30] and RefineDet [54]

by 1.2% and 1.7%. With the large input size of 512 × 512,

HSD respectively outperforms RFBNet and RefineDet by

0.8% and 1.2%.

5. Conclusion

In this paper, we proposed a novel pipeline for accu-

rate object detection (called ROC). Instead of simultaneous

classification and regression, ROC firstly conducts box re-

gression, secondly predicts the feature sampling locations

for box classification, and finally classifies regressed boxes

with the features of offset locations. To achieve the better

detection accuracy, a hierarchical shot detector is proposed

by stacking two ROC modules. Meanwhile, the contextual

information is also incorporated to enrich the features of the

second ROC module. HSD achieves the state-of-art perfor-

mance on both the COCO and PASCAL VOC datasets.
Acknowledgments This work was supported by National Natural Sci-

ence Foundation of China (Nos. 61632018, 61876140), Postdoctoral Pro-

gram for Innovative Talents (No. BX20180214), and China Postdoctoral

Science Foundation (No. 2018M641647).

9712

References

[1] Zhaowei Cai, Quanfu Fan, Rogerio S. Feris, and Nuno Vas-

concelos. A unified multi-scale deep convolutional neural

network for fast object detection. Proc. European Conf.

Computer Vision, 2016.

[2] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving

into high quality object detection. Proc. IEEE Conf. Com-

puter Vision and Pattern Recognition, 2018.

[3] Jiale Cao, Yanwei Pang, and Xuelong Li. Learning multi-

layer channel features for pedestrian detection. IEEE Trans.

Image Processing, 26(7):3210–3220, 2016.

[4] Jiale Cao, Yanwei Pang, and Xuelong Li. Triply supervised

decoder networks for joint detection and segmentation. Proc.

IEEE Conf. Computer Vision and Pattern Recognition, 2019.

[5] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L. Yuille. Deeplab: Semantic image

segmentation with deep convolutional nets, atrous convolu-

tion, and fully connected crfs. IEEE Trans. Pattern Analysis

and Machine Intelligence, 40(4):834–848, 2017.

[6] Hisham Cholakkal, Jubin Johnson, and Deepu Rajan. Back-

tracking spatial pyramid pooling-based image classifier for

weakly supervised topdown salient object detection. IEEE

Trans. Image Processing, 27(12):6064–6078, 2018.

[7] Hisham Cholakkal, Guolei Sun, Fahad Shahbaz Khan, and

Ling Shao. Object counting and instance segmentation with

image-level supervision. Proc. IEEE Conf. Computer Vision

and Pattern Recognition, 2019.

[8] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Ob-

ject detection via region-based fully convolutional networks.

Proc. Advances in Neural Information Processing Systems,

2016.

[9] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong

Zhang, Han Hu, and Yichen Wei. Deformable convolutional

networks. Proc. IEEE International Conf. Computer Vision,

2017.

[10] Nikita Dvornik, Konstantin Shmelkov, Julien Mairal, and

Cordelia Schmid. Blitznet: A real-time deep network for

scene understanding. Proc. IEEE International Conf. Com-

puter Vision, 2017.

[11] Mark Everingham, Luc Van Gool, Christopher K. I.

Williams, John Winn, and Andrew Zisserman. The pascal

visual object classes (voc) challenge. International Journal

of Computer Vision, 88(2):303–338, 2010.

[12] Cheng-Yang Fu, Wei Liu, Ananth Ranga, Ambrish Tyagi,

and Alexander C. Berg. Dssd: Deconvolutional single shot

detector. arXiv:1701.06659, 2017.

[13] Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei

Fang, and Hanqing Lu. Dual attention network for scene seg-

mentation. Proc. IEEE Conf. Computer Vision and Pattern

Recognition, 2019.

[14] Ross Girshick. Fast r-cnn. Proc. IEEE International Conf.

Computer Vision, 2015.

[15] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detection

and semantic segmentation. Proc. IEEE Conf. Computer Vi-

sion and Pattern Recognition, 2014.

[16] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. Proc. IEEE International Conf. Computer

Vision, 2017.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Spatial pyramid pooling in deep convolutional networks for

visual recognition. Proc. European Conf. Computer Vision,

2014.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. Proc. IEEE

International Conf. Computer Vision, 2016.

[19] Borui Jiang, Ruixuan Luo, Jiayuan Mao, Tete Xiao, and Yun-

ing Jiang. Acquisition of localization confidence for accurate

object detection. Proc. European Conf. Computer Vision,

2018.

[20] Seung-Wook Kim, Hyong-Keun Kook, Jee-Young Sun,

Mun-Cheon Kang, and Sung-Jea Ko. Parallel feature pyra-

mid network for object detection. Proc. European Conf.

Computer Vision, 2018.

[21] Tao Kong, Fuchun Sun, Wenbing Huang, and Huaping Liu.

Deep feature pyramid reconguration for object detection.

Proc. European Conf. Computer Vision, 2018.

[22] Tao Kong, Fuchun Sun, Huaping Liu, Yuning Jiang, and

Jianbo Shi. Consistent optimization for single-shot object

detection. arXiv:1901.06563, 2019.

[23] Tao Kong, Fuchun Sun, Anbang Yao, Huaping Liu, Ming

Lu, and Yurong Chen. Ron: Reverse connection with object-

ness prior networks for object detection. Proc. IEEE Conf.

Computer Vision and Pattern Recognition, 2017.

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.

Imagenet classification with deep convolutional neural net-

works. Proc. Advances in Neural Information Processing

Systems, 2012.

[25] Hei Law and Jia Deng. Cornernet: Detecting objects as

paired keypoints. Proc. European Conf. Computer Vision,

2018.

[26] Guosheng Lin, Anton Milan, Chunhua Shen, and Ian Reid.

Refinenet: Multi-path refinement networks with identity

mappings for high-resolution semantic segmentation. Proc.

IEEE Conf. Computer Vision and Pattern Recognition, 2017.

[27] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyramid

networks for object detection. Proc. IEEE Conf. Computer

Vision and Pattern Recognition, 2017.

[28] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollár. Focal loss for dense object detection. Proc.

IEEE International Conf. Computer Vision, 2017.

[29] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence

Zitnick. Microsoft coco: Common objects in context. Proc.

European Conf. Computer Vision, 2014.

[30] Songtao Liu, Di Huang, and Yunhong Wang. Receptive field

block net for accurate and fast object detection. Proc. IEEE

Conf. Computer Vision and Pattern Recognition, 2018.

[31] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C.

Berg. Ssd: Single shot multibox detector. Proc. European

Conf. Computer Vision, 2016.

9713

[32] Wei Liu, Shengcai Liao, Weidong Hu, Xuezhi Liang, and

Xiao Chen. Learning efficient single-stage pedestrian detec-

tors by asymptotic localization fitting. Proc. European Conf.

Computer Vision, 2018.

[33] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour-

glass networks for human pose estimation. Proc. European

Conf. Computer Vision, 2016.

[34] Junhyug Noh, Soochan Lee, Beomsu Kim, and Gunhee Kim.

Improving occlusion and hard negative handling for single-

stage pedestrian detectors. Proc. IEEE Conf. Computer Vi-

sion and Pattern Recognition, 2018.

[35] Yanwei Pang, Jiale Cao, and Xuelong Li. Cascade learn-

ing by optimally partitioning. IEEE Trans. Cybernetics,

47(12):4148–4161, 2017.

[36] Yanwei Pang, Yazhao Li, Jianbing Shen, and Ling Shao. To-

wards bridging semantic gap to improve semantic segmen-

tation. Proc. IEEE International Conf. Computer Vision,

2019.

[37] Yanwei Pang, Manli Sun, Xiaoheng Jiang, and Xuelong Li.

Convolution in convolution for network in network. IEEE

Trans. Neural Networks and Learning Systems, 29(5):1587–

1597, 2018.

[38] Yanwei Pang, Jin Xie, and Xuelong Li. Visual haze removal

by a unified generative adversarial network. IEEE Trans.

Circuits and Systems for Video Technology, 2018.

[39] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object detec-

tion. Proc. IEEE Conf. Computer Vision and Pattern Recog-

nition, 2016.

[40] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. Proc. Advances in Neural Information

Processing Systems, 2015.

[41] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and

Li Fei-Fei. Imagenet large scale visual recognition challenge.

International Journal of Computer Vision, 2015.

[42] Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick.

Training region-based object detectors with online hard ex-

ample mining. Proc. IEEE Conf. Computer Vision and Pat-

tern Recognition, 2016.

[43] Karen Simonyan and Andrew Zisserman. Very deep

convolutional networks for large-scale image recognition.

arXiv:1409.1556, 2014.

[44] Bharat Singh and Larry S. Davis. An analysis of scale invari-

ance in object detection snip. Proc. IEEE Conf. Computer

Vision and Pattern Recognition, 2018.

[45] Bharat Singh, Mahyar Najibi, and Larry S. Davis. Sniper:

Efficient multi-scale training. Proc. Advances in Neural In-

formation Processing Systems, 2018.

[46] Hanqing Sun and Yanwei Pang. Glancenets efficient con-

volutional neural networks with adaptive hard example min-

ing. SCIENCE CHINA Information Sciences, 61(10):109–

101, 2018.

[47] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos:

Fully convolutional one-stage object detection. Proc. IEEE

International Conf. Computer Vision, 2019.

[48] Jiaqi Wang, Kai Chen, Shuo Yang, Chen Change Loy, and

Dahua Lin. Region proposal by guided anchoring. Proc.

IEEE Conf. Computer Vision and Pattern Recognition, 2019.

[49] Tiancai Wang, Rao Muhammad Anwer, Hisham Cholakkal,

Fahad Shahbaz Khan, Yanwei Pang, and Ling Shao. Learn-

ing rich features at high-speed for single-shot object de-

tection. Proc. IEEE International Conf. Computer Vision,

2019.

[50] Wenguan Wang, Jianbing Shen, Ming-Ming Cheng, and

Ling Shao. An iterative and cooperative top-down and

bottom-up inference network for salient object detection.

Proc. IEEE Conf. Computer Vision and Pattern Recognition,

2019.

[51] Wenguan Wang, Hongmei Song, Shuyang Zhao, Jianbing

Shen, Sanyuan Zhao, Steven C. H. Hoi, and Haibin Ling.

Learning unsupervised video object segmentation through

visual attention. Proc. IEEE Conf. Computer Vision and Pat-

tern Recognition, 2019.

[52] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-

ing He. Non-local neural networks. Proc. IEEE Conf. Com-

puter Vision and Pattern Recognition, 2018.

[53] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep

neural networks. Proc. IEEE Conf. Computer Vision and Pat-

tern Recognition, 2017.

[54] Shifeng Zhang, Longyin Wen, Xiao Bian, Zhen Lei, and

Stan Z. Li. Single-shot refinement neural network for object

detection. Proc. IEEE Conf. Computer Vision and Pattern

Recognition, 2018.

[55] Zhishuai Zhang, Siyuan Qiao, Cihang Xie, Wei Shen, Bo

Wang, and Alan L. Yuille. Single-shot object detection with

enriched semantics. Proc. IEEE Conf. Computer Vision and

Pattern Recognition, 2018.

[56] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang

Wang, and Jiaya Jia. Pyramid scene parsing network. Proc.

IEEE Conf. Computer Vision and Pattern Recognition, 2017.

[57] Qijie Zhao, Tao Sheng, Yongtao Wang, Zhi Tang, Ying Chen,

Ling Cai, and Haibin Ling. M2det: A single-shot object

detector based on multi-level feature pyramid network. Proc.

AAAI Conf. Artificial Intelligence, 2018.

[58] Peng Zhou, Bingbing Ni, Cong Geng, Jianguo Hu, and Yi

Xu. Scale-transferrable object detection. Proc. IEEE Conf.

Computer Vision and Pattern Recognition, 2018.

[59] Xingyi Zhou, Jiacheng Zhuo, and Philipp Krahenbuhl.

Bottom-up object detection by grouping extreme and cen-

ter points. Proc. IEEE Conf. Computer Vision and Pattern

Recognition, 2019.

[60] Chenchen Zhu, Yihui He, and Marios Savvides. Feature se-

lective anchor-free module for single-shot object detection.

Proc. IEEE Conf. Computer Vision and Pattern Recognition,

2019.

9714

