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Abstract

Majority of the image set based face recognition meth-

ods use a generatively learned model for each person that is

learned independently by ignoring the other persons in the

gallery set. In contrast to these methods, this paper intro-

duces a novel method that searches for discriminative con-

vex models that best fit to an individual’s face images but at

the same time are as far as possible from the images of other

persons in the gallery. We learn discriminative convex mod-

els for both affine and convex hulls of image sets. During

testing, distances from the query set images to these mod-

els are computed efficiently by using simple matrix multipli-

cations, and the query set is assigned to the person in the

gallery whose image set is closest to the query images. The

proposed method significantly outperforms other methods

using generative convex models in terms of both accuracy

and testing time, and achieves the state-of-the-art results on

three of the five tested datasets. Especially, the accuracy im-

provement is significant on the challenging PaSC, COX and

ESOGU video datasets.

1. Introduction

Face recognition is an important computer vision prob-

lem that has many applications in various fields. Initially,

single images are used for face recognition, but more re-

cently, set based methods have begun to dominate the field

mostly because face image sets allow to model the vari-

ability of the individuals’ appearances. For set based face

recognition, both gallery and query sets are given in terms

of sets of images rather than a single image. The classifi-

cation system must return the individual whose gallery set

is the most similar to the given query set. Face recogni-

tion methods using image sets are also more practical ow-

ing to the fact that they usually do not require any coopera-

tion from the subjects. However, despite these advantages,

traditional classifiers such as the support vector machines

(SVMs), classification trees, k-nearest neighbor classifier,

etc. cannot be used directly for set based recognition.

There are two important factors that determine the suc-

cess of the set based face recognition methods: the models

used to approximate the face image sets, and the distance

metric used to measure the similarity between these models.

A variety of different models were used to approximate face

image sets. As a pioneering work for set based recognition,

Yamaguchi et al. [34] used linear subspaces to approximate

image sets, and canonical angles between subspaces are

used to measure the distance between them. Another way

of dealing with image set based classification is to consider

each sample set as a point in a Grassmannian manifold.

Hamm and Lee [10] used Grassmannian discriminant anal-

ysis on fixed dimensional linear subspaces. Wang and Shi

[30] proposed kernel Grassmannian distances to compare

image sets. More recently, manifolds of symmetric positive

definite (SPD) matrices are used to model images sets, and

the similarities between these manifolds are computed by

using different Riemannian metrics such as Affine-Invariant

metric or Log-Euclidean metric [20,18,19]. Cevikalp and

Triggs [3] introduced affine and convex hulls to approx-

imate image sets, and geometric distances between these

models are used to measure the similarity. Different variants

of affine and convex hulls have been proposed in [16,36].

Among these, Sparse Approximated Nearest Points (SANP)

of [16] enforces the sparsity of samples used for affine hull

combination. Similarly, [36] used regularized affine hull

models that require the minimization of L2-norms of affine

hull combination coefficients during computing the smallest

distances between image sets. Wang et al. [31] proposed a

method to learn more compact affine hulls when the affine

hulls of different classes overlap. More recently, new exten-

sions [32,37] of these methods used the so-called collab-

orative representations for affine and convex hull models.

In contrast to the traditional methods using an independent

affine and convex hull for each image set, these methods ap-

proximate all gallery sets by using a single affine or convex

hull, and the query set is labeled by using the reconstruc-

tion residuals computed from only individual gallery sets.

Other representative methods using sparse models in image

set based recognition can be found in [9,8,7]. Most of the
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aforementioned methods have kernelized versions that can

be used to approximate nonlinear face models.

More recently, [13,11] proposed a deep learning frame-

work to estimate the nonlinear geometric structure of the

image sets. They trained an Adaptive Deep Network Tem-

plate for each image set to learn the class-specific mod-

els, and then the query set is classified based on the min-

imum reconstruction error computed by using those pre-

learnt class-specific models. Hayat et al. [12,14] used a lin-

ear SVM classifier for approximating the distances between

query and gallery sets. In a similar manner, Cevikalp and

Yavuz [5] replaced the linear SVM classifier with a more

suitable polyhedral conic classifier, that can return polyhe-

dral acceptance regions for set based recognition. Lastly,

there are also some related face verification and identifi-

cation methods using face image sets [23,35,26,22]. For

example, Liu et al. [22] use multitask joint sparse represen-

tation algorithm for video-based verification. Liu et al. [23]

and Rao et al. [26] use deep neural network based methods

to find high quality discriminative face image frames within

the image sets to improve the accuracy and speed of the face

identification systems. In a similar manner, Yang et al. [35]

combine a CNN network and an aggregation module to cre-

ate a discriminative image set model by using high-quality

image frames for video based face recognition.

Motivation and Contributions: With a few exceptions,

majority of the set based face recognition methods are gen-

eratively learned methods which are built based on the as-

sumption that face image sets can be represented by mod-

els created by using only the samples of those sets. There-

fore, these methods focus on different models such as lin-

ear/affine subspaces, Grassmannian manifolds, SPD man-

ifolds, etc., that best fit to the gallery sets, and they learn

the model of each class by independent of other classes in

the gallery. However, it is a very well-known fact that dis-

criminative methods mostly yield to much higher accura-

cies compared to generative methods on classification prob-

lems. Inspired by this fact, this paper introduces a hybrid

method that finds models to approximate face image sets by

combining generative and discriminative methods. To this

end, we approximate the face image sets by discriminative

affine/convex hulls that best fit to an individual’s image set,

but at the same time are as far as possible from image sets

belonging to other people in the gallery. As opposed to the

discriminative classification methods [12,14,5], which re-

quire online training of a classifier by using a large-scale

dataset, learning of discriminative models are implemented

offline in the proposed methodology. Once the discrimi-

native models are learned, the classification of query sets

requires some simple matrix multiplications which can be

accomplished very efficiently. Therefore, the proposed

method is very fast compared to other discriminative meth-

ods as demonstrated in the experiments.

The remainder of the paper is organized as follows: A

brief review of generatively learned affine/convex hull mod-

els are given in Section 2. We introduce the proposed

method in Section 3. Section 4 summarizes experimental

results. Lastly, our conclusions are given in Section 5.

2. Image Set Classification Based on Genera-

tively Learned Affine/Convex Hulls

Let the face image samples be xci ∈ IRd, where c =
1, . . . , C indexes the C image sets (individuals) and i =
1, . . . , nc indexes the nc samples of image set c. [3] ap-

proximates image sets with a convex model (either an affine

or convex hull) and the query image set is assigned to the

class with the closest gallery set.

2.1. Generative Affine Hull Models

In this method, image sets are approximated by the affine

hulls of their samples by ignoring face images of other

classes:

Haff
c =

{

x =

nc
∑

k=1

αckxck

∣

∣

∣

∣

∣

nc
∑

k=1

αck = 1

}

, c = 1, . . . , C.

(1)

The affine model basically regards any affine combination

of an individual’s feature sample vectors as a valid face fea-

ture sample for that person.

To compute the distance between two affine hulls, we

first need to choose a reference point on the affine hull. This

reference point can be one of the face image samples of a set

or it can be the mean face image of the set. Let the reference

point be denoted as µc. Then, the affine model of set c in

terms of this point is written as:

Haff
c =

{

x = µc +Ucvc

∣

∣

∣

∣

∣

vc ∈ IRl

}

. (2)

Here, Uc is an orthonormal basis for the directions spanned

by the affine subspace, vc is a vector of free parameters

that determines the coordinates for the points within the

subspace, expressed with respect to the basis Uc, and l is

the number of the basis vectors. Numerically, Uc is ob-

tained by applying the thin Singular Value Decomposition

to [xc1 − µc, . . . ,xcnc
− µc]. Given two non-intersecting

affine hulls, {Ucvc + µc} and {Uc′vc′ + µc′}, the closest

points on them that gives the distance between the affine

hulls can be found by solving the following optimization

problem:

argmin
vc,vc

′

||(Ucvc + µc)− (Uc′vc′ + µc′)||
2. (3)

Defining U ≡ (Uc −Uc′) and v ≡ ( vc

v
c
′
), this can be

written as a standard least squares problem,

argmin
v

||Uv − (µc′ − µc)||
2, (4)
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whose solution is v = (U⊤
U)−1

U
⊤(µc′ − µc). So, the

distance between the affine hulls becomes,

D(Haff
c , Haff

c′ ) = ||(I−P)(µc − µc′)||, (5)

where P = U(U⊤
U)−1

U
⊤ is the orthogonal projection

matrix of the joint span of the directions contained in the

two subspaces.

2.2. Generative Convex Hull Models

The convex hull of a set is defined as the smallest convex

set containing its samples. When the full affine hull rep-

resentation given in (1) is restricted for only positive αck

coefficients, it represents the minimal convex set, i.e., the

convex hull of the set,

Hconv
c =

{

x =

nc
∑

k=1

αckxck

∣

∣

∣

∣

∣

nc
∑

k=1

αck = 1, αck ≥ 0

}

. (6)

Convex hull representation of sets is much tighter than the

affine approximation. The distance between two convex

hulls can be found by solving the following constrained

convex quadratic optimization (QP) problem by using any

standard QP solvers:

(α∗

c ,α
∗

c′) = argmin
αc,αc

′

||Xc αc −Xc′ αc′ ||
2

s.t.

nc
∑

k=1

αck = 1 =

n
c
′

∑

k′=1

αc′k′ , αck, αc′k′ ≥ 0.
(7)

3. Proposed Method

In the proposed method, our goal is to find discriminative

and compact affine and convex hull models for each image

set such that these models best fit to the samples of their

own image sets but are far from image samples of other sets

belonging to different people. Generatively learned mod-

els explained in the previous section learn an independent

model for each person in the gallery by using only the image

samples belonging to a particular person of interest. How-

ever, we have to consider all data in the gallery to learn a

discriminative model for each person, thus we need more

efficient algorithms to accomplish this task. In the follow-

ing, we explain the procedures for finding discriminative

affine and convex hull models.

3.1. Discriminative Affine Hulls

Assume that we are given an image set belonging to a

particular class c. Let us denote this class as the positive

class and all other remaining classes in the gallery as the

negative class. As explained earlier, an affine hull (or an

affine subspace) is characterized by basis vectors U+ and

the reference point µ+, which we choose as the positive

class mean, µ+ =
∑n+

i=1 xi. Without loss of generality,

we can consider an orthonormal basis vector set such that,

U
⊤

+U+ = I. The distance from any sample x to this affine

hull can be computed by using,

d(x, Haff
+ ) = (I−P+)(x−µ+) = P

⊥

+(x−µ+), (8)

where P+ = U+U
⊤

+ is the orthogonal projection op-

erator onto the affine hull of the positive class, and P
⊥

+

is the projection matrix of the orthogonal complement of

P+. It should be noted that orthogonal projection operators

are both symmetric and idempotent, i.e., P⊤

+ = P+ and

P
2
+ = P+.

Our goal is to find the affine hull that best fits to the pos-

itive class samples but at the same time is far as possible

from the negative class samples of other image sets. There-

fore, we must try to minimize the distances from positive

image samples to the affine hull and maximize the distances

from negative class samples to the hull. By centering all im-

age samples by using x̃i = xi − µ+, this can be written as

the following optimization problem,

argmin
U+

1
n+

∑n+

i=1

∥

∥x̃i −U+U
⊤

+x̃i

∥

∥

2
− λ

n−

∑n−

j=1

∥

∥x̃j −U+U
⊤

+x̃j

∥

∥

2

s.t. U
⊤

+U+ = I.

(9)

Here, n+(−) denotes the number of positive (negative) class

samples, and λ is a parameter that must be set by the user,

and it adjusts the weights of distances of negative class sam-

ples with respect to the distances of positive class samples.

To solve this optimization problem, we first introduce the

Lagrangian function given below

L(U+,Λ) =
1

n+

n+
∑

i=1

∥

∥x̃i −U+U
⊤

+x̃i

∥

∥

2

−
λ

n−

n−
∑

j=1

∥

∥x̃j −U+U
⊤

+x̃j

∥

∥

2
+TrΛ(U⊤

+U+ − I).

(10)

Here, Λ = (Λkl) denotes the Lagrangian multipliers to

enforce the orthonormal constraints on basis vectors. The

KKT optimality conditions yield

∂L
∂U+

= − 2
n+

∑n+

i=1 x̃ix̃
⊤

i U+ + 2λ
n−

∑n−

j=1 x̃j x̃
⊤

j U+ + 2U+Λ = 0.

(11)

Let’s define a matrix S+ as

S+ =
1

n+

n+
∑

i=1

x̃ix̃
⊤

i −
λ

n−

n−
∑

j=1

x̃jx̃
⊤

j . (12)

It should be noted that the matrix S+ is the difference of two

covariance matrices, and hence it is symmetric. It is also

positive (semi)-definite for sufficiently small values of λ.
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By inserting this definition in (11), we obtain the following

relation,

S+U+ = U+Λ. (13)

This is a typical eigen decomposition problem and the so-

lution is the eigenvectors of the symmetric positive (semi)-

definite matrix, S+. It should be noted that the solution is a

global minimum, and if S+ is strictly positive definite then

the solution is also a unique global minimum.

This procedure is repeated for each class in the gallery

and we obtain a discriminative affine hull model for each

class. During online testing, we find the distances from

query image samples to each affine hull by using (8) and

compute the mean of distances of the k closest samples.

Then, the query set is assigned to the class which yields

the smallest mean distance. We do not use the distances of

all query image samples, instead we use the ones that lie

in critical regions where the query set approaches to other

gallery sets. The best value of k is determined based on

cross-validation.

Lastly, it should be noted that this approach is very

different from the Linear Discriminant Analysis methods

where a unique embedding space is extracted by using the

within-class and between-class scatter matrices. In our set-

ting, there are C different affine subspaces extracted for

each person in the gallery, and the decision is made based

on the closest distances to the affine subspaces.

3.2. Discriminative Convex Hulls

In contrast to the affine hulls, convex hulls have expo-

nentially many facets so they cannot be directly stored ex-

plicitly as in affine hulls. Therefore, one has to solve a QP

problem online when finding distances from the query sam-

ples to the convex hulls of classes in the gallery, which is

computationally too expensive. One solution to this prob-

lem may be finding the hyperplane that best separates a con-

vex hull of a class from the remaining class samples by us-

ing a linear SVM classifier since a linear SVM returns the

best separating hyperplane between convex hulls of positive

and negative classes [1]. Then, the distances can be approx-

imated by computing the distances from the query samples

to the separating hyperplane through simple dot products.

However, this solution will not work when the convex hulls

of classes in the gallery are not separable by linear hyper-

planes as illustrated in Fig. 1. As seen in the figure, it is

not possible to separate the convex hull of the red colored

class samples in the middle from other classes by a linear

hyperplane. On the other hand, polyhedral conic classifier

(PCC) of [4] can be used in such cases. As opposed to

the linear SVM classifier, PCC classifiers can return tight

polyhedral acceptance regions enclosing the positive class

samples. These compact polyhedral acceptance regions can

be used to approximate the discriminative convex hulls of

classes, and computing distances from query samples to the

polyhedral acceptance regions is extremely fast since it re-

quires simple dot products as in linear SVMs.

We use the Extended Polyhedral Conic Classifier

(EPCC) of [4] to approximate the discriminative convex

hull of each class in the gallery. An extended polyhedral

conic function of a positive class can be written as,

fw+,γ+,c+,b+(x) = w
⊤

+(x−c+)+γ
⊤

+|x−c+|−b+, (14)

where x ∈ IRd is a test point, c+ ∈ IRd is the cone

vertex, w+ ∈ IRd is a weight vector, b+ is an offset,

|u| = (|u1|, ..., |ud|)
⊤ denotes the component-wise modu-

lus and γ+ ∈ IRd is a corresponding weight vector. We set

the cone vertex to the mean of the positive class samples as

in [4]. To find a classifier that will return polyhedral accep-

tance regions, we need to solve the following QP problem

for each class in the gallery:

argmin
w+,γ+

λ
2w

⊤

+w+ + 1
n+

∑

i ξi +
1
n−

∑

j ξj − s
⊤
γ+

s.t. w
⊤

+(xi − c+) + γ
⊤

+|xi − c+| − 1 ≤ ξi, i = 1, ..., n+,

w
⊤

+(xj − c+) + γ
⊤

+|xj − c+| − 1 ≥ 1− ξj , j = 1, ..., n−,

ξi, ξj ≥ 0.

(15)

Here, λ is a regularization weight for w+, s > 0 is a user-

supplied vector of cost penalties for increasing γ+, and b+
is fixed to 1. This optimization problem is solved by using

Stochastic Gradient (SG) method.

We solve the optimization problem (15) for each class

c in the gallery and compute EPCC classifier parameters

wc,γc. Then, we compute the distances from the query

image samples to the polyhedral acceptance regions of each

class by using the following function that includes simple

dot products,

d(xquery, H
conv
c ) = w

⊤

c (xquery−cc)+γ
⊤

c |xquery−cc|−1.
(16)

As in the affine hull case, we compute the k closest query

sample distances to each gallery class and compute their

mean, x̄c. Then, we assign the query set, Xq , to the class

that yields the smallest distance, i.e., we use the following

decision function,

g(Xq) = min
c=1,...,C

(x̄c). (17)

The online decision process is extremely fast even com-

pared to the linear affine hulls since we need to implement

two simple dot products. For discriminative affine hulls, the

number of eigenvectors spanning the discriminative hulls

is mostly larger than 2. Therefore, the decision process is

much slower compared to the discriminative convex hulls,

which are approximated by using compact polyhedral ac-

ceptance regions.
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(a) (b) (c)

(d) (e) (f)
Figure 1. Visualization of PCC classifiers for 2D synthetic data: The positive acceptance regions of classes are “kite-like” octahedroids

containing the corresponding class points for which a linear hyperplane lies above an L1 cone. (a): 2D data samples for 4 different classes

and the resulting approximated convex hulls. (b): the combined polyhedral conic functions of classes in 3D. (c)-(f): views of positive-class

acceptance regions in 3D for each class.

It should be noted that Cevikalp and Yavuz [5] also used

EPCC classifiers for set based recognition. However, their

setup is completely different than the one we propose here.

Both Cevikalp and Yavuz [5] and Hayat et al. [14] use dis-

criminative classifiers for separation of image sets. But,

they train to separate the query set images from the gallery

images, and this requires an online training of a binary clas-

sifier during testing. As a result, the test times of these two

methods are very long for real-time applications especially

for large-scale datasets as given in our experiments. In con-

trast, our learning process is accomplished offline and we

just implement simple dot products during online testing.

4. Experiments

We tested the proposed methods, Discriminative AH

and Discriminative CH, using discriminative affine/convex

hulls on 5 datasets used for both image set based face

recognition and verification. These are Point-and-Shoot

Face Recognition Challenge (PaSC) [2], YouTube Celebri-

ties [21], COX [17], ESOGU [33], and FaceScrub[25]

datasets. The images are represented by using either Local

Binary Pattern (LBP) features or Convolutional Neural Net-

work (CNN) features. We compared the proposed methods

to other methods using generatively learned affine/convex

hulls as well as some different models in the literature

including convex hull method (CHISD) [3], affine hull

method (AHISD) [3], Binary EPCC [5], SANP [16], Mu-

tual Subspace Method (MSM) [34], Regularized Near-

est Points (RNP) [36], SPD Manifolds [18], Manifold-

Manifold Distance (MMD) [29], Collaboratively Regular-

ized Nearest Points(CRNP) [32] and Self-Regularized Non-

negative Adaptive Distance Metric Learning (SRN-ADML)

[24]. For SPD Manifolds, the covariance matrices of sets

augmented with their mean are used to create SPD matrices

as in [18], and we use the Log-Euclidean metric to measure

the similarities between them.

4.1. Face Verification Experiments on PaSC Dataset

For face verification experiments, we used Point-and-

Shoot Face Recognition Challenge (PaSC) dataset [2]. The

PaSC dataset includes 2802 videos of 265 people carrying

out simple actions. Videos are recorded under two different

settings. In our experiments, we used deep CNN features

of face images provided by [19]. On PaSC, there are two

video face verification experiments: control-to-control and

handheld-to-handheld experiments. In both experiments,

the target and query sets contain the same set of videos.

The task is to verify a claimed identity in the query video

by comparing with the associated target video. Since the

same 1401 videos served as both the target and query sets,

“same video” comparisons are excluded as in [19], and our

results are directly comparable to the ones reported in [19]

since we use the same CNN features and test protocols.

To test methods, we follow the same testing setup as used

in [19]: we first compute the similarities between pair-wise

face videos and create a similarity matrix. Then, this matrix

is used to create ROC curves and we report the verification

rate when false accept rate is 0.01. In addition, we also

report the average precision (mAP) scores obtained from

Precision-Recall curves. We set the number of closest query
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Table 1. Results for PaSC Face Verification Experiments.

Methods
PaSC Control PaSC Handheld

Verification Rates(%) mAP (%) Verification Rates(%) mAP (%)

Discriminative AH 88.76 70.66 77.39 60.37

Discriminative CH 93.31 76.82 85.00 68.33

Linear AHISD 80.97 61.90 65.14 46.76

Linear CHISD 88.48 70.11 74.01 55.49

MSM 84.16 65.23 69.68 50.55

SANP 86.88 67.48 71.73 53.12

RNP 75.51 54.62 54.84 36.42

SRN-ADML 84.63 66.93 69.36 52.10

CERML-EG [19] 80.11 – 77.37 –

DAN [27] 92.06 – 80.33 –

samples k to 20 for the Discriminative AH method and to 10

for the Discriminative CH method. The results are reported

in Table 1, and they support our claim that discriminative

models significantly outperform the generatively learned

models. More specifically, the proposed Discriminative AH

method brings around 8% improvement over generatively

learned affine hulls on control dataset and it brings around

12% improvement on handheld dataset. Similarly, the pro-

posed Discriminative CH method improves its generative

counterpart around 5% on control dataset and around 11%

on handheld dataset. Moreover, the proposed Discrimina-

tive CH method achieves the best accuracy among all tested

methods and it significantly outperforms the previous state-

of-the-art results of DAN (discriminative aggregations net-

work) method [27] as well as accuracies of CERML-EG

[19] using the same CNN features we used in our tests. To

the best of our knowledge, our results are the best accura-

cies reported on PaSC dataset in the literature.

4.2. Experiments on Set Based Face Recognition

4.2.1 Experiments on the YouTube Celebrities Dataset

The YouTube Celebrities dataset contains 1910 videos of 47

celebrities that are collected from YouTube. Each sequence

includes different number of frames that are mostly low res-

olution. The dataset does not provide the cropped faces

from videos. Therefore, we manually cropped faces using a

semi-automatic annotation tool and resized them to 40×40

gray-scale images. Then, we extracted LBP features. We

conduct 10 runs of experiments by randomly selecting 9

videos (3 for training, 6 for testing) for each experiment

by following the same protocol of [37,28].

The averages of the classification rates and testing times

are shown in Table 2. The number of the nearest query

samples k is set to 7 for both discriminative affine and

Table 2. Classification Rates (%) and Testing Times on the

YouTube Celebrities Dataset.
Method Accuracy Testing Time

Discriminative AH 71.5± 2.0 0.3 sec

Discriminative CH 71.2± 2.2 0.1 sec

Linear AHISD 62.0± 2.4 39.7 sec

Linear CHISD 65.7± 2.5 23.6 sec

Binary EPCC 72.1± 2.4 5.7 sec

MSM 63.8± 2.3 2.4 sec

SANP 58.6± 3.8 75.5 sec

RNP 68.4± 2.6 20.6 sec

CRNP 71.2± 2.6 76.6 sec

SPD Manifolds 58.9± 2.3 7.1 sec

SRN-ADML 63.6± 2.9 76.1 sec

MMD 65.5± 2.5 34.0 sec

convex hull methods. Both proposed methods signifi-

cantly outperform their classical counterparts using gener-

ative affine/convex hulls, but their accuracies are slightly

behind the Binary EPCC which achieves the highest accu-

racy. However, the proposed methods are the most efficient

methods in terms of testing time. For example, the proposed

Discriminative CH method is approximately 57 times faster

than the Binary EPCC whereas its accuracy is only 0.9%

behind the Binary EPCC.

4.2.2 Experiments on the ESOGU-285 Face Videos

Dataset

The ESOGU-285 database [33,6] is a video dataset which

consists of 285 people with 8 videos for each person.

Videos are captured in an indoor environment in two sepa-

rate sessions under four different scenarios. The total num-
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Table 3. Classification Rates (%) and Testing Times on the ESOGU-285 Video Dataset.

Methods
LBP Features CNN Features

Accuracy Testing Time Accuracy Testing Time

Discriminative AH 86.6 3.7 sec 85.26 10.6 sec

Discriminative CH 89.0 2.8 sec 85.70 7.6 sec

Linear AHISD 66.8 180.0 sec 81.32 543.8 sec

Linear CHISD 76.6 390 sec 79.82 378.6 sec

Binary EPCC 86.4 250.5 sec 81.32 2268.9 sec

MSM 69.6 5.1 sec 77.02 5.6 sec

SANP 79.1 564.6 sec 81.66 1087.6 sec

RNP 51.9 2205.3 sec 80.79 367.8 sec

CRNP OOM −− OOM −−
SPD Manifolds 64.65 56.5 sec 76.31 63.6 sec

SRN-ADML 68.4 380.2 sec 77.46 458.5 sec

MMD 77.6 150.4 sec 79.04 28.9 sec

ber of the frames is 764006 in 2280 video sequences. This

is the largest dataset used in this study in terms of the total

number of frames. We used both LBP and CNN features

of image samples. To extract CNN features, we used the

recent state-of-the-art ResNet-101 architecture [15].

In our experiments, we used the first session videos to

form the gallery sets and the second session videos were

used in testing as in [5]. Experimental results are given in

Table 3. We could not implement CRNP because of mem-

ory issues and “OOM” in the table indicates the “out of

memory” problem. The number of the nearest query sam-

ples, k, is set to 95 for both affine and convex hulls. As

seen in the table, the proposed methods achieve the best

accuracies for both LBP and CNN features, and they signif-

icantly outperform all other tested methods. The proposed

Discriminative AH method outperforms Linear AHISD by

19.8% for LBP features and by 3.9% for CNNs. Similarly,

Discriminative CH method beats Linear CHISD method by

12.4% for LBPs and by 5.9% for CNNs. These results

clearly demonstrate the superiority of discriminative mod-

els over the generative ones. Moreover, to the best of our

knowledge, the accuracy of the proposed Discriminative

CH method, 89.0%, is the best accuracy reported in liter-

ature on this dataset. The proposed methods are also the

most efficient methods in terms of testing time. Another

discriminant classifier, the Binary EPCC, achieves the third

best accuracy for LBP features; but it is very slow compared

to the proposed methods. More precisely, our Discrimina-

tive CH method is approximately 89 times faster than the

Binary EPCC for LBP features and it is 298 times faster

with CNN features. Similarly, the proposed Discriminative

AH method is approximately 68 times faster than the Bi-

nary EPCC for LBPs and it is 214 times faster for CNN

features. It is also worth mentioning that, the performances

of all generative methods significantly improve over LBP

features when we use ResNet-101 CNN features. This is

very natural since the discriminative information is already

included in learned CNN features no matter how we train

generative methods. But, there is no improvement in dis-

criminative methods. In fact, their accuracies are lower

compared to LBP features which is very unexpected. This

clearly shows that the accuracy of classical deep neural net-

work based methods trained with single images can be im-

proved for set based recognition where the images have dif-

ferent poses including full left/right profile views in addi-

tion to the frontal views. To this end, we must train such

nets with image sets and enforce to minimize the distances

between the different pose image features in the same set

(e.g., by using triplet loss function instead of common soft-

max loss) to obtain higher accuracies.

4.2.3 Experiments on the COX Video to Video Dataset

The COX Faces dataset contains 3000 video sequences of

1000 walking individuals [17]. The videos are captured

with three fixed camcorders while the subjects walk around

the pre-designed S-shape route. For this database, we used

LBP features extracted from 32×40 histogram equalized

face images. We did not extract CNN features because of

the small size of the images. There are 3 image sets per per-

son. We chose one set from each person for testing, and the

remaining two sets were used as gallery. For the second and

the third trials, we have chosen the test set from the sets that

were not used for testing earlier.

The classification rates are the averages of these three

trials, and they are given in Table 4. The number of the

nearest query samples k is set to 20 for both discrimina-

tive affine and convex hull methods. Similar to the ESOGU

dataset, the proposed methods again significantly outper-

form the methods using generative affine and convex hulls.
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The proposed Discriminative AH method improves the ac-

curacy by 11.6% over Linear AHISD, and the Discrimina-

tive CH method improves the accuracy by 30.3% over the

Linear CHISD. The best accuracy is obtained by the pro-

posed Discriminative CH method among all tested meth-

ods, and it significantly outperforms discriminative Binary

EPCC method of [5]. The accuracy improvement is approx-

imately 11%, which is quite large. The proposed methods

are also the most efficient methods in terms of testing times.

For example, the proposed Discriminative CH method is ap-

proximately 100 times faster than the discriminative Binary

EPCC method.

Table 4. Classification Rates (%) and Testing Times on the COX

Video Dataset.
Method Accuracy Testing Time

Discriminative AH 55.9± 13.6 3.4 sec

Discriminative CH 75.1± 1.6 1.7 sec

Linear AHISD 44.3± 9.8 82.9 sec

Linear CHISD 44.8± 11.3 54.3 sec

Binary EPCC 64.0± 11.5 171.7 sec

MSM 41.6± 5.3 18.6 sec

SANP 43.6± 11.2 978.7 sec

RNP 45.4± 13.7 217.3 sec

CRNP OOM −−
SPD Manifolds 33.1± 9.1 97.3 sec

SRN-ADML 44.6± 7.9 351.7 sec

MMD 42.7± 10.5 60.3 sec

4.2.4 Experiments on the FaceScrub Dataset

The FaceScrub dataset [25] includes face images of 530

celebrities. It has been created by detecting faces based

on automated search of public figures on the internet fol-

lowed by manually checking and cleaning the results. In

the dataset, there are 265 male and 265 female celebrities’

face images. We manually checked the face images and

cleaned non-face images since there were still some anno-

tation mistakes. As a result, we had 67,437 face images of

530 celebrities with an average of 127 images (minimum

39, maximum 201) per person which is suitable to form im-

age sets. The face images are mostly high resolution frontal

face images and we resized them to 128×128. We extracted

CNN features of these images.

In our tests, we first divided the dataset into 4 equal folds,

and we used the images of one fold as the gallery and the

remaining images are used for testing (i.e. 530 image sets

are used as the gallery and the remaining 3 × 530 = 1590
image sets are used as the test set). This is repeated 4 times

for each fold and the final accuracy is the average of the

results obtained in each trial. The number of the nearest

query samples, k, is set to 7 for both affine and convex

Table 5. Classification Rates (%) and Testing Times on the Face-

Scrub Dataset.
Method Accuracy Testing Time

Discriminative AH 100± 0.00 1.20 sec

Discriminative CH 100± 0.00 0.70 sec

Linear AHISD 99.94± 0.05 6.17 sec

Linear CHISD 99.97± 0.04 8.33 sec

Binary EPCC 100± 0.00 46.2 sec

MSM 99.94± 0.05 0.30 sec

SANP 99.94± 0.05 75.40 sec

RNP 100± 0.00 10.81 sec

CRNP OOM −−
SPD Manifolds 96.20± 3.3 19.5 sec

SRN-ADML 99.95± 0.04 14.78 sec

MMD 100± 0.00 2.45 sec

hulls. The accuracies and test times of the compared meth-

ods are given in Table 5. As can be seen in the table, all

tested methods achieve very high accuracies around 100%.

The proposed methods again achieve the highest accuracies.

The proposed methods are also faster than all tested meth-

ods with the exception of MSM method, which is the most

efficient method in terms of testing time for this dataset.

5. Conclusion

This paper introduces discriminative affine/convex hulls

for image set based face recognition. As opposed to the

other methods that learn the generative models approximat-

ing face image sets independently, the proposed methods

learn discriminative models by incorporating all image sets

belonging to different people in the gallery. As a result,

the accuracies are significantly improved over the methods

that use generatively learned models. The proposed meth-

ods also significantly outperform the discriminative meth-

ods used for set based recognition. The accuracy improve-

ment is very significant especially on the challenging PaSC,

ESOGU and COX datasets. For example, the proposed Dis-

criminative CH method outperforms another successful dis-

criminative method, Binary EPCC of [5] on COX dataset

by 11.1%, which is quite significant. All these results ver-

ify that the proposed discriminative models are better suited

than generative models for set based classification. In addi-

tion to these accuracy gains, the proposed methods are also

extremely fast since we learn discriminative model parame-

ters offline and we just implement simple matrix multiplica-

tions during online testing. As a result, we obtained speed-

ups to a factor of 298 over other discriminative methods in

the literature.
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