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Figure 1: “Do as I Do” motion transfer: given a YouTube clip of a ballerina (top), and a video of a graduate student performing various

motions, our method transfers the ballerina’s performance onto the student (bottom). Video: https://youtu.be/mSaIrz8lM1U

Abstract

This paper presents a simple method for “do as I do”

motion transfer: given a source video of a person dancing,

we can transfer that performance to a novel (amateur) tar-

get after only a few minutes of the target subject perform-

ing standard moves. We approach this problem as video-to-

video translation using pose as an intermediate represen-

tation. To transfer the motion, we extract poses from the

source subject and apply the learned pose-to-appearance

mapping to generate the target subject. We predict two con-

secutive frames for temporally coherent video results and

introduce a separate pipeline for realistic face synthesis.

Although our method is quite simple, it produces surpris-

ingly compelling results (see video). This motivates us to

also provide a forensics tool for reliable synthetic content

detection, which is able to distinguish videos synthesized by

our system from real data. In addition, we release a first-

of-its-kind open-source dataset of videos that can be legally

used for training and motion transfer.

∗C. Chan is currently a graduate student at MIT CSAIL.
†T. Zhou is currently affiliated with Humen, Inc.

1. Introduction

Consider the two video sequences on Figure 1. The top

row is the input – it is a YouTube clip of a ballerina (the

source subject) performing a sequence of motions. The

bottom row is the output of our algorithm. It corresponds

to frames of a different person (the target subject) appar-

ently performing the same motions. The twist is that the

target person never performed the same exact sequence of

motions as the source, and, indeed, knows nothing about

ballet. He was instead filmed performing a set of standard

moves, without specific reference to the precise actions of

the source. And, as is obvious from the figure, the source

and the target are of different genders, have different builds,

and wear different clothing.

In this work, we propose a simple but surprisingly ef-

fective approach for “Do as I Do” video retargeting – au-

tomatically transferring the motion from a source to a tar-

get subject. Given two videos – one of a target person

whose appearance we wish to synthesize, and the other of

a source subject whose motion we wish to impose onto

our target person – we transfer motion between these sub-

jects by learning a simple video-to-video translation. With

our framework, we create a variety of videos, enabling un-
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trained amateurs to spin and twirl like ballerinas, perform

martial arts kicks, or dance as vibrantly as pop stars.

To transfer motion between two video subjects in a

frame-by-frame manner, we must learn a mapping between

images of the two individuals. Our goal is, therefore, to

discover an image-to-image translation [16] between the

source and target sets. However, we do not have corre-

sponding pairs of images of the two subjects performing the

same motions to supervise learning this translation. Even if

both subjects perform the same routine, it is still unlikely to

have an exact frame to frame pose correspondence due to

body shape and motion style unique to each subject.

We observe that keypoint-based pose preserves motion

signatures over time while abstracting away as much sub-

ject identity as possible and can serve as an intermediate

representation between any two subjects. We therefore use

pose stick figures obtained from off-the-shelf human pose

detectors, such as OpenPose [6, 34, 43], as an intermediate

representation for frame-to-frame transfer, as shown in Fig-

ure 2. We then learn an image-to-image translation model

between pose stick figures and images of our target person.

To transfer motion from source to target, we input the pose

stick figures from the source into the trained model to obtain

images of the target subject in the same pose as the source.

The central contribution of our work is a surprisingly

simple method for generating compelling results on human

motion transfer. We demonstrate complex motion transfer

from realistic in-the-wild input videos and synthesize high-

quality and detailed outputs (see Section 4.3 and supple-

mentary video for examples). Motivated by the high quality

of our results, we introduce an application for detecting if

a video is real or synthesized by our method. We strongly

believe that it is important for work in image synthesis to

explicitly address the issue of fake detection (Section 5).

Furthermore, we release a two-part dataset: First, five

long single-dancer videos which we filmed ourselves that

can be used to train and evaluate our model, and sec-

ond, a large collection of short YouTube videos that can

be used for transfer and fake detection. We specifi-

cally designate the single-dancer data to be high-resolution

open-source data for training motion transfer and video

generation methods. The subjects whose data we re-

lease have all consented to allowing the data to be

used for research purposes. For more details, see our

project website https://carolineec.github.io/

everybody_dance_now .

2. Related Work

Over the last two decades there has been extensive

work dedicated to motion transfer. Early methods focused

on creating new content by manipulating existing video

footage [5, 12, 31]. For example, Video Rewrite [5] creates

videos of a subject saying a phrase they did not originally

Pose to Video

Video to Pose

Figure 2: Our method creates correspondences by detecting poses

in video frames (Video to Pose) and then learns to generate images

of the target subject from the estimated pose (Pose to Video).

utter by finding frames where the mouth position matches

the desired speech. Efros et al. [12] use optical flow as a de-

scriptor to match different subjects performing similar ac-

tions allowing “Do as I do” and “Do as I say” retargeting.

Classic computer graphics approaches to motion transfer at-

tempt to perform this in 3D. Ever since the retargeting prob-

lem was proposed between animated characters [14], solu-

tions have included the use of inverse kinematic solvers [23]

and retargeting between significantly different 3D skele-

tons [15]. Our approach is similarly designed for in-the-

wild video subjects, although we learn to synthesize novel

motions rather than manipulating existing frames and we

use 2D representations.

Several approaches rely on calibrated multi-camera se-

tups to ‘scan’ a target actor and manipulate their motions

in a new video through a fitted 3D model of the target. To

obtain 3D information, Cheung et al. [9] propose an elabo-

rate multi-view system to calibrate a personalized kinematic

model, obtain 3D joint estimations, and render images of

a human subject performing new motions. Xu et al. [45]

use multi-view captures of a target subject performing sim-

ple motions to create a database of images and transfer mo-

tion through a fitted 3D skeleton and corresponding surface

mesh for the target. Work by Casas et al. use 4D Video Tex-

tures [7] to compactly store a layered texture representation

of a scanned target person and use their temporally coher-

ent mesh and data representation to render video of the tar-

get subject performing novel motions. In contrast, our ap-

proach explores motion transfer between 2D video subjects

and avoid data calibration and lifting into 3D space.

Similarly to our method, recent works have applied deep

learning for reanimation in different applications and rely

on more detailed input representations. Given synthetic ren-

derings, an interior face model, and a gaze map as input,

Kim et al. [19] transfer head position and facial expres-

sions between human subjects and render their results in

detailed portrait videos. Our problem is analogous to this

work except we retarget full body motion, and the inputs

to our model as 2D pose stick figures as opposed to more

detailed 3D representations. Similarly, Martin-Brualla et

al. [29] apply neural re-rendering to enhance rendering of

human motion capture for VR/AR purposes. The primary
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Figure 3: (Top) Training: Our model uses a pose detector P to create pose stick figures from video frames of the target subject.

We learn the mapping G alongside an adversarial discriminator D which attempts to distinguish between the “real” correspondences

(xt, xt+1), (yt, yt+1) and the “fake” sequence (xt, xt+1), (G(xt), G(xt+1)) . (Bottom) Transfer: We use a pose detector P to obtain

pose joints for the source person that are transformed by our normalization process Norm into joints for the target person for which pose

stick figures are created. Then we apply the trained mapping G.

focus of this work is to render realistic humans in real time

and similarly uses a deep network to synthesize their final

result, but unlike our work does not address motion transfer

between subjects. Villegas et al. [37] focus on retargeting

motion between rigged skeletons and demonstrate reanima-

tion in 3D characters without supervised data. Similarly,

we learn to retarget motion using a skeleton-like interme-

diate representation, however we transfer full body motion

between human subjects who are not rigged to the skeleton

unlike animated characters.

Recent methods focus on disentangling motion from ap-

pearance and synthesizing videos with novel motion [36, 2].

MoCoGAN [36] employs unsupervised adversarial training

to learn this separation and generates videos of subjects per-

forming novel motions or facial expressions. This theme is

continued in Dynamics Transfer GAN [2] which transfers

facial expressions from a source subject in a video onto a

target person given in a static image. Similarly, we apply

our representation of motion to different target subjects to

generate new motions. However, in contrast to these meth-

ods we specialize on synthesizing detailed dance videos.

Modern approaches have shown success in generating

detailed single images of human subjects in new poses [3,

10, 11, 18, 22, 27, 28, 33, 38, 13, 46]. Works including

Ma et al. [27, 28] and Siarohin et al. [33] have introduced

novel architectures and losses for this purpose. Further-

more, [39, 38] have shown pose is an effective supervisory

signal for future prediction and video generation. However

these works are not designed specifically for motion trans-

fer. Rather than generating possible views of a previously

unseen person from a single input image, we are interested

in learning the style of a single, known person from large

amounts of personalized video data and synthesizing them

dancing in a detailed high-resolution video.

Concurrent with our work, [1, 4, 24, 40] learn mappings

between videos and demonstrate motion transfer between

faces and from poses to body. Wang et al. [40] achieves re-

sults of similar quality to ours with a more complex method

and significantly more computational resources.

Our work is made possible by recent rapid advances

along two separate directions: robust pose estimation, and

realistic image-to-image translation. Modern pose detection

systems including OpenPose [6, 34, 43] and DensePose [32]

allow for surprisingly reliable and fast pose extraction in a

variety of scenarios. At the same time, the recent emergence

of image-to-image translation models, pix2pix [16], Co-

GAN [26], UNIT [25], CycleGAN [48], DiscoGAN [20],

Cascaded Refinement Networks [8], and pix2pixHD [41],

have enabled high-quality single-image generation. We

build upon these two building blocks by using pose detec-

tion as an intermediate representation and extending upon

single-image generation to synthesize temporally-coherent,

surprisingly realistic videos.

3. Method

Given a video of a source person and another of a target

person, our goal is to generate a new video of the target en-

acting the same motions as the source. To accomplish this

task, we divide our pipeline into three stages – pose detec-

tion, global pose normalization, and mapping from normal-

ized pose stick figures to the target subject. See Figure 3 for
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an overview of our pipeline. In the pose detection stage we

use a pre-trained state-of-the-art pose detector to create pose

stick figures given frames from the source video. The global

pose normalization stage accounts for differences between

the source and target body shapes and locations within the

frame. Finally, we design a system to learn the mapping

from the pose stick figures to images of the target person

using adversarial training. Next we describe each stage of

our system.

3.1. Pose Encoding and Normalization

Encoding body poses To encode the body pose of a sub-

ject image, we use a pre-trained pose detector P (Open-

Pose [6, 34, 43]) which accurately estimates 2D x, y joint

coordinates. We then create a colored pose stick figure by

plotting the keypoints and drawing lines between connected

joints as shown in Figure 2.

Global pose normalization In different videos, subjects

may have different limb proportions or stand closer or far-

ther to the camera than one another. Therefore when re-

targeting motion between two subjects, it may be neces-

sary to transform the pose keypoints of the source person

so that they appear in accordance with the target person’s

body shape and location as in the Transfer section of Fig-

ure 3. We find this transformation by analyzing the heights

and ankle positions for the poses of each subject and use a

linear mapping between the closest and farthest ankle po-

sitions in both videos. After gathering these positions, we

calculate the scale and translation for each frame based on

its corresponding pose detection. Details of this process are

described in the supplementary material.

3.2. Pose to Video Translation

Our video synthesis method is based off of an adversar-

ial single frame generation process presented by Wang et

al. [41]. In the original conditional GAN setup, the genera-

tor network G engages in a minimax game against multi-

scale discriminator D = (D1, D2, D3). The generator

must synthesize images in order to fool the discriminator

which must discern between “real” (ground truth) images

and “fake” images produced by the generator. The two net-

works are trained simultaneously and drive each other to

improve - Gr learns to synthesize more detailed images to

deceive D which in turn learns differences between gener-

ated outputs and ground truth data. For our purposes, G

synthesizes images of a person given a pose stick figure.

Such single-frame image-to-image translation methods

are not suitable for video synthesis as they produce temporal

artifacts and cannot generate the fine details important in

perceiving humans in motion. We therefore add a learned

model of temporal coherence as well as a module for high

resolution face generation.

Gf

xF

r

r + G(x)F

G(x)FG(x)

G(x)F := r + G(x)F

x

Figure 4: Face GAN setup. Residual is predicted by generator Gf

and added to the original face prediction from the main generator.

Temporal smoothing To create video sequences, we

modify the single image generation setup to enforce tempo-

ral coherence between adjacent frames as shown in Figure 3

(top right). Instead of generating individual frames, we pre-

dict two consecutive frames where the first output G(xt−1)
is conditioned on its corresponding pose stick figure xt−1

and a zero image z (a placeholder since there is no previ-

ously generated frame at time t − 2). The second output

G(xt) is conditioned on its corresponding pose stick fig-

ure xt and the first output G(xt−1). Consequently, the dis-

criminator is now tasked with determining both the differ-

ence in realism and temporal coherence between the “fake”

sequence (xt−1, xt, G(xt−1), G(xt)) and “real” sequence

(xt−1, xt, yt−1, yt). The temporal smoothing changes are

now reflected in the updated GAN objective

Lsmooth(G,D) = E(x,y)[logD(xt, xt+1, yt, yt+1)]

+Ex[log(1−D(xt, xt+1, G(xt), G(xt+1))] (1)

Face GAN We add a specialized GAN setup to add more

detail and realism to the face region as shown in Figure 4.

After generating the full image of the scene with the main

generator G, we input a smaller section of the image cen-

tered around the face (i.e. 128× 128 patch centered around

the nose keypoint), G(x)F , and the input pose stick figure

sectioned in the same fashion, xF , to another generator Gf

which outputs a residual r = Gf (xF , G(x)F ). The final

synthesized face region is the addition of the residual with

the face region of the main generator r + G(x)F . A dis-

criminator Df then attempts to discern the “real” face pairs

(xF , yF ) from the “fake” face pairs (xF , r +G(x)F ), sim-

ilarly to the original pix2pix [16] objective:

Lface(Gf , Df ) = E(xF ,yF )[logDf (xF , yF )]

+ExF
[log

(

1−Df (xF , G(x)F + r)
)

]. (2)

Here xF is the face region of the original pose stick figure

x and yF is the face region of ground truth target person

image y. Similarly to the full image, we add a perceptual

reconstruction loss on comparing the final face r + G(x)F
to the ground truth target person’s face yF .
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Figure 5: Transfer results. In each section we show four consecutive frames. The top row shows the source subject and the bottom row

shows the synthesized outputs of the target person.

3.3. Full Objective

We employ training in stages where the full image GAN

is optimized separately from the specialized face GAN.

First we train the main generator and discriminator (G,D)
during which the full objective is -

min
G

((max
Di

∑

ki

Lsmooth(G,Dk)) + λFM

∑

ki

LFM(G,Dk)

+λP (LP (G(xt−1), yt−1) + LP (G(xt), yt))) (3)

Where i = 1, 2, 3. Here, LGAN(G,D) is the single image

adversarial loss presented in the original pix2pix paper [16]:

LGAN(G,D) = E(x,y)[logD(x, y)]+Ex[log(1−D(x,G(x))]
(4)

LFM(G,D) is the discriminator feature-matching loss pre-

sented in pix2pixHD, and LP (G(x), y) is the perceptual

reconstruction loss [17] which compares pretrained VG-

GNet [35] features at different layers of the network (fully

specified in the supplementary material).

After this stage, the full image GAN weights are frozen

and we optimize the face GAN with objective

min
Gf

(

(

max
Df

Lface(Gf , Df )
)

+ λPLP (r +G(x)F , yF )

)

(5)

where LFM(G,D) is the discriminator feature-matching

loss presented in pix2pixHD, and LP is a perceptual recon-

struction loss [17] which compares pretrained VGGNet [35]

features at different layers of the network. For training de-

tails see the supplementary material.

4. Experiments

We compare our performance to baseline methods on

multiple target subjects and source motions.

4.1. Setup

We collect two types of data long, open-source, single-

dancer target videos which we film ourselves to train our

model on and make publicly available, and in-the-wild

source videos collected online for motion transfer. The

filming set-up for target videos and collection method for

source videos are detailed in the supplementary material.

Baseline methods 1) Nearest Neighbors. For each

source video frame, we retrieve the closest match in the

training target sequence using the following pose distance

metric: For two poses p, p′ each with n joints p1, ..., pn and

p′1, ..., p
′

n, we define the distance between them as the nor-

malized sum of the L2 distances between the corresponding

joints pk = (xk, yk) and p′k = (x′

k, y
′

k):

d(p, p′) =
1

n

n
∑

k=1

‖pk − p′k‖2 (6)

The adjacent target matches frames are then concatenated

into a frame-by-frame nearest neighbors sequence.

2) Balakrishnan et al. (PoseWarp) [3] generate images

of a given target subject in a new pose. While, unlike ours,

this method is designed for single image synthesis, we use

it to synthesize a video frame-by-frame for comparison.
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Method 1 2 3 4 5 Total

NN 95.9% 96.4% 94.6% 95.8% 94.7% 95.1%
PoseWarp [3] 83.1% 69.9% 88.7% 84.6% 74.4% 83.3%

Table 1: Comparison to baselines using perceptual studies for sub-

jects 1 through 5 and in total average. We report the percentage

of time participants chose our method as more realistic than the

baseline.

Method 1 2 3 4 5 Total

NN 85% 93% 94% 90% 91% 91.2%
PoseWarp [3] 77.5% 70% 80% 90% 78.7% 79.1%

Table 2: Comparison of our method without Face GAN (FBF+TS

variant) to baselines for subjects 1 through 5 and in total average.

We report the percentage of time participants chose the FBF+TS

ablation as more realistic than the baseline.

Ablation conditions 1) Frame-by-frame synthesis

(FBF). In this condition we ablate our temporal smoothing

setup and apply pix2pixHD [41] on a per-frame basis.

2) Temporal smoothing (FBF+TS). In this condition we

ablate the Face GAN module to study the difference it

makes on the final result. 3) Our model (FBF+TS+FG).

uses both temporal smoothing and a Face GAN.

Evaluation metrics We use perceptual studies on Me-

chanical Turk for evaluating the video results of our final

method in comparison to ablated conditions and baselines.

For the ablation study, we further measure the quality of

each synthesized frame using two metrics: 1) SSIM. Struc-

tural Similarity [42] and 2) LPIPS Learned Perceptual Im-

age Patch Similarity [47]. We examined the pose distance

seen in Equation 6 to measure the similarity between input

and synthesized pose. However, we found this distance to

be not very informative due to noisy detections.

4.2. Quantitative Evaluation

We quantitatively compare our approach against the

baselines, and then against ablated versions of our method.

4.2.1 Comparison to Baselines

We compare our method to baselines on the same trans-

fer task for all subjects for which we filmed longer videos.

From a single out-of-sample source video, we synthesize a

transfer video for every baseline-subject pair. We then crop

the same 10-second snippets of video for each baseline and

subject pair and use these for our perceptual studies.

Participants on MTurk watched a series of video pairs.

In each pair, one video was synthesized using our method;

the other by a baseline. They were then asked to pick the

more realistic one. Videos of resolution 144×256 (as this is

the highest resolution that PoseWarp baseline can produce)

were shown, and after each pair, participants were given

Region Metric FBF FBF+TS FBF+TS+FG

F
ac

e SSIM 0.784 0.811 0.816

LPIPS 0.045 0.039 0.036

B
o

d
y SSIM 0.828 0.838 0.838

LPIPS 0.057 0.051 0.050

(a) Metric comparison for synthesized face (top) and full-body

(bottom) regions. Metrics are averaged over the 5 subjects. For

SSIM higher is better. For LPIPS lower is better.

Condition 1 2 3 4 5 Total

FBF 54.1% 69.7% 62.4% 53.8% 60.0% 58.8%
FBF+TS 59.6% 56.4% 50.3% 53.0% 53.1% 53.9%

(b) Perceptual study results for subjects 1 through 5 and in total

average. We report the percentage of time participants chose our

method as more realistic than the ablated conditions.

Table 3: Ablation studies. We compare frame-by-frame synthesis

(FBF), adding temporal smoothing (FBF+TS) and our final model

with temporal smoothing and Face GAN modules (FBF+TS+FG).

Condition 1 2 3 4 5 Total

Prefer FBF+TS 60.5% 62% 57.5% 50% 62.5% 58.5%

Table 4: Comparison of our method without Face GAN (FBF+TS)

to the FBF ablation for subjects 1 through 5 and in total average.

We report the percentage of time participants chose the FBF+TS

ablation over the FBF ablation.

unlimited time to respond. Each task consisted of 18 pairs

of videos and was performed by 100 distinct participants.

Table 1 displays the results of this study and shows that par-

ticipants indicated our method is more realistic 95.1% and

83.3% of the time on average in comparison to the Nearest

Neighbors and PoseWarp [3] baselines respectively.

We include an additional perceptual study to verify our

method is not preferred over the others simply due to more

emphasis on face synthesis. We compare the FBF+TS vari-

ant (without the Face GAN module) to both baselines in Ta-

ble 2. We find that the FBF+TS ablation is consistently pre-

ferred, albeit slightly less than our full model, over the Near-

est Neighbors and PoseWarp baselines 91.2% and 79.1% of

the time on average respectively.

4.2.2 Ablation Study

We perform an ablation study on held-out test data of the

target subject (the source and target are the same) since we

do not have paired same-pose frames across subjects.

As shown in Table 3a(bottom), both SSIM and LPIPS

scores are similar for all model variations on the body re-

gions. Scores on full images are even more similar, as the

ablated models have no difficulty generating the static back-

ground. However, Table 3a(top) demonstrates the effective-
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FBF FBF + TS FBF + TS + FG Ground Truth

Figure 6: Face image comparison on held-out data. We com-

pare frame-by-frame synthesis (FBF), adding temporal smoothing

(FBF+TS) and our full model (FBF+TS+FG).
Ground Truth Ours PoseWarp [2] Nearest Neighbor

Figure 7: Comparison between our model, [3], and nearest neigh-

bors on single-frame synthesis on held-out data.

ness of our face residual generator by showing the improve-

ment of our full model over the the FBF+TS condition.

As these comparisons are in a frame-by-frame fash-

ion they do not emphasize the usefulness of our temporal

smoothing setup. The effect of this module can be seen in

the qualitative video results and in the perceptual studies

results in Table 3b. Here we see that our method is pre-

ferred 58.8% and 53.3% of the time over frame-by-frame

synthesis and the No Face GAN (FBF+TS) setup respec-

tively. In general, this shows that incorporating temporal

information at training time positively influences video re-

sults. Although the effect of the Face GAN can be be some-

what subtle, overall this addition benefits our results, espe-

cially in the case of subject 1 whose training video is very

sharp where facial details are easily visible.

We further compare our method without the Face GAN

(FBF+TS) to the frame-by-frame (FBF) ablation to verify

our temporal smoothing setup alone improves result qual-

ity. Table 4 reports that the FBF+TS ablation is preferred

on average over the FBF alone. Note that for subject 4 FBF

produced noticeable flickering, but FBF+TS introduced tex-

ture artifacts on his loose shirt (see Figure 9).

4.3. Qualitative Results

Transfer results for multiple source and target subjects

can be seen in Figure 5. The advantage of using the Face

GAN module can be seen in a single frame comparison in

Source Motion Same subject Mars Copeland

Accuracy 95.68% 96.70% 97.00%

Table 5: Fake detection average accuracy for held-out target sub-

jects. As seen in the rows, fake videos were created for each target

subject using same-subject and different-subject source motions.

Figure 6. As mentioned, [3] is designed for single image

synthesis. Nonetheless, even for a single frame transfer, we

outperform [3] as we show in Figure 7.

While the above single-image and quantitative results

(Section 4.2) suggest the superiority of our approach, more

significant differencse can be observed in our video. There

we find the temporal modeling produces more frame to

frame coherence than the frame-by-frame ablation, and that

adding a specialized facial generator and discriminator adds

considerable detail and realism.

5. Detecting Fake Videos

Recent progress on image synthesis and generative mod-

els has narrowed the gap between synthesized and real im-

ages and videos, which has raised legal and ethical ques-

tions on video authenticity (among many other social im-

plications). Given the high quality of our results, it is im-

portant to investigate mechanisms for detecting computer-

generated videos including ones generated by our model.

We train a fake-detector to identify fake videos created

by our system — given a video, the fake-detector flags it as

real or fake. We train the fake-detector in a parallel fashion

to our synthesis process, to classify whether a sequence of

2 consecutive frames is real (from ground-truth frames) or

fake (from our generation). This allows the fake-detector

to exploit cues based on the fidelity of individual frames as

well as consistency across time. To make a decision for the

whole video in question, we multiply the decision probabil-

ities for all consecutive frame pairs. Details of the network

architecture are included in the supplementary material. For

the purpose of training the fake-detector, we collect a 62-

subject set of short 1920× 1080 resolution dancing videos.

This larger dataset is collected from public YouTube videos

where a subject dances in front of a static camera for an av-

erage of 3 minutes. We split this set into 48 subjects for

training and 14 held-out subjects for testing.

We train a separate synthesis model for each of the 48
train subjects to produce fake content for detection. By

training our fake-detector on multiple fake videos depicting

a large set of subjects we ensure that it generalizes to de-

tecting fakes of different people and does not over-fit to one

or two individuals. We note that since each person dancing

performs a rich set of motions we require less training data

than for detecting fakes in still images.

We evaluate our fake-detector on synthesized videos for

14 held-out test subjects. We use both motion taken from

the same subject (where the source and target are the same
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Figure 8: Multi-subject synchronized dancing. By applying the same source motion to multiple subjects, we can create the effect of them

performing synchronized dance moves.

Figure 9: Failure cases. Ground truth appearance reference (left)

followed by our results (right).

person) and motion driven by a different source subject

(Bruno Mars and Misty Copeland) to synthesize fake videos

for each held out subject. Our results are shown in Ta-

ble 5. Overall, the fake-detector successfully distinguishes

real and fake sequences regardless of where the source mo-

tion is from. As expected, our fake detection accuracy is

lowest for same-person motion transfer, and is highest for

transfer of motion from a prima ballerina (Misty Copeland).

6. Potential Applications

One fun application of our system is to create a motion-

synchronized dancing video with multiple subjects (say, for

making a family reunion video). Given trained synthesis

models for multiple subjects, we use the same source video

to drive the motion of all target subjects — creating an ef-

fect of them performing the same dance moves in a syn-

chronized manner. See Figure 8 and the video.

Several systems based on our prototype description were

recently successfully employed commercially. One exam-

ple is an augmented reality stage performance art piece

where a 3D-rendered dancer appears to float next to a real

dancer [30]. Another is an in-game entertainment applica-

tion making NBA players dance [44].

7. Limitations and Discussion

Our relatively simple model is usually able to create arbi-

trarily long, good-quality videos of a target person dancing

given the movements of a source dancer to follow. How-

ever, it suffers from several limitations.

We have included examples of visual artifacts in Fig-

ure 9. On the left, our model struggles with loose cloth-

ing or hair which is not conveyed well through pose. The

middle columns show a missing right arm which was not

detected by OpenPose. On the right we observe some tex-

ture artifacts in shirt creases. Further work could focus on

improving results by combining target videos with different

clothing or scene lighting, improving pose detection sys-

tems, and mitigating the artifacts caused by high frequency

textures in loose/wrinkled clothing or hair.

Our pose normalization solution does not account for

different limb lengths or camera positions. These discrep-

ancies additionally widen the gap between the motion seen

in training and testing. However, our model is able to gen-

eralize to new motions fairly well from the training data.

When filming a target sequence, we have no specific source

motion in mind and do not require the target subject per-

forming similar motions to any source. We instead learn

a single model that generalizes to a wide range of source

motion. However our model sometimes struggles to extrap-

olate to radically different poses. For example, artifacts can

occur if the source motion contains extreme poses such as

handstands if the target training data did not contain such

upside-down poses. Future work could focus on the train-

ing data, i.e. what poses and how many are needed to learn a

effective model. This area relates to work on understanding

which training examples are most influential [21].
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