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Figure 1. Our model takes incomplete videsos with free-form masks (e.g. random text on the left and curves on the right) as inputs, and

generates the completed videos as outputs. We propose using 3D gated convolutions to deal with the uncertainty of free-form masks and a

combination of designed loss functions to enhance temporal consistency. Best viewed in videos.

Abstract

Free-form video inpainting is a very challenging task

that could be widely used for video editing such as text re-

moval (see Fig. 1). Existing patch-based methods could

not handle non-repetitive structures such as faces, while

directly applying image-based inpainting models to videos

will result in temporal inconsistency (see videos). In this

paper, we introduce a deep learning based free-form video

inpainting model, with proposed 3D gated convolutions to

tackle the uncertainty of free-form masks and a novel Tem-

poral PatchGAN loss to enhance temporal consistency. In

addition, we collect videos and design a free-form mask

generation algorithm to build the free-form video inpaint-

ing (FVI) dataset for training and evaluation of video in-

painting models. We demonstrate the benefits of these com-

ponents and experiments on both the FaceForensics and our

∗The two authors contributed equally to this paper.

FVI dataset suggest that our method is superior to existing

ones. Related source code, full-resolution result videos and

the FVI dataset could be found on Github.

1. Introduction

Video inpainting, to recover missing parts in a video,

is a very challenging task that remains unsolved. It is a

very practical and crucial problem and solving this problem

could be beneficial for movie post-production and general

video editing. Among them, free-from video inpainting is

the most difficult and unconstrained problem because the

missing area could be of arbitrary shape (see Fig. 1). In this

paper, we propose a novel model to tackle the free-form

video inpainting task, and both the quantitative and qualita-

tive evaluations show our model can generate state-of-the-

art results with high video quality.

There are many methods proposed for the video inpaint-

ing problem, such as patch-based algorithms [12, 14, 23,
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31], which aim to find the most similar patch from the un-

masked parts of the video to fill in the masked region. How-

ever, patch-based models often fail to recover complex ob-

jects that could not be seen or found easily in the unmasked

parts of the video. The nearest neighbor search algorithms

in patch-based methods also may not work when the ratio of

covered area by free-form masks to that of uncovered area

is high (see Table 2).

Aside from patch-based methods, many deep learning

based models have made tremendous progress on free-form

image inpainting. Nevertheless, simply applying image in-

painting model to videos tends to cause twisted or flickering

results that are temporally inconsistent (See Edge-Connect).

We extend the work of free-form image inpainting to

videos by developing a novel architecture that enhances

temporal consistency. The model is learning based, so

it could model the data distribution based on the training

videos and recover the masked regions. It could even re-

cover objects that are mostly occluded in the video such

as the face in Fig. 1, which is impossible for patch-based

methods. Besides, our method fully utilizes the temporal

information in videos, so the flickering problem of image

inpainting is mitigated.

Specifically, we observe that input videos contain many

masked voxels that are potentially harmful to vanilla convo-

lutions, we design a generator with 3D gated convolutional

layers that could properly handle the masked video by learn-

ing the difference between the unmasked region, filled in re-

gion and masked region in each layer and attend on proper

features correspondingly. In addition, different from image

inpainting, video inpainting has to be temporally coherent,

so we propose a novel Temporal PatchGAN discriminator

that penalizes high-frequency spatial-temporal features and

enhances the temporal consistency through the combination

of different losses. We also design a new algorithm to gener-

ate diverse free-form video masks, and collect a new video

dataset based on existing videos that could be used to train

and evaluate learning-based video inpainting models.

Our contributions could be summarized as follows:

• We extend the work of image inpainting and propose

the first learning-based model for free-form video in-

painting and achieve state-of-the-art results qualita-

tively and quantitatively on the FaceForensics and our

dataset.

• We introduce a novel Temporal PatchGAN (T-

PatchGAN) discriminator to enhance the temporal

consistency and video quality. It could also be ex-

tended to other video generation tasks such as video

object removal or video super-resolution.

• We design a new algorithm to generate free-form

masks. We design and evaluate several types of masks

with different mask-to-frame ratios.

• We collect the free-form video inpainting (FVI)

dataset, the first dataset to our knowledge for train-

ing and evaluation of free-form video inpainting meth-

ods, including 1940 videos from the YouTube-VOS

[33] dataset and 12600 videos from the YouTube-

BoundingBoxes [25] dataset.

2. Related Work

Image Inpainting. Image inpainting, to recover the dam-

aged or missing region in a picture, is firstly introduced

in [4]. Many approaches have been proposed to solve the

image inpainting task, including diffusion-based [3, 4] and

patch-based [2, 5, 9] ones. In general, these methods per-

forms well on simple structure but often fails to generate

complex objects or recover large missing area.

Over the past few years, deep learning based methods

have made tremendous progress on image inpainting. Xie

et al. [32] is the first to introduce convolutional neural net-

works (CNNs) for image inpainting and denoising on small

regions. Subsequently, Pathak et al. [24] extended image

inpainting to larger region with an encoder-decoder struc-

ture and used generative adversarial network (GAN) [11]

where a generator that strives to create genuine images and

a discriminator learns to recognize fake ones are jointly

trained to improve the blurry issue caused by the l2 loss.

Yu et al. [36] further proposed a contextual attention layer

with local and global WGANs to achieve better results.

Free-form Image Inpainting. Recently, image inpaint-

ing with irregular holes (free-form masks) caught more at-

tention because it is closer to the real case. Yan et al. [34]

designed a special shift-connection layer in the U-Net archi-

tecture; Lui et al. [20] proposed the partial convolution; Yu

et al. [35] developed the gated convolution with spectral-

normalized discriminator to improve free-form image in-

painting. Asides from these works, Nazeri et al. [22] pro-

posed a two-stage adversarial model EdgeConnect, where

the edge generator firstly hallucinates edges of the missing

region, and the image completion network generates the fi-

nal output image using hallucinated edges as a priori. Naz-

eri et al. provided a pretrained model that reaches state-of-

the-art, which we set as a baseline in our work.

Although state-of-the-art image inpainting models could

recover missing regions in a picture in a reasonable manner,

extending these models to videos will cause serious tempo-

ral inconsistency as each inpainted frame is different (see

videos).

Video Inpainting. Traditionally, patch-based methods

[12, 14, 23, 31] are used for video inpainting. Wexler et al.

[31] considered video inpainting as a global optimization

problem, where all missing regions could be filled in with
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Figure 2. Model architecture and learned gated value visualization. Our model is composed of (a) a video inpainting generator with

3D gated convolutional layers that fully utilizes information for neighboring frames to handle irregular video masks and (b) a Temporal

PatchGAN (T-PatchGAN) discriminator that focuses on different spatial-temporal features to enhance output quality. (c) The visualization

of learned gating values σ(Gatingt,x,y). The 3D gated convolution will attend on the masked area and gradually fill in the missing feature

points. Note that all gating values are extracted from the first channel of each layer without manual picking.

similar patches from the unmasked parts. Afterwards, New-

son et al. [23] further improved the search algorithm, inte-

grating texture features and initialization scheme. Lastly,

Huang et al. [14] tackled the moving camera problem by

jointly estimating optical flow and colors in the missing re-

gions, and we also take it as our baseline.

State-of-the-art patch-based methods could generate

plausible videos under certain conditions, but the computa-

tion time of these methods is too high for real-time applica-

tions. In addition, patch-based models are limited to repeti-

tive patterns or appeared objects and not feasible to complex

structures and large/long-lasting occlusions. The proposed

model is learning based that could solve both problems by

modeling the distribution of real videos and generate realis-

tic results only by forward inference, without searching.

To solve issues in patch based methods, Wang et al. [29]

proposed the first deep learning based method CombCN for

video inpainting, and we also set it as a baseline. It is a

two-stage model with a 3D convolutional network for tem-

poral consistency, followed by a 2D completion network to

improve video quality. Although their model could be ap-

plied to some random holes during validation/testing stage,

it is rather limited so we do not consider it as a free-form

video inpainting method. Besides, their model only uses

traditional convolution and is trained with the l1 loss, so the

results tend to be blurry in complex scenes [7]. Our model

is single-stage, uses gated convolution to attend on valid

features, and integrates perceptual and temporal generative

adversarial loss to generate clear and plausible videos for

irregular moving masks.

3. Proposed Method

The proposed model (Fig. 2) consists of a generator net-

work G with 3D gated convolution to inpaint videos, and a

Temporal PatchGAN discriminator D with several losses.

3.1. Video Inpainting Generator

We extend the single-stage UNet-like network used for

image inpainting [20] to video inpainting and integrate the

gated convolutional layers in [35] (see Fig. 2 (a)). Dur-

ing training, we combine ground truth video frames {Vt |
t = 1 . . . n} and masks {Mt | t = 1 . . . n} into masked

input video {It | t = 1 . . . n}. The model will inpaint

the masked region and generate the output video frames

{Ot | t = 1 . . . n}.

3.2. Spatial­temporally Aware 3D Gated Conv.

In vanilla convolutional layers, all pixels are treated

as valid ones, which makes sense for tasks with real im-

ages/videos as inputs, such as object detection or action

recognition. However, for inpainting problems, masked

regions are filled with black pixels, so input features for

convolutional layers include invalid pixels (shallow layers)
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or synthesized pixels (deep layers), which should not be

treated exactly as normal ones.

To address this problem, we propose the 3D gated con-

volutions extended from [35] to replace vanilla convolutions

in our generator. The 3D convolutions utilizes information

from neighboring frames, while the gated convolutions at-

tends on the irregular masked areas; together, 3D gated con-

volutions could properly handle the uncertainty of free-form

video masks. Specifically, for each convolutional layer, an

additional gating convolutional filter Wg is applied to input

features Ft,x,y to obtain a gating Gatingt,x,y , which is used

as an attention map on the output features Featurest,x,y
from original vanilla convolutional filter Wf according to

the validity (see Fig. 2(c)). The t, x, y are the spatial-

temporal coordinates of the video. It could be expressed

as:
Gatingt,x,y =

∑∑
Wg · Ft,x,y (1)

Featurest,x,y =
∑∑

Wf · Ft,x,y (2)

Outputt,x,y = σ(Gatingt,x,y)φ(Featurest,x,y) (3)

where σ is the sigmoid function to transform gating to val-

ues between 0 (invalid) and 1 (valid), and φ is the original

activation function (e.g. LeakyReLU).

3.3. Loss Functions

The overall loss function to train the model is defined as:

Ltotal = λl1Ll1 + λl1mask
Ll1mask

+ λpercLperc

+ λstyleLstyle + λGLG

(4)

where λl1 , λl1mask
, λperc, λstyle and λG are the weights

for l1 loss, masked l1 loss, perceptual loss, style loss and

Temporal PatchGAN loss, respectively.

Masked l1 loss. The l1 loss focuses on the pixel-level fea-

tures. Since the unmasked area will be pasted onto the final

output video, we separate the l1 loss for all videos:

Ll1 = Et,x,y[|Ot,x,y − Vt,x,y|] (5)

and the l1 loss for the masked region:

Ll1mask
= Et,x,y[Mt,x,y|Ot,x,y − Vt,x,y|] (6)

Perceptual loss. Perceptual loss is firstly proposed in [10]

to keep image contents for style transfer, and is now widely

used for image inpainting [20, 22] and super-resolution [16,

18] to mitigate the blurriness caused by the l1 loss. The

perceptual loss computes the l1 loss in feature level:

Lperc =

n∑

t=1

P−1∑

p=0

|ΨOt
p −ΨVt

p |

N
Ψ

Vt
p

(7)

where ΨVt
p denotes the activation from the pth selected layer

of the pretrained network given the input Vt, and N
Ψ

Vt
p

is the number of elements in the pth layer. We use layer

relu2 2, relu3 3 and relu4 3 from the VGG [28] network

pre-trained on ImageNet [27].

Style loss. We also include the style loss, which is intro-

duced in [10] to keep the image style for style transfer, and

also used in image inpainting [20, 22]. Style loss is simi-

lar to perceptual loss, except that an auto-correlation (Gram

matrix) is firstly applied to the features:

Lstyle =

n∑

t=1

P−1∑

p=0

1

CpCp

|(ΨOtp)T (ΨOtp)− (ΨVt
p )T (ΨVt

p ))|

CpHpWp

(8)

where ΨOtp and ΨVtp are both VGG features in the shape

of (Hp, Wp, Cp) as the ones in perceptual loss 7.

Temporal PatchGAN loss. For the free-form video in-

painting problem, masks could be anywhere in a video, so

we should consider global and local features in each frame,

and the temporal consistency of these features. A naive idea

will be applying a loss function for each of the three aspects

respectively. However, empirically we found that it is hard

to balance the weights of these loss functions, especially

when some of them are GAN losses (adding GAN loss is

a very common strategy to make image inpainting results

more realistic [22, 36, 35]).

Yu et al. proposed an efficient SN-PatchGAN [35],

which applies GAN loss on feature maps of the discrimi-

nator to replace the use of global and local GAN and tackle

the problem that masks could be anywhere and of any form.

Although their work tackles the balancing issue between

GAN losses and solves free-form image inpainting prob-

lem, it does not consider temporal consistency, a pivotal

factor for high-quality video inpainting. Inspired by their

work, we further integrate the temporal dimension and de-

sign a novel Temporal PathGAN (T-PatchGAN) discrimi-

nator that focuses on different spatial-temporal features to

fully utilize all the global and local image features and tem-

poral information together.

Our T-PatchGAN discriminator is composed of 6 3D

convolutional layers with kernel size 3 × 5 × 5 and stride

1×2×2. The recently proposed spectral normalization [21]

is applied to both the generator and discriminator, similar to

[22] to enhance training stability. In addition, we use the

hinge loss as the objective function as to discriminate if the

input video is real or fake:

LD = Ex∼Pdata(x)[ReLU(1 +D(x))]

+ Ez∼Pz(z)[ReLU(1−D(G(z)))]
(9)

LG = −Ez∼Pz(z)[D(G(z))] (10)

where G is the video inpainting network that takes input

video z and D is the T-PatchGAN discriminator.

Note that we use kernel size 3 × 5 × 5 for each layer in

the discriminator, so the receptive field of each output fea-

ture covers the whole videos, and a global discriminator like

[36] is not needed. The T-PatchGAN learns to classify each
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spatial-temporal patch as real or fake, which restricts it to

focus on high-frequency features because it only penalizes

at the scale of patches. As the l1 loss already focus on low-

frequency features, using T-PatchGAN could improve the

output video quality in an efficient way.

3.4. Free­form Video Masks Generation

(a) Object-like (31%) (b) Bounding box 

(15%)

(c) Curve-like (32%) (d) Curve-like with 

border constraint 

(30%)

(e) Mask deformation and movement

Figure 3. Masks generated by our algorithm with different mask

types and mask-to-image ratios. The components in a mask video

may move and deform independently as shown in (e).

Training data is extremely important for learning based

methods, and the generation of our input mask videos is

non-trivial as it should consider different scenarios to be

“free-form”. There is no existing database or algorithm

to generate such free-form video masks, so we develop an

video mask generation algorithm based on the image one by

[35] (see Algorithm 1 in the supplementary materials).

The image mask generation in [35] uses several strokes

drawing on a blank image to represent a mask. Each stroke

is composed of a ordered set of control points, which is de-

termined by the trace of a head point initialized at a random

position and repeatedly moving to a nearby position.

Additionally, for free-form video masks, we introduce

the concept of motion: strokes may move and deform over

time (see Fig. 3(e)). Stroke deformation is achieved by ran-

domly moving each control point of a stroke with a certain

probability. For the movement, the concepts of velocity and

acceleration are applied on the strokes. The initial speeds

of strokes are sampled from a normal distribution centered

on 0 since most objects in videos do not have large speeds.

As stated in [20], many methods [15, 20] have degraded

performance when masks cover the border. Therefore, aside

from motion simulation, we also take such border con-

straints into consideration. That is, we generate both masks

that either cover or do not cover the edges of the frame (see

Fig. 3. Masks without border constraint are more difficult

since convolutional filters will have no valid pixels as inputs

in the masked border areas.

Moreover, we consider three different types of masks:

long thin curve-like and round thick object-like masks gen-

erated with different hyper-parameters in our mask genera-

tion algorithm along with bounding-box masks, as shown in

Fig. 3. The curve-like masks are considered easier as most

masked areas are close to valid pixels (unmasked area),

while object-like and bounding-box masks are challenging

since it is hard to inpaint large invalid voxels.

Totally 28,000 free-form videos with mask-to-frame ra-

tio from 0 - 10% to 60 - 70% are generated for training. And

for each mask type, 100 videos are generated for testing.

4. Experimental Results

4.1. Datasets

FaceForensics. We compare with [29] on the FaceForen-

sics dataset [26], which contains 1004 face videos from

YouTube and the YouTube-8m dataset [1] with face, news-

caster or newsprogram tags. The videos are cropped into

128 × 128 with the face in the middle during the data prepa-

ration stage, following the setting in [29]. Among them, 150

videos are used for evaluation and the rest are used for train-

ing. The FaceForensics dataset is rather easy for learning-

based methods since the data is less diverse.

Free-form video inpainting (FVI) dataset To test on

more practical cases, we collect videos from the YouTube-

VOS [33] dataset and the YouTube-BoundingBoxes dataset

[25]. The former has about 2000 videos with 94 categories

of object segmentation in 6 frame per second (FPS) and

the latter has about 380,000 videos with 23 kinds of object

bounding boxes in 30 FPS. We choose videos with resolu-

tion higher than 640 × 480 and manually filter out videos

with shot transitions. We set 100 videos from the YouTube-

VOS as testing set, while the training set includes about

15,000 videos. Together with the 28,000 free-form mask

videos, we build the FVI dataset, the first dataset for free-

form video inpainting, to the best of our knowledge.

Our FVI dataset is very challenging for the video inpaint-

ing task due to the high diversity, including different kinds

of objects, animals and human activities. All videos are

from YouTube, closer to real-world scenario. Moreover, the

provided object segmentation and bounding boxes could be

used to test video object removal.

For the experiments, we only use 1940 videos from the

training set as we do not witness a significant improvement

for our model using the full training set. During data pre-

processing stage, we resize videos to 384 × 216 and ran-

domly crop them to 320 × 180 with random horizontal flip.

4.2. Evaluation metrics

We use mean square error (MSE) and Learned Percep-

tual Image Patch Similarity (LPIPS) [37] to evaluate the

image quality. Furthermore, to evaluate the video quality

and temporal consistency, we also calculate the Frchet In-

ception Distance (FID) [13] with I3D [6] pre-trained video

recognition CNN as Vid2vid [30]. See the supplementary

materials for the details.
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4.3. Quantitative Results

We evaluate our model on the FaceForensics and FVI

testing set with free-form masks in 7 ranges of mask-to-

frame ratio from 0 - 10% to 60 - 70% (higher mask-to-

frame ratio makes the task more difficult, see Fig. 4). The

state-of-the-art patch-based video inpainting method TC-

CDS by Huang et al. [14], image inpainting method Edge-

Connect(EC) by Nazeri et al. [22] and learning based video

inpainting method CombCN by Wang et al. [29] are set for

comparison. We train Nazeri et al. ’s model and Wang et

al. ’s model on our dataset. Note that Wang et al. ’s model

is originally trained on bounding boxes, but we train it with

our free-form mask for fair comparison.

From Table 1 we could see that the FaceForensics

dataset is easy for learning-based models but not for the

patch-based method TCCDS [14], because face features are

non-repetitive and hence cannot be recovered with nearby

patches. Yet, the overall structure of faces are learnable

and thus learning-based methods are favorable. Compared

with the two deep learning based methods, our model has

superior performance on curve-like and object-like masks

since it fully utilizes information of neighboring frames to

recover the missing areas by 3D convolutions and the pro-

posed T-PatchGAN loss. As for bounding-box masks, our

model outperforms CombCN while on par with EC. Note

our model is only trained on FVI. Hence, for fair compar-

ison, we train EC from scratch on FVI without having it

pre-trained on Celeb-A as stated in the original paper.

On the other hand, Table 2 shows that our FVI dataset

is more challenging for learning-based methods for its high

diversity. It is rather difficult for learning-based models to

capture the distribution of the highly diverse masks, while

patch-based methods like TCCDS could easily find realis-

tic enough patches to fill in the mask given the mask is not

large. Nonetheless, we could notice that for some masks,

the nearest neighbor search in TCCDS fails to find candi-

dates when most patches are covered by the mask. Note

that CombCN is only trained with the l1 loss, so while it

reports a lower MSE, its results are actually blurry, bearing

high perceptual distance to ground truths (high LPIPS). Our

method generates clear results (low LPIPS and FID) and

demonstrates high temporal consistency (low FID), which

is of crucial importance in video inpainting task.

4.4. Qualitative Results

We also demonstrate the visual comparison in Fig. 5

with the corresponding video link. As mentioned in 4.3,

CombCN’s [29] outputs are blurry due to the l1 loss, TC-

CDS [14] may paste wrong patches, and Edge-Connect [22]

will have flickering results (best viewed in videos). Our

model could generate reasonable frames with high tempo-

ral consistency.

In addition, our trained model can be easily applied on

object removal, as shown in Fig. 7. More visual compar-

isons could be found in the supplementary materials.

Mask

Type
TCCDS EC CombCN

3DGated

(Ours)

M
S

E
↓ Curve 0.0031* 0.0022 0.0012 0.0008

Object 0.0096* 0.0074 0.0047 0.0048

BBox 0.0055 0.0019 0.0016 0.0018

L
P

IP
S
↓ Curve 0.0566* 0.0562 0.0483 0.0276

Object 0.1340* 0.0761 0.1353 0.0743

BBox 0.1260 0.0335 0.0708 0.0395

F
ID

↓ Curve 1.281* 0.848 0.704 0.472

Object 1.107* 0.946 0.913 0.766

BBox 1.013 0.663 0.742 0.663
Table 1. Quantitative results on the FaceForensics testing set with

masks without border. Our model has superior performance for the

curve-like and object-like masks. *TCCDS fails on some masks;

the results are average of the successful cases.

Mask

Type
TCCDS EC# CombCN

3DGated

(Ours)
M

S
E Curve 0.0219* 0.0047 0.0021 0.0024

Object 0.0110* 0.0079 0.0049 0.0056

L
P

I. Curve 0.2838* 0.1204 0.0794 0.0521

Object 0.2001* 0.1420 0.2054 0.1078

F
ID

Curve 2.105* 1.033 0.766 0.609

Object 1.287* 1.083 1.091 0.905
Table 2. Quantitative comparison on the FVI testing set without

border. The results are the average of different mask-to-frame

ratios (see the supplementary materials for original data). Our

model outperforms the baselines for perceptual distance (LPIPS)

and temporal consistency (FID). CombCN has better MSE but

their results are blurry (see Fig. 5). #Pretrained on Places2 [38].

Figure 4. Effect of mask size on LPIPS and FID on the FVI test set

with curve-like masks. Larger masks are harder for all methods.

4.5. User Study

Aside from qualitative comparison, we also conduct a

human subjective study to evaluate our method. During the

study, we display a pair of result videos (ours against base-

lines or ground truth, in random sequence), and ask sub-

jects to choose the more realistic and consistent one. The

mask video is shown meanwhile for reference. For each
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Figure 5. Visual comparison with the baselines. TCCDS: past-

ing wrong patches; Edge-Connect: inconsistent between frames;

CombCN: blurry. See vidoes

mask type (object-like and curve-like) and mask-to-hole ra-

tio (0-10% to 60-70%), we randomly select 20 video pairs

to compare and each video pair is presented to 5 subjects.

Results from 150 participants are shown in Fig. 6. Our

model outperforms the baselines in both object-/curve-like

masks for all mask-to-frame ratios. In addition, when com-

pared with ground truth, our method still has 23% prefer-

ence on average, which indicates subjects could not tell our

results and the original videos apart in 23% cases.

4.6. Ablation Study

We conduct an ablation study to evaluate the contribution

of each proposed component. From Table 3 we could see

Figure 6. User preference on the FVI testing set (ours versus

baselines and ground truth). 50% means that the two methods

are equally good. Our model outperforms the baselines in both

the object-like and curve-like masks for all mask-to-frame ratios.

When compared with ground truth (GT), our method could still

have about 23% preference for curve-like masks.

that 3D convolution and T-PatchGAN are both crucial be-

cause the two components provide a great amount of tempo-

ral information by 3D convolutions. Corresponding video

comparisons could be found on YouTube.

3D

conv.

Gated

conv.

T-Patch

GAN
LPIPS↓ FID ↓

X X 0.1769 1.243

X X 0.1321 1.121

X X 0.1716 1.201

X X X 0.1209 1.034
Table 3. Ablation study on the FVI dataset with object-like masks.

We can see that all components are important. We set up all mod-

els with about the same number of parameters (i.e., increase the

channel number for 2D convolution and vanilla convolution) to

exclude the gain from additional parameters.

4.7. Extension to Video Super­Resolution

Our model could be extended to video super-resolution,

interpolation or prediction by using proper masks. For

video super-resolution, given a low-resolution video with

width W, height H, length L and up-sampling factor K, we

construct the input mask video in shape (W ×K, H ×K,

L) where each pixel (x, y, t) is masked if x or y is not a mul-

tiple of K. For frame interpolation, masks could be added

between frames. In Fig. 8 and Table 4, we compare our

method with well-known super-resolution methods SRRes-

Net and SRGAN in [18]. Our model could generate plau-

sible high-resolution videos with low perceptual distance.

See result videos.

Bicubic SRResNet SRGAN Ours

MSE↓ 0.0089 0.0044 0.0074 0.0076

LPIPS↓ 0.5141 0.3582 0.1785 0.1631

FID↓ 1.502 1.083 1.035 1.096
Table 4. Quantitative comparison for spatial super-resolution on

the VOR testing set for 4x up-sample. We can see that our model

could reach low perceptual quality.
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Figure 7. Our model could be easily extended to video object re-

moval. See videos.

5. Discussion and Future Work

Our model fails when the testing video is very different

from the training data as most learning-based methods do.

In addition, when the masked area is too thick, our model

fails to generate natural results. Still, compared with the

baselines, our model performs better under the two condi-

tions (see videos).

Besides, compared to 2D convolutions, 3D convolutions

require more parameters that could lead to higher redun-

dancy. Nonetheless, our model is single-stage, feed-forward

and does not depend on optical flows, so the inference speed

is fast, and the performance gain is significant. A potential

solution to reduce the number of parameters is to integrate

the Temporal Shift Module [19] so that 2D convolutions

could deal with temporal information [8].

Also, we found that we could reach a similar perfor-

mance to that of gated convolutions by simply increasing

the number of channels in the ablation study. This may im-

Figure 8. Two examples of spatial super-resolution with 4x up-

sampling. Compared with the two baselines, our model could re-

cover the eyes of the chameleon. See corresponding videos.

ply that our model still underfits the FVI dataset, or gated

convolutions have less impacts for video inpainting com-

pared to image inpainting. Potential future works would be

to compare and improve convolutional layers for free-form

video inpainting or combine with optical flows [17].

Another future work is to integrate the user guided in-

puts as [35, 22] by training the model with edge images of

video frames as additional inputs. The model could gen-

erate more plausible results given the object shape informa-

tion from edges. Additionally, during inference, users could

draw lines to change the edge images to manipulate the out-

put videos, which is useful for video editing.

6. Conclusion

In this paper, we proposed the first learning based free-

form video inpainting network to our knowledge, using 3D

gated convolution and a novel GAN loss. We demonstrate

the power of 3D gated convolution and temporal PatchGAN

to enhance video quality and temporal consistency in the

video inpainting task. Our system could also be extended to

video object removal, video super-resolution or video inter-

polation. Both the quantitative and qualitative results indi-

cate that our model achieve state-of-the-art results.
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