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Abstract

Attention mechanisms have been found effective for per-

son re-identification (Re-ID). However, the learned “at-

tentive” features are often not naturally uncorrelated or

“diverse”, which compromises the retrieval performance

based on the Euclidean distance. We advocate the com-

plementary powers of attention and diversity for Re-ID,

by proposing an Attentive but Diverse Network (ABD-Net).

ABD-Net seamlessly integrates attention modules and di-

versity regularizations throughout the entire network to

learn features that are representative, robust, and more dis-

criminative. Specifically, we introduce a pair of comple-

mentary attention modules, focusing on channel aggrega-

tion and position awareness, respectively. Then, we plug in

a novel orthogonality constraint that efficiently enforces di-

versity on both hidden activations and weights. Through

an extensive set of ablation study, we verify that the at-

tentive and diverse terms each contributes to the perfor-

mance boosts of ABD-Net. It consistently outperforms exist-

ing state-of-the-art methods on there popular person Re-ID

benchmarks.

1. Introduction

Person Re-Identification (Re-ID) aims to associate indi-

vidual identities across different time and locations. It em-

braces many applications in intelligent video surveillance.

Given a query image and a large set of gallery images,

person Re-ID represents each image with a feature embed-

ding, and then ranks the gallery images in terms of feature

embeddings’ similarities to the query. Despite the excit-

ing progress in recent years, person Re-ID remains to be

extremely challenging in practical unconstrained scenarios.

Common challenges arise from body misalignment, occlu-

sion, background perturbance, view point changes, pose

∗Equal Contribution.

Figure 1. Visualization of attention maps. (i) Original images; (ii)

Attentive feature maps; (iii) Attentive but diverse feature maps. In

general, diversity is observed to make attention “broader” and to

reduce the (incorrect) overfitting of local regions (such as clothes

textures) by attention. (L: large values; S: small values)

variations and noisy labels, among many others [1].

Substantial efforts have been devoted to addressing those

various challenges. Among them, incorporating body part

information [2, 3, 4, 5, 6] has empirically proven to be effec-

tive in enhancing the feature robustness against body mis-

alignment, incomplete parts, and occlusions. Motivated by

such observations, the attention mechanism [7] was intro-

duced to enforce the features to mainly capture the discrimi-

native appearances of human bodies (or certain body parts).

Since then, the attention-based models [8, 9, 10, 11, 12]

have boosted person Re-ID performance much.

On a separate note, the feature embeddings are used to

compute similarities between images, typically based on the

Euclidean distance, to return the closest matches. Sun et

al. [13] pointed out that correlations among feature em-

beddings would significantly compromise the matching per-

formance. The low feature correlation property is, how-

ever, not naturally guaranteed by attention-based models.

Our observation is that those attention-based models are of-

ten more prone to higher feature correlations, because intu-

itively, the attention mechanism tends to have features focus

on a more compact subspace (such as foreground instead of
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the full image, see Fig.1 for examples).

In view of the above, we argue that a more desirable fea-

ture embedding for person Re-ID should be both attentive

and diverse: the former aims to correct misalignment, elim-

inate background perturbance, and focus on discriminative

local parts of body appearances; the latter aims to encour-

age lower correlation between features, and therefore better

matching, and potentially make feature space more com-

prehensive. We propose an Attentive but Diverse Network

(ABD-Net), that strives to integrate attention modules and

diversity regularization and enforces them throughout the

entire network. The main contributions of ABD-Net are

outlined as below:

• We incorporate a compound attention mechanism into

ABD-Net, consisting of Channel Attention Module

(CAM) and Position Attention Module (PAM). CAM

facilitates channel-wise, feature-level information ag-

gregation, while PAM captures the spatial awareness

of body and part positions. They are found to be com-

plementary and altogether benefit Re-ID.

• We introduce a novel regularization term called spec-

tral value difference orthogonality (SVDO) that di-

rectly constrains the conditional number of the weight

Gram matrix. SVDO, efficiently implemented, is ap-

plied to both activations and weights, and is shown to

effectively reduce learned feature correlations.

• We perform extensive experiments on Market-1501

[14], DukeMTMC-Re-ID [15], and MSMT17 [1].

ABD-Net significantly outperforms existing methods,

achieving new state-of-the-art on all three popular

benchmarks. We also verify that the attentive and di-

verse terms each contributes to a performance gain,

through rigorous ablation studies and visualizations.

2. Related Work

2.1. Person Re­identification: Brief Overview

Person Re-ID has two key steps: obtaining a feature

embedding and performing matching under some distance

metric [16, 17, 18]. We mainly review the former where

both handcrafted features [18, 19, 20, 21] and learned fea-

tures [22, 23, 4, 24, 25] were studied. In recent years,

the prevailing success of convolutional neural networks

(CNNs) in computer vision has made person Re-ID no ex-

ception. Due to many problem-specific challenges such

as occlusion/misalignment, incomplete body parts, as well

as background perturbance/view point changes, naively ap-

plying CNN backbones to feature extraction may not yield

ideal Re-ID performance. Both image-level features and lo-

cal features extracted from body parts prove to enhance the

robustness. Many part-based methods have achieved supe-

rior performance [2, 3, 26, 27, 28, 4, 5, 29, 6, 30, 31, 8, 32].

We refer readers to [33] for a more comprehensive review.

2.2. Attention Mechanisms in Person Re­ID

Several studies proposed to integrate attention mecha-

nism into deep models to address the misalignment issue

in person Re-ID. Zhao et al. [8] proposed a part-aligned

representation based on a part map detector for each prede-

fined body part. Yao et al. [9] proposed a Part Loss Net-

work which defined a loss for each average pooled body

part and jointly optimized the summation losses. Si et al.

[10] proposed a dual attention matching network based on

an inter-class and an intra-class attention module to capture

the context information of video sequences for person Re-

ID. Li et al. [12] proposed a multi-task learning model that

learns hard region-level and soft pixel-level attention jointly

to produce more discriminative feature representations. Xu

et al. [11] used pose information to learn attention masks

for rigid and non-rigid parts, and then combined the global

and part features as the final feature embedding.

Our proposed attention mechanism differs from previ-

ous methods in several aspects. First, previous methods

[8, 9, 11] only use attention mechanisms to extract part-

based spatial patterns from person images, which are usu-

ally focus in the foregrounds. In contrast, ABD-Net com-

bines spatial and channel clues; besides, our added diver-

sity constraint will avoid the overly correlated and redun-

dant attentive features. Second, our attention masks are di-

rectly learned from the data and context, without relying on

manually-defined parts, part region proposals, nor pose esti-

mation [8, 9, 11]. Our two attention modules are embedded

within a single backbone, making our model lighter-weight

than the multi-task learning alternatives [11, 12].

2.3. Diversity via Orthogonality

Orthogonality has been widely explored in deep learn-

ing to encourage the learning of informative and diverse

features. In CNNs, several studies [34, 35, 36, 37] per-

form regularization using “hard orthogonality constraints”,

which typically depends on singular value decomposition

(SVD) to strictly constrain their solutions on a Stiefel man-

ifold. The similar idea was first exploited by [13] for per-

son Re-ID, where the authors performed SVD on the weight

matrix of the last layer, in an effort to reduce feature correla-

tions. Despite the effectiveness, SVD-based hard orthogo-

nality constraints are computationally expensive, and some-

times appear to limit the learning flexibility.

Recent studies also investigated “softer” orthogonal-

ity regularizations by enforcing the Gram matrix of each

weight matrix to be close to an identity matrix, under Frobe-

nius norm [38] or spectral norm [39]. We propose a novel

spectral value difference orthogonality (SVDO) regulariza-

tion that directly constrains the conditional number of the

Gram matrix. Also contrasting from [13, 38] that apply or-

thogonality only to CNN weights, we enforce the new reg-

ularization on both hidden activations and weights.
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Figure 2. Channel Attention Module (CAM)

3. Attentive but Diverse Network

In this section, we first introduce the two attention mod-

ules, followed by the new diversity (orthogonality) regular-

ization. We then wrap them up and describe the overall ar-

chitecture of ABD-Net.

3.1. Attention: Channel­Wise and Position­Wise

The goal of attention for Re-ID is to focus on person-

related features while eliminating irrelevant backgrounds.

Inspired by the successful idea in segmentation [40], we in-

tegrate two complementary attention mechanisms: Channel

Attention Module (CAM) and Positional Attention Module

(PAM). The full configurations for CAM and PAM can be

found in the supplementary.

3.1.1 Channel Attention Module

The high-level convolutional channels in a trained CNN

classifier are well-known to be semantic-related and often

category-selective. In the person Re-ID case, we hypothe-

size that the high-level channels in the person Re-ID case

are also “grouped”, i.e., some channels share similar se-

mantic contexts (such as foreground person, occlusions, or

background) and are more correlated with each other. CAM

is designed to group and aggregate those semantically sim-

ilar channels.

The full structure of CAM is illustrated in Fig.2. Given

the input feature maps A ∈ R
C×H×W , where C is the total

number of channels and H ×W is the feature map size, we

compute the channel affinity matrix X ∈ R
C×C , as shown

below:

xij =
exp(Ai ·Aj)∑C

j=1
exp(Ai ·Aj)

, i, j ∈ {1, · · · , C} (1)

where xij represents the impact of channel i on channel j.

The final output feature map E is calculated by equation (2):

Ei = γ

C∑

j=1

(xijAj) +Ai, i ∈ {1, · · · , C} (2)

γ is a hyperparameter to adjust the impact of CAM.
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Figure 3. Position Attention Module (PAM)

3.1.2 Position Attention Module

In contrast to CAM, Position Attention Module (PAM) is

designed to capture and aggregate those semantically re-

lated pixels in the spatial domain. We depict the structure of

PAM in Fig.3. The input feature maps A ∈ R
C×H×W are

first fed into convolution layers with batch normalization

and ReLU activation to produce feature maps B, C, D ∈
R

C×H×W . Then we compute the pixel affinity matrix

S ∈ R
N×N where N = H ×W . Note that the dimensions

of S and X are different, since the former computes corre-

lations between the total N pixels rather than C channels.

We generate the final output feature map E with similar cal-

culation as CAM in Section 3.1.1.

3.2. Diversity: Orthogonality Regularization

Following [13], we enforce diversity via orthogonality,

yet derive a novel orthogonality regularizer term. It is ap-

plied to both hidden features and weights, of both convo-

lutional and fully-connected layers. Orthogonality regular-

izer on feature space (short for O.F. hereinafter) is to reduce

feature correlations that can directly benefit matching. The

orthogonal regularizer on weight (O.W.) encourages filter

diversity [39] and enhances the learning capacity.

Next, we show the detailed derivation of our orthogo-

nality term on features, while the weight orthogonality can

be derived in a similar manner∗. For feature maps M ∈
R

C×H×W , where C,H,W are the number of channels, fea-

ture map’s height and width, respectively, we will first re-

shape M into a matrix form F ∈ R
C×N , with N = H×W .

Many orthogonality methods [34, 35, 36, 37], includ-

ing the prior work on person Re-ID [13], enforce hard

constraints on orthogonality of weights, whose computa-

tions rely on SVD. However, computing SVD on high-

dimensional matrices is expensive, urging for the develop-

ment of soft orthogonality regularizers. Many existing soft

regularizers [38, 41] restrict the Gram matrix of F to be

close to an identity matrix under Frobenius norm that can

avoid the SVD step while being differentiable. However,

∗For the weight tensor Wc ∈ R
S×H×C×M in a convolutional layer,

where S,H,C,M are filter’s width and height, the number of input and

output channels, we follow the convention of [38, 39] to reshape Wc into

a matrix form F∗
∈ R

C
∗×M , where C∗ = S ×H × C.
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the Attentive Branch. l The feature vectors from both attentive and global branches are concatenated as the final feature embedding.

the gram matrix for an overcomplete F cannot reach iden-

tity because of rank deficiency, making those regularizers

biased. [39] hence introduced the spectral norm-based reg-

ularizer that effectively alleviates the bias.

We propose a new option to enforce the orthogonality

via directly regularizing the conditional number of FFT :

β||k(F)− 1||2
2
, (3)

where β is the coefficient and k(F) denotes the condition

number of F, defined as the ratio of maximum singular

value to minimum singular value of F. Naively solving

k(F) will take one full SVD. To make it computationally

more tractable, we convert (3) into a spectral value differ-

ence orthogonality (SVDO)† regularization:

β||λ1(FF
T )− λ2(FF

T )||2
2
, (4)

where λ1(FF
T ) and λ2(FF

T ) denote the largest and small-

est eigenvalues of FFT , respectively.

We use auto-differentiation to obtain the gradient of

SVDO, however, this computation still contains the ex-

pensive eigenvalue decomposition (EVD). To bypass EVD,

we refer to the power iteration method to approximate the

eigenvalues. We start with a random initialized q, and then

iteratively perform equation (5) (two times by default):

p← Xq , q ← Xp , λ(X)←
||q||

||p||
. (5)

where X in equation (5) is FF
T for computing λ1(FF

T ),
and FF

T −λ1I for λ2(FF
T ). In that way, the computation

of SVDO becomes practically efficient.

†The reason why we choose to penalize the difference between

λ1(FF
T ) and λ2(FF

T ) rather than the ratio of them is to avoid numer-

ical instability caused by dividing a very small λ2(FF
T ), which we find

happen frequently in our experiments.

3.3. Network Architecture Overview

The overall architecture of the proposed ABD-Net is

shown in Fig.4. ABD-Net is compatible with most common

feature extraction backbones, such as ResNet [42], Incep-

tionNet [43], and Densenet [44]. Unless otherwise speci-

fied, we use ResNet-50 as the default backbone network due

to its popularity in Re-ID [45, 46, 47, 48, 49, 11, 50, 51].

We add a CAM and O.F. on the outputs of res conv 2

block. The regularized feature map is used as the input of

res conv 3. Next, after the res conv 4 block, the network

splits into a global branch and an attentive branch in par-

allel. We apply O.W. on all conv layers in our ResNet-50

backbone, i.e., from res conv 1 to res conv 4 and the two

res conv 5 in both branches. The outputs of two branches

are concatenated as the final feature embedding.

The attentive branch uses the same res conv 5 layer as

that in ResNet-50. The output feature map is then fed into

a reduction layer‡ with O.F. applied yielding a smaller fea-

ture map Ta. We feed Ta into a CAM and a PAM simulta-

neously, both with O.F. constraints. The outputs from both

attentive modules are concatenated with the input Ta, and

altogether go through a global average pooling layer, ending

up with a ka-dimension feature vector.

In the global branch, after res conv 5§, the feature map

Tg is fed into a global average-pooling layer followed by

a reduction layer, leading to a kg-dimension feature vector.

The global branch intends to preserve global context infor-

mation in addition to the attentive branch features.

Eventually, ABD-Net is trained under the loss function L

‡A reduction layer consists of a linear layer, batch normalization,

ReLU, and dropout. See: https://github.com/KaiyangZhou/

deep-person-reid
§For both two res conv 5 layers in two branches, we removed the

down-sampling layer, in order for larger feature maps.
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consisting of a cross entropy loss, a hard mining triplet loss,

and orthogonal constraints on feature (O.F.) and on weights

(O.W.) penalty terms:

L = Lxent+βtrLtriplet+βO.F.LO.F.+βO.W.LO.W. (6)

where LO.F. and LO.W. stand for the SVDO penalty term

applied to the hidden features and weights, respectively.

βtr, βO.F. and βO.W. are hyper-parameters.

4. Experiments

To evaluate ABD-Net, we conducted experiments on

three large-scale person re-identification datasets: Market-

1501 [14], DukeMTMC-Re-ID [15] and MSMT17 [1].

First, we report a set of ablation study (mainly on Market-

1501 and DukeMTMC-Re-ID) to validate the effectiveness

of each component. Second, we compare the performance

of ABD-Net against existing state-of-the-art methods on all

three datasets. Finally, we provide more visualizations and

analysis to illustrate how ABD-Net has achieved its effec-

tiveness.

4.1. Datasets

Market-1501 [14] comprises 32,668 labeled images of

1,501 identities captured by six cameras. Following [14],

12,936 images of 751 identities are used for training, while

the rest are used for testing. Among the testing data, the

test probe set has 3,368 images of 750 identities. The test

gallery set also includes 2,793 additional distractors.

DukeMTMC-Re-ID [15] contains 36,411 images of

1,812 identities. These images are captured by eight cam-

eras, among which 1,404 identities appear in more than two

cameras and 408 identities (distractors) appear in only one

camera. The 1,404 identities are randomly divided, with

702 identities for training and the others for testing. In the

testing set, one query image for each ID per camera is cho-

sen for the probe set, while all remaining images including

distractors are in the gallery.

MSMT17 [1] is the current largest publicly-available

person Re-ID dataset. It has 126,441 images of 4,101 iden-

tities captured by a 15-camera network (12 outdoor, 3 in-

door). We follow the training-testing split of [1]. The

video is collected with different weather conditions at three-

time slots (morning, noon, afternoon). All annotations, in-

cluding camera IDs, weathers and time slots, are available.

MSMT17 is significantly more challenging than the other

two, due to its massive scale, more complex and dynamic

scenes. Additionally, the amount of methods that report on

this dataset is limited since it is recently released.

4.2. Implementation Details and Evaluation

During training, the input images are re-sized to 384 ×
128 and then augmented by random horizontal flip, normal-

ization, and random erasing [52]. The testing images are

re-sized to 384 × 128 and augmented only by normaliza-

tion. In our experiments, the sizes of feature maps Ta and

Tg are 1024× 24× 8, and 2048× 24× 8, respectively. We

set the dimension of features (ka, kg) after global average-

pooling both equal to 1024, leading to a 2048-dimensional

final feature embedding for matching.

With the ImageNet-pretrained ResNet-50 backbone, we

used the two-step transfer learning algorithm [53] to fine-

tune the model. First, we freeze the backbone weights and

only train the reduction layers, classifiers and all attention

modules for 10 epochs with only the cross entropy loss and

triplet loss applied. Second, all layers are freed for training

for another 60 epochs, with the full loss (6) applied. We

set βtr = 10−1, βOF = 10−6 and βOW = 10−3, and the

margin parameter for triplet loss α = 1.2.

Our network is trained using 2 Tesla P100 GPUs with a

batch size of 64. Each batch contains 16 identities, with 4

instances per identity. We use the Adam optimizer with the

base learning rate initialized to 3 × 10−4, then decayed to

3 × 10−5, 3 × 10−6 after 30, 40 epochs, respectively. The

training takes about 4 hours on the Market-1501 dataset.

We adopt standard Re-ID metrics: top-1 accuracy, and

the mean Average Precision (mAP). We consider mAP to

be a more reliable indicator for Re-ID performance.

4.3. Ablation Study of ABD­Net

To verify the effects of attention modules and orthogo-

nality regularization in ABD-Net, we incrementally evalu-

ate each module on Market-1501 and DukeMTMC-Re-ID.

We choose ResNet-50 ¶ with the cross entropy loss (XE) as

the baseline. Nine variants are then constructed on top of

the baseline‖: a) baseline (XE) + PAM; b) baseline (XE) +

CAM; c) baseline (XE) + PAM + CAM; d) baseline (XE)

+ O.F.; e) baseline (XE) + O.W.; f) baseline (XE) + O.F. +

O.W.; g) baseline + SVD layer (similar to SVD-Net [13]);

h) ABD-Net (XE), that sets βtr = 0 in (6); and i) ABD-Net,

that uses the full loss (6).

Table 1 presents the ablation study results, from which

several observations could be drawn:

• Using either PAM or CAM improves the baseline on

both datasets. The combination of the two differ-

ent attention mechanisms gains further improvements,

demonstrating their complementary power over utiliz-

ing either alone.

• Using either O.F. or O.W. consistently outperforms the

baseline on both datasets, and their combination leads

to further gains which validates the effectiveness of

¶For the fairness of ablation study, we use two duplicated branches

with the same res conv 5 like the structure in ABD-Net as shown in Fig.4.

Data augmentation and dropout are applied.
‖Note that (1) CAM is used in two places of ABD-Net; (2) ABD-Net

adopts O.F. + O.W. + PAM + CAM.
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Table 1. Ablation Study of ABD-Net on Market-1501. O.F. and

O.W.: Orthogonality Regularization on Features and Weights;

PAM and CAM: Position and Channel Attention Modules.

Method
Market-1501 DukeMTMC

top1 mAP top1 mAP

baseline (XE) 91.50 77.40 82.80 66.40

baseline (XE) + PAM 92.10 78.10 83.80 67.00

baseline (XE) + CAM 91.80 78.00 84.30 67.60

baseline (XE) + PAM + CAM 92.70 78.50 84.40 67.90

baseline (XE) + O.F. 92.90 82.10 84.90 71.30

baseline (XE) + O.W. 92.50 78.50 83.70 67.40

baseline (XE) + O.F. + O.W. 93.20 82.30 85.30 72.20

baseline + SVD layer 90.80 76.90 79.40 62.50

ABD-Net (XE) 94.90 85.90 87.30 76.00

ABD-Net 95.60 88.28 89.00 78.59

our orthogonality regularizations. We also observe that

the proposed SVDO-based O.W. empirically performs

better than the SVD layer, potentially because SVD

layer acts as a “hard constraint” and hence restricts the

learning capability of the ResNet-50 backbone.

• By combining “attention” and “diversity”, ABD-Net

(XE) sees further boosts. For example, on Market-

1501, ABD-Net (XE) outperforms the “no attention”

counterpart (baseline (XE) + O.F. + O.W.) by a margin

of 1.50% (top-1)/3.60% (mAP), and it outperforms “no

diversity” counterpart (baseline (XE) + O.F. + O.W.)

by 2.20% (top-1)/7.40% (mAP). Moreover, there are

further performance improvements when we enforce

diversity in the attention mechanism. Finally, the full

ABD-Net further benefits from adding triplet loss.

4.4. Comparison to State­of­the­art Methods

We compare ABD-Net against the state-of-the-art meth-

ods on Market-1501, DukeMTMC-Re-ID and MSMT17, as

shown in Tables 2, 3, and 4, respectively. For fair compar-

ison, no post-processing such as re-ranking [54] or multi-

query fusion [55] was used for our methods.

ABD-Net has clearly yielded overall state-of-the-art per-

formance on all datasets. Specifically, on DukeMTMC-Re-

ID, ABD-Net obtains 89.00% top-1 accuracy and 78.59%
mAP, which significantly outperforms all existing methods.

On MSMT17, ABD-Net presents a clear winner case too.

On Market-1501, its top-1 accuracy (95.60%) slightly lags

behind Local CNN [48] (95.90%) and MGN [47] (95.70%);

yet ABD-Net clearly surpasses all existing methods in terms

of mAP (88.28%, outperforming the closest competitor [48]

by a large margin of 0.88%).

Specifically, we emphasize the comparison between

ABD-Net and existing attention-based methods (marked by

∗ in the Tables 2 3). As shown in Table 2 and 3, ABD-Net

achieves at least 2.40% top-1 and 5.98% mAP improvement

on Market-1501, compared to the closest attention-based

prior work CA3Net [51]. On DukeMTMC, the margin be-

Table 2. Comparison to state-of-the-art methods on Market-1501.

Red denotes our performance, and Blue denotes the best perfor-

mance reported by existing methods: the same hereinafter.

Method
Market-1501

top1 mAP

BOW [55] (2015 ICCV) 44.42 20.76

Re-Rank [54] (2017 CVPR) 77.11 63.63

SSM [56] (2017 CVPR) 82.21 68.80

SVDNet(RE) [52] (2017 CVPR) 87.08 71.31

AWTL [57] (2018 CVPR) 84.20 68.03

DSR [58] (2018 CVPR) 83.68 64.25

MLFN [59] (2018 CVPR) 90.00 74.30

Deep CRF [60] (2018 CVPR) 93.50 81.60

Deep KPM [61] (2018 CVPR) 90.10 75.30

HAP2S [62] (2018 ECCV) 84.20 69.76

SGGNN [63] (2018 ECCV) 92.30 82.08

Part-aligned [31] (2018 ECCV) 91.70 79.60

PCB [64] (2018 ECCV) 93.80 81.60

SNL [45] (2018 ACM MM) 88.27 73.43

HDLF [46] (2018 ACM MM) 93.30 79.10

‡MGN [47] (2018 ACM MM) 95.70 86.90

‡ Local CNN [48] (2018 ACM MM) 95.90 87.40

* MGCAM [49] (2018 CVPR) 83.79 74.33

* AACN [11] (2018 CVPR) 85.90 66.87

* HA-CNN [50] (2018 CVPR) 91.20 75.70

* CA3Net [51] (2018 CVPR) 93.20 80.00

* Mancs [65] (2018 ECCV) 93.10 82.30

* A3M [66] (2018 ACM MM) 86.54 68.97

• SPReID [67] (2018 CVPR) 93.68 83.36

∗ ⋄ DuATM [68] (2018 CVPR) 91.42 76.62

ABD-Net 95.60 88.28
∗ This also exploits attention mechanisms.
• This is with a ResNet-152 backbone.
⋄ This is with a DenseNet-121 backbone.
‡ Official codes are not released. We report the numbers in the orig-

inal paper, which are better than our re-implementation.

comes 3.40% for top-1 and 6.40% for mAP. We also consid-

ered SVDNet [13] and HA-CNN [50] which also proposed

to generate diverse and uncorrelated feature embeddings.

ABD-Net surpasses both with significant top-1 and mAP

improvement. Overall, our observations endorse the superi-

ority of ABD-Net by combing “attentive” and “diverse”.

4.5. Visualizations∗∗

Attention Pattern Visualization: We conduct a set of at-

tention visualizations†† on the final output feature maps of

∗∗To fairly evaluate the contribution of our proposed attentive mecha-

nism and diversity regularization, we exclude the effect of triplet loss, and

only compare the following three methods: the baseline (XE), baseline

(XE) + PAM + CAM, and ABD-Net (XE).
††Grad-CAM visualization method [73]: https://github.com/

utkuozbulak/pytorch-cnn-visualizations; RAM visual-

ization method [74] for testing images. More results can be found in the

supplementary.
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Table 3. Comparison to state-of-the-art methods on DukeMTMC.

Method
DukeMTMC-Re-ID

top1 mAP

BOW [55] (2015 ICCV) 25.13 12.17

SVDNet [13] (2017 ICCV) 76.70 56.80

SVDNet(RE) [52] (2017 CVPR) 79.31 62.44

FMN [69] (2017 CVPR) 74.51 56.88

PAN [70] (2018 TCSVT) 71.59 51.51

AWTL(2-stream) [57] (2018 CVPR) 79.80 63.40

Deep-person [71] (2018 CVPR) 80.90 64.80

MLFN [59] (2018 CVPR) 81.20 62.80

GP-Re-ID [72] (2018 CVPR) 85.20 72.80

PCB [64] (2018 ECCV) 83.30 69.20

Part-aligned [31] (2018 ECCV) 84.40 69.30

‡MGN [47] (2018 ACM MM) 88.70 78.40

‡ Local CNN [48] (2018 ACM MM) 82.23 66.04

* AACN [11] (2018 CVPR) 76.84 59.25

* HA-CNN [50] (2018 CVPR) 80.50 63.80

* CA3Net [51] (2018 CVPR) 84.60 70.20

* Mancs [65] (2018 ECCV) 84.90 71.80

• SPReID [67] (2018 CVPR) 85.95 73.34

∗ ⋄ DuATM [68] (2018 CVPR) 78.74 62.26

ABD-Net 89.00 78.59

∗ This also exploits attention mechanisms.
• This is with a ResNet-152 backbone.
⋄ This is with a DenseNet-121 backbone.
‡ Official codes are not released. We report the numbers in the

original paper, which are better than our re-implementation.

Table 4. Comparison to state-of-the-art methods on MSMT17.

Method
MSMT17

top1 top5 mAP

PDC [5] (2017 ICCV) 58.00 73.60 29.70

GLAD [29] (2017 ACM MM) 61.40 76.80 34.00

ABD-Net 82.30 90.60 60.80

Figure 5. Visualization of attention maps from Baseline, Baseline

+ PAM + CAM and ABD-Net (XE). As shown in column four and

eight, the diverse attention map from ABD-Net almost span over

the whole person rather than overfit in some local regions.

Color Bar

Figure 6. Visualization of correlation matrix between channels

from Baseline, Baseline + PAM + CAM and ABD-Net (XE).

Brighter color indicates larger correlation. In clockwise order from

top left image, attention brings feature embeddings high correla-

tion, diversity reduces the redundancy and further improve the dis-

criminative.

the baseline (XE), baseline (XE) + PAM + CAM, and ABD-

Net (XE), as shown in Fig.5. We notice that the feature

maps from the baseline show little attentiveness. PAM +

CAM enforces the network to focus more on the person re-

gion, but the attention regions can sometimes overly em-

phasize some local regions (e.g., clothes), implying the risk

of overfitting person-irrelevant nuisances. Most channels

focus on the similar region may also cause a high correla-

tion in the feature embeddings. In contrast, the attention

of ABD-Net (XE) can strike a better balance: it focuses on

more of the local parts of the person’s body while still being

able to eliminate the person from backgrounds. The atten-

tion patterns now differ more from person to person, and the

feature embeddings become more decorrelated and diverse.

Feature De-correlation: We study the correlation matrix

between the channel outputs produced by Baseline, Base-

line + PAM + CAM and ABD-Net (XE) ‡‡. The feature

embedding before the global average pooling is reshaped

into F ∈ R
C×N , where N = H × W . Then, we vi-

sualize the correlation coefficient matrix for F, denoted as

Corr ∈ R
C×C§§ in Fig.6, and also compute the average of

all correlation coefficients in each setting. The baseline fea-

‡‡Here we used a random testing image as the example and we offer

more results in the supplementary.
§§We take the absolute value for correlation coefficients.
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Figure 7. Histogram of correlation from Baseline, Baseline + PAM

+ CAM and ABD-Net (XE). A more skewed distribution indicates

better de-correlated feature embeddings. (b) is a zoom-in view of

the red box area in (a).

Figure 8. t-SNE visualization of feature distributions, from Base-

line, Baseline + PAM + CAM and ABD-Net (XE). Ten identi-

ties are randomly selected from the Market-1501 and their IDs are

listed on the right side of graphs. Circles A and B contain the

features from IDs 521, 94 and 156, respectively.

ture embeddings reveal low correlations (0.049 in average)

in off-diagonal elements. After applying PAM and CAM,

the feature correlations become much larger (0.368 in av-

erage), supporting our hypothesis that the attention mech-

anism tends to encourage more “focused” and thus highly

correlated features. However, with our orthogonality reg-

ularization, the feature correlations in ABD-Net (XE) are

successfully suppressed (0.214 in average) compared to the

attention-only case. The feature histogram plots in Fig.7

also certify the same observation.

Feature Embeddings Distributions: Fig.8 shows the t-

SNE visualization on feature distributions from Baseline,

Baseline + PAM + CAM and ABD-Net (XE) using t-SNE.

Compared with Baseline, although attentive features from

Baseline + PAM + CAM make ID 94 and ID 156 in cycle B

slightly distinguishable, ABD-Net enlarges the intra-class

distance of ID 521 in cycle A. It makes the features from ID

Figure 9. Six Re-ID examples of ABD-Net (XE), Baseline + PAM

+ CAM and Baseline on Market-1501. Left: query image. Right:

i): top-5 results of ABD-Net (XE). ii): top-5 results of Baseline

+ PAM + CAM. iii): top-5 results of Baseline. Images in red

boxes are negative results. Attentive but diverse feature embed-

dings boost the retrieval preformance.

94 and ID 156 more discriminative, meanwhile the features

from ID 521 also lie in a compact region.

Re-ID Qualitative Visual Results: Fig.9 shows Re-ID

visual examples of ABD-Net (XE), Baseline + PAM +

CAM and Baseline on Market-1501. They indicate that

ABD-Net succeeds in finding more true positives than Base-

line + PAM + CAM model, even when the persons in the

images are under significant view changes and appearance

variations.

5. Conclusion

This paper proposes a novel Attentive but Diverse Net-

work (ABD-Net) to learn more representative, robust, dis-

criminative feature embeddings for person Re-ID. ABD-

Net demonstrates its state-of-the-art performance through

extensive experiments where the ablations and visualiza-

tions show that each added component substantially con-

tributes to its final performance. In the future, we will gen-

eralize the design concept of ABD-Net to other computer

vision tasks.
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