
BAE-NET: Branched Autoencoder for Shape Co-Segmentation

Zhiqin Chen1, Kangxue Yin1, Matthew Fisher2, Siddhartha Chaudhuri2,3, and Hao Zhang1

1Simon Fraser University 2Adobe Research 3IIT Bombay

Abstract

We treat shape co-segmentation as a representation

learning problem and introduce BAE-NET, a branched au-

toencoder network, for the task. The unsupervised BAE-

NET is trained with a collection of un-segmented shapes,

using a shape reconstruction loss, without any ground-truth

labels. Specifically, the network takes an input shape and

encodes it using a convolutional neural network, whereas

the decoder concatenates the resulting feature code with a

point coordinate and outputs a value indicating whether the

point is inside/outside the shape. Importantly, the decoder

is branched: each branch learns a compact representation

for one commonly recurring part of the shape collection,

e.g., airplane wings. By complementing the shape recon-

struction loss with a label loss, BAE-NET is easily tuned for

one-shot learning. We show unsupervised, weakly super-

vised, and one-shot learning results by BAE-NET, demon-

strating that using only a couple of exemplars, our net-

work can generally outperform state-of-the-art supervised

methods trained on hundreds of segmented shapes. Code is

available at https://github.com/czq142857/BAE-NET.

1. Introduction

Co-segmentation takes a collection of data sharing some

common characteristic and produces a consistent segmen-

tation of each data item. Specific to shape co-segmentation,

the common characteristic of the input collection is typi-

cally tied to the common category that the shapes belong

to, e.g., they are all lamps or chairs. The significance of the

problem is attributed to the consistency requirement, since

a shape co-segmentation not only reveals the structure of

each shape but also a structural correspondence across the

entire shape set, enabling a variety of applications including

attribute transfer and mix-n-match modeling.

In recent years, many deep neural networks have been

developed for segmentation [3, 21, 26, 32, 43, 65]. Most

methods to date formulate segmentation as a supervised

classification problem and are applicable to segmenting a

Figure 1. Unsupervised co-segmentation by BAE-NET on the lamp

category from the ShapeNet part dataset [64]. Each color denotes

a part labeled by a specific branch of our network.

single input. Representative approaches include SegNet [3]

for images and PointNet [42] for shapes, where the net-

works are trained by supervision with ground-truth segmen-

tations to map pixel or point features to segment labels.

Co-segmentation seeks a structural understanding or ex-

planation of an entire set. If one were to abide by Occam’s

razor, then the best explanation would be the simplest one.

This motivates us to treat co-segmentation as a representa-

tion learning problem, with the added bonus that such learn-

ing may be unsupervised without any ground-truth labels.

Given the strong belief that object recognition by humans

is part-based [14, 15], the simplest explanation for a collec-

tion of shapes belonging to the same category would be a

combination of universal parts for that category, e.g., chair

backs or airplane wings. Hence, an unsupervised shape

co-segmentation would amount to finding the simplest part

representations for a shape collection. Our choice for the

representation learning module is a variant of autoencoder.

In principle, autoencoders learn compact representations

of a set of data via dimensionality reduction while mini-

mizing a self-reconstruction loss. To learn shape parts, we

introduce a branched version of autoencoders, where each

8490



Figure 2. Network architecture of the BAE-NET decoder; encoder

is a CNN. L3 is the branch output layer (one neuron per branch)

that gives the implicit field for each branch. The final output layer

groups the branch outputs, via max pooling, to form the final im-

plicit field. Each branch either represents a shape part or simply

outputs nothing, if all the parts are represented by other branches.

The max pooling operator allows part overlap, giving BAE-NET

the freedom to represent each part in the most natural or simplest

way. All the colors for the parts are for visualization only.

branch is tasked to learn a simple representation for one

universal part of the input shape collection. In the absence

of any ground-truth segmentation labels, our branched au-

toencoder, or BAE-NET for short, is trained to minimize a

shape (rather than label) reconstruction loss, where shapes

are represented using implicit fields [6]. Specifically, the

BAE-NET decoder takes as input a concatenation between

a point coordinate and an encoding of the input shape (from

the BAE-NET encoder) and outputs a value which indicates

whether the point is inside/outside the shape.

The BAE-NET architecture is shown in Figure 2, where

the encoder employs a traditional convolutional neural net-

work (CNN). The encoder-decoder combination of BAE-

NET is trained with all shapes in the input collection using a

(shape) reconstruction loss. Appending the point coordinate

to the decoder input is critical since it adds spatial aware-

ness to the reconstruction process, which is often lost in the

convolutional features from the CNN encoder. Each neuron

in the third layer (L3) is trained to learn the inside/outside

status of the point relative to one shape part. The parts are

learned in a joint space of shape features and point loca-

tions. In Section 4, we show that the limited neurons in our

autoencoder for representation learning, and the linearities

modeled by the neurons, allow BAE-NET to learn compact

Figure 3. A toy example where the input set comprises 2D im-

ages of three randomly placed patterns. In our network, when the

feature dimension is set to be 16, learning the features amounts

to “sorting” the training images in the joint (2+16)-D space, so

that the hyperdimensional shape is simple and easy to represent.

As shown on the left, where only one feature dimension is drawn,

BAE-NET learns a simple three-part representation exhibiting con-

tinuity and linearity in the feature dimension, since we treat image

and feature dimensions equally in the network. The CNN model

on the right represents the shapes as discrete image blocks without

continuity. Section 4.1 shows results on the full image.

part representations in the decoder branches in L3. Figure 3

shows a toy example to illustrate the joint space and con-

trasts the part representations that are learned by our BAE-

NET versus a classic CNN autoencoder.

BAE-NET has a simple architecture and as such, it can

be easily adapted to perform one-shot learning, where only

one or few exemplar segmentations are provided. In this

case, the number of branches is set according to the exem-

plar(s) and the shape reconstruction loss is complemented

by a label reconstruction loss; see Section 3.1.

We demonstrate unsupervised, weakly supervised, and

one-shot learning results for shape co-segmentation on the

ShapeNet [5], ShapeNet part [64], and Tags2Parts [36]

datasets, comparing BAE-NET with existing supervised and

weakly supervised methods. The co-segmentation results

from BAE-NET are consistent without explicitly enforcing

any consistency loss in the network. Using only one (resp.

two or three) segmented exemplars, the one-shot learn-

ing version of BAE-NET outperforms state-of-the-art su-

pervised segmentation methods, including PointNet++ and

PointCNN, when the latter are trained on 10% (resp. 20%

or 30%), i.e., hundreds, of the segmented shapes.

2. Related work

Our work is most closely related to prior research on

unsupervised, weakly supervised, and semi-supervised co-

segmentation of 3D shapes. Many of these methods, espe-

cially those relying on statistical learning, are inspired by

related research on 2D image segmentation.

Image co-segmentation without strong supervision. One

may view unsupervised image co-segmentation as pixel-

8491



level clustering, guided by color similarity within single im-

ages as well as consistency across image collections. Ex-

isting approaches employ graph cuts [45], discriminative

clustering [24, 25], correspondences [46, 47], cooperative

games [31], and deep neural networks [16, 57, 66].

An alternative research theme utilizes weak cues, such as

image-level labels. In this weakly supervised setup, the goal

is to find image regions that strongly correlate with each la-

bel, using either traditional statistical models [7, 53, 56] or

newer models based on deep neural networks [1, 9, 11, 22,

29, 37, 39, 40, 41, 48, 58, 67]. Other forms of weak supervi-

sion include bounding boxes [8, 17, 27, 38, 44, 68] and tex-

tual captions [4, 10]. Semi-supervised methods assume that

full supervision is available for only a few images, while the

others are unsupervised: such approaches have been applied

to image co-segmentation, e.g. [33, 60].

In contrast to all the above methods, we develop

an unsupervised co-segmentation approach for geometric

shapes, without colors. Thus, we concentrate on efficient

modeling of spatial variance. We employ a novel encode-

and-reconstruct scheme, where each branch of a deep net-

work learns to localize instances of a part across multiple

examples in order to compactly represent them, and re-

assemble them into the original shape. Our method easily

adapts to weakly- and semi-supervised scenarios.

Our method is critically dependent on the choice of net-

work architecture. The relatively shallow fully-connected

stack is high-capacity enough to model non-trivial parts, but

shallow enough that the neurons are forced to learn a com-

pact, efficient representation of the shape space, in terms of

recurring parts carved out by successive simple units. Thus,

the geometric prior is inherent in the architecture itself, sim-

ilar in spirit to Deep Image Prior [55] and Deep Geometric

Prior for Surface Reconstruction [61].

3D segmentation without strong supervision. Build-

ing on substantial prior work on single-shape mesh seg-

mentation based on geometric cues [49], the pioneering

work of Golovinskiy and Funkhouser [12] explored consis-

tent co-segmentation of 3D shapes by constructing a graph

connecting not just adjacent polygonal faces in the same

mesh, but also corresponding faces across different meshes.

A normalized cut of this graph yields a joint segmenta-

tion. Subsequently, several papers developed alternative

unsupervised clustering strategies for mesh faces, given a

handcrafted similarity metric induced by a feature embed-

ding or a graph [18, 20, 34, 52, 62]. Shu et al. [51] mod-

ified this setup by first transforming handcrafted local fea-

tures with a stacked autoencoder before applying an (inde-

pendently learned) Gaussian mixture model and per-shape

graph cuts. In contrast, our method is an end-to-end differ-

entiable pipeline that requires no manual feature specifica-

tion or large-scale graph optimization.

Tulsiani et al. [54] proposed an unsupervised method to

approximate a 3D shape with a small set of primitive parts

(cuboids), inducing a segmentation of the underlying mesh.

Their approach has similarities to ours – they predict part

cuboids with branches from an encoder network, and im-

pose a reconstruction loss to make the cuboid assembly re-

semble the original shape. However, the critical difference

is the restriction to cuboidal boxes: they cannot accommo-

date complex, non-convex part geometries such as the rings

in Figure 4 and the groups of disjoint lamp parts in Figure 1,

for which a nonlinear stack of neurons is a much more ef-

fective indicator function.

In parallel, approaches were developed for weakly super-

vised [36, 50, 70] and semi-supervised [19, 28, 59] shape

segmentation. Shapes formed by articulation of a template

shape can be jointly co-segmented [2, 63]. Our method does

not depend on any such supervision or base template, al-

though it can optionally benefit from one or two annotated

examples to separate strongly correlated part pairs.

3. BAE-NET: architecture, loss, and training

The architecture of BAE-NET draws inspiration from

IM-NET, the implicit decoder recently introduced by Chen

and Zhang [6]; also see concurrent works [23, 35] propos-

ing similar ideas. IM-NET learns an implicit field by means

of a binary classifier, which is similar to BAE-NET. The

main difference, as shown in Figure 2, is that BAE-NET is

designed to segment a shape into different parts by recon-

structing the parts in different branches of the network.

Similar to [6], we use a traditional convolutional neural

network as the encoder to produce the feature code for a

given shape. We also adopt a three-layer fully connected

neural network as our decoder network. The network takes

a joint vector of point coordinates and feature code as in-

put, and outputs a value in each output branch that indicates

whether the input point is inside a part (1) or not (0). Finally,

we use a max pooling operator to merge parts together and

obtain the entire shape, which allows our segmented parts to

overlap. We use “L1”, “L2” and “L3” to represent the first,

second, and third layer, respectively. The different network

design choices will be discussed in Section 4.

3.1. Network losses for various learning scenarios

Unsupervised. For each input point coordinate, our net-

work outputs a value that indicates the likelihood that the

given point is inside the shape. We train our network with

sampled points in the 3D space surrounding the input shape

and the inside-outside status of the sampled points. After

sampling points for input shapes using the same method as

[6], we can train our autoencoder with a mean square loss:

Lunsup(P(S)) = ES∼P(S)Ep∼P(p|S)(f(p)− F(p))2 (1)

where P(S) is the distribution of training shapes, P(p|S) is

the distribution of sampled points given shape S, f(p) is

8492



the output value of our decoder for input point p, and F(p)
is the ground truth inside-outside status for point p. This

loss function allows us to reconstruct the target shape in the

output layer. The segmented parts will be expressed in the

branches of L3, since the final output is taken as the maxi-

mum value over the fields represented by those branches.

Supervised. If we have examples with ground truth part

labels, we can also train BAE-NET in a supervised way. De-

note Fm(p) as the ground truth status for point p, and fm(p)
as the output value of the m-th branch in L3. For a network

with k branches in L3, the supervised loss is:

Lsup∗(P(S)) = ES∼P(S)Ep∼P(p|S)
1

k

k∑

i=1

(fi(p)− Fi(p))
2

In datasets such as the ShapeNet part dataset [64], shapes

are represented by point clouds sampled from their surfaces.

In such datasets, the inside-outside status of a point can be

ambiguous. However, since our sampled points are from

voxel grids and the reconstructed shapes are thicker than

the original, we can assume all points in the ShapeNet part

dataset are inside our reconstructed shapes. We use both our

sampled points from voxel grids and the point clouds in the

ShapeNet part dataset, by modifying the loss function:

Lsup(P(S)) = ES∼P(S)[Ep∼P(p|S)(f(p)− F(p))2

+ αEq∼P(q|S)
1

k

k∑

i=1

(fi(q)− Fi(q))
2]

(2)

where P(p|S) is the distribution for our sampled points from

voxel grids, and P(q|S) is the distribution of points in the

ShapeNet part dataset. We set α to 1 in our experiments.

One-shot learning. Our network also supports one-shot

training, where we feed the network 1, 2, or 3, . . ., shapes

with ground truth part labels, and other shapes without part

labels. To enable one-shot training, we have a joint loss:

Ljoint = Lunsup(P(S)) + βLsup(P(S
′)) (3)

where P(S) is the distribution of all shapes, and P(S′) is the

distribution of the few given shapes with part labels. We

do not explicitly use this loss function or set β. Instead,

we train the network using the unsupervised and supervised

losses alternately. We do one supervised training iteration

after every 4 unsupervised training iterations.

Additionally, we add a very small L1 regularization term

for the parameters of L3 to prevent unnecessary overlap,

e.g., when the part output by one branch contains the part

output by another branch.

3.2. Point label assignment

After training, we get an approximate implicit field for

the input shape. To label a given point of an input shape,

we simply feed the point into the network together with the

code encoding the feature of the input shape, and label the

point by looking at which branch in L3 gives the highest

value. If the training has exemplar shapes as guidance, each

branch will be assigned a label automatically with respect

to the exemplars. If the training is unsupervised, we need to

look at the branch outputs and give a label for each branch

by hand. For example in Figure 2, we can label branch #3

as “jet engine”, and each point having the highest value

in this branch will be labeled as “jet engine”. To label a

mesh model, we first subdivide the surfaces to obtain fine-

grained triangles, and assign a label for each triangle. To

label a triangle, we feed its three vertices into the network

and sum their output values in each branch, and assign the

label whose associated branch gives the highest value.

3.3. Training details

In what follows, we denote the decoder structure by the

width (number of neurons) of each layer as { L1-L2-L3 }.

The encoders for all tasks are standard CNN encoders.

In the 2D shape extraction experiment, we set the fea-

ture vector to be 16-D, since the goal of this experiment is

to explain why and how the network works and the shapes

are easy to represent. We use the same width for all hidden

layers since it is easier for us to compare models with dif-

ferent depths. For 64× 64 images, the decoder is { 256-4 }
for 2-layer model, { 256-256-4 } for 3-layer model, and

{ 256-256-256-4 } for 4-layer model. For 128× 128 im-

ages, we use 512 as the width instead of 256.

In all other experiments, our encoder takes 643 voxels as

input, and produces a 128-D feature code. We sample 8192
points from each shape’s 323 voxel model, and use these

point-value pairs to compute the unsupervised loss Lunsup.

For unsupervised tasks, we set the decoder network to

{ 3072-384-12 } and train 200,000 iterations with mini-

batches of size 1, which takes ∼2 hours per category. For

one-shot tasks, we use a { 1024-256-n } decoder, where

n is the number of ground truth parts in exemplar shapes.

The decoder is lighter, hence we finish training in a shorter

time. For each category, we train 200,000 iterations: on all

15 categories this takes less than 20 hours total on a single

NVIDIA GTX 1080Ti GPU. We also find that doing 3,000-

4,000 iterations of supervised pretraining before alternating

it with unsupervised training improves the results.

4. Experiments and results

In this section, we first discuss different architecture de-

sign choices and offer insights into how our network works.

Further, we show qualitative and quantitative segmentation

results in various settings with BAE-NET and compare them

to those from state-of-the-art methods.

8493



Figure 4. Independent shape extraction results of different models.

The first three rows show the segmentation results of the 3-layer

model. The next three rows show the segmentation results of other

models for comparison. The last row shows the extrapolation re-

sults continuing its previous row. Note that no shape patterns go

beyond the boundary in our synthesized training dataset, thus we

can be certain that some shapes in the last row are completely new.

Figure 5. Visualization of neurons in the first, second and third

layer of our 3-layer network. Since L1 and L2 have hundreds of

neurons, we only select a few representative ones to show here.

More visualizations can be found in the supplementary material.

4.1. Network design choices and insights

We first explain our network design choices in detail, as

illuminated by two synthetic 2D datasets: “elements” and

“triple rings”. “Elements” is synthesized by putting three

different shape patterns over 64 × 64 images, where the

cross is placed randomly on the image, the triangle is placed

randomly on a horizontal line in the middle of the image,

and the rhombus is placed randomly on a vertical line in the

middle of the image. “Triple rings” is synthesized by plac-

ing three rings of different sizes randomly over 128 × 128
images. See Figure 4 for some examples.

First, we train BAE-NET with 4 branches on the two

datasets; see some results in Figure 4. Our network success-

fully separated the shape patterns, even when two patterns

overlap. Further, each of the output branches only outputs

one specific shape pattern, thus we also obtain a shape cor-

respondence from the co-segmentation process.

We visualize the neuron activations in Figure 5. In L1,

the point coordinates and the shape feature code have gone

through a linear transform and a leaky ReLU activation,

therefore the activation maps in L1 are linear “space di-

viders” with gradients. In L2, each neuron linearly com-

bines the fields in L1 to form basic shapes. The combined

shapes are mostly convex: although non-convex shapes can

be formed, they will need more resources (L1 neurons)

than simpler shapes. This is because L2 neurons calcu-

late a weighted sum of the values in L1 neurons, not MIN,

MAX, or a logical operation, thus each L1 neuron brings a

global, rather than local, change in L2. L2 represents higher

level shapes than L1, therefore we can expect L1 to have

many more neurons than L2, and we incorporate this idea in

our network design for shape segmentation, to significantly

shorten training time. The L3 neurons further combine the

shapes in L2 to form output parts in our network, and our

final output combines all L3 outputs via max pooling.

These observations and insights offer some explanation

as to why our network tends to output segmented, corre-

sponding parts in each branch. For a single shape, the net-

work has limited representation ability in L3, therefore it

prefers to construct simple parts in each branch, and let

our max pooling layer combine them together. This allows

better reconstruction quality than reconstructing the whole

shape in just one branch. With an appropriate optimizer

to minimize the reconstruction error, we can obtain well-

segmented parts in the output branches.

For part correspondence, we need to also consider the in-

put shape feature codes. As shown in Figure 2, our network

treats the feature code and point coordinates equally. This

allows us to consider the whole decoder as a hyperdimen-

sional implicit field, in a joint space made by both image

dimensions (input point coordinates) and shape feature di-

mensions (shape feature code). In Figure 3, we visualize

a 3D slice of this implicit field, with two image space di-

mensions and one feature dimension. Our network is trying

to find the best way to represent all shapes in the training

set, and the easiest way is to arrange the training shapes so

that the hyperdimensional shape is continuous in the fea-

ture dimension, as shown in the figure. This encourages

the network to learn to represent the final complex hyper-

dimensional shape as a composition of a few simple hyper-

dimensional shapes. In Figure 4, we show how our trained

network can accomplish smooth interpolation and extrap-

olation of shapes. Our network is able to simultaneously

accomplish segmentation and correspondence.

We compare the segmentation results of our current 3-

layer model with a 2-layer model, a 4-layer model, and a

CNN model in Figure 4; detailed network parameters are in

supplementary material. The 2-layer model has a hard time

reconstructing the rings, since L2 is better at representing

convex shapes. The 4-layer model can separate parts, but

since most shapes can already be represented in L3, the ex-

tra layer does not necessarily output separated parts. One

can easily construct an L4 layer on top of our 3-layer model

to output the whole shape in one branch while leaving the

other branches blank. The CNN model is not sensitive to

8494



Figure 6. Unsupervised segmentation results by BAE-NET. The

first three rows show segmentation results on bench, couch, car,

rifle, chair and table respectively. In the last row, we show the re-

sults when merging chair and table into a joint dataset and training

on it. Since our model generates a field for each part, we render the

original meshes with different colors representing different parts.

parts and outputs basically everything or nothing in each

branch, since there is no bias towards sparsity or segmenta-

tion. Overall, the 3-layer network is the best choice for inde-

pendent shape extraction, making it a suitable candidate for

unsupervised and weakly supervised shape segmentation.

4.2. Evaluation of unsupervised learning

We first test unsupervised co-segmentation over 20 cate-

gories, where 16 of them are from the ShapeNet part dataset

[64]. These categories and the number of shapes are: planes

(2,690), bags (76), caps (55), cars (898), chairs (3,758), ear-

phones (69), guitars (787), knives (392), lamps (1,547), lap-

tops (451), motors (202), mugs (184), pistols (283), rock-

ets (66), skateboards (152), and tables (5,271). The 4 extra

categories, benches (1,816), rifles (2,373), couches (3,173),

and vessels (1,939), are from ShapeNet [5]. We train indi-

vidual models for different shape categories.

Figures 1 and 6 show some visual results, with more in

the supplemental material. Reasonable parts are obtained,

and each branch of BAE-NET only outputs a specific part

with a designated color, giving us natural part correspon-

dence. Our unsupervised segmentation is not guaranteed to

produce the same part counts as those in the ground truth; it

tends to produce coarser segmentations, e.g., combining the

seat and back of a chair. Since coarser segmentations are

not necessarily wrong results, in Table 1, we report two sets

of Intersection over Union (IOU) numbers which compare

segmentation results by BAE-NET and the ground truth, one

allowing part combinations and the other not.

Although unsupervised BAE-NET may not separate

chair backs and seats when trained on chairs, it can do so

when tables are added for training. Also, it successfully

corresponds chair seats with table tops, chair legs with ta-

ble legs; see Figure 6. This leads to a weakly supervised

way of segmenting target parts, as we discuss next.

Figure 7. Weakly supervised segmentation results on Tags2Parts

datasets [36]. Top row visualizes the implicit field of each branch

by its 0.4-isosurface; different colors reflect outputs from different

branches. This visualization is imperfect since the field is not nec-

essarily zero in empty areas. Middle row shows actual labelings

assigned by the implicit fields: target parts in blue. Bottom row

shows results of unsupervised training, i.e., without changing the

shape distribution of the given dataset by per-shape labels. Some

parts are not separated compared to weakly supervised results.

4.3. Comparison with Tags2Parts

We compare BAE-NET with the state-of-the-art weakly

supervised part labeling network, Tags2Parts [36]. Given a

shape dataset and a binary label for each shape indicating

whether a target part appears in it or not, Tags2Parts can

separate out the target parts, with the binary labels as weak

supervision. BAE-NET can accomplish the same task with

even weaker supervision. We do not pass the labels to the

network or incorporate them into the loss function. Instead,

we use the labels to change the training data distribution.

Our intuition is that, if two parts always appear together

and combine in the same way, like chair back and seat, treat-

ing them as one single part is more efficient for the network

to reconstruct them. But when we change the data distribu-

tion, e.g., letting only 20% of the shapes have the target part

(such as chair backs), it will be more natural for the network

to separate the two parts and reconstruct the target part in a

single branch. Therefore, we add weak supervision by sim-

ply making the number of shapes that do not have the target

part four times as many as the shapes that have the target

part, by duplicating the shapes in the dataset.

We used the dataset provided by [36], which contains

six part categories: (chair) armrest, (chair) back, (car) roof,

(airplane) engine, (ship) sail, and (bed) head. We run our

method on all categories except for car roof, since it is a flat

surface part that our network cannot separate. We used the

unsupervised version of our network to perform the task,

first training for a few epochs using the distribution altered

dataset for initialization, then only training our network on

those shapes that have target parts to refine the results.

To compare results, we used the same metric as in [36]:

Area Under the Curve (AUC) of precision/recall curves. For

8495



Shape (#parts) airplane (3) bag (2) cap (2) chair (3) chair* (4) mug (2) skateboard (2) table (2)

Segmented body, tail, body, panel, back+seat, back, seat, body, deck, top,

parts wing+engine handle peak leg, arm leg, arm handle wheel+bar leg+support

IOU 61.1 82.5 87.3 65.5 83.7 93.4 63.5 78.7

mod-IOU 80.4 82.5 87.3 86.6 83.7 93.4 88.1 87.0

Table 1. Quantitative results by BAE-NET on the ShapeNet part dataset [64] by IOU meansured against ground-truth parts. Chair* is chair

training on chair+table joint set. mod-IOU, or modified IOU, is IOU measured against both parts and part combinations in the ground

truth; it is more tolerant with coarse segmentations, e.g., combining the back and seat of a chair. Higher IOU indicates better performance.

Arm Back Engine Sail Head

Tags2Parts [36] 0.71 0.79 0.46 0.84 0.37

BAE-NET 0.94 0.85 0.88 0.92 0.76

Table 2. Comparison with Tags2Parts [36] on their datasets by

AUC (higher number = better performance). BAE-NET outper-

forms [36] in every category, even though our network did not use

the provided per-shape labels explicitly.

Figure 8. One-shot segmentation results by BAE-NET, with one

segmented exemplar (blue box). See examples of other categories

and 2/3-shot training results in the supplementary material.

each test point, we get its probability of being in each part

by normalizing the branch outputs with a unit sum. Quanti-

tative and visual results are shown in Table 2 and Figure 7.

Note that some parts, e.g., plane engines, that cannot be sep-

arated when training on the original dataset are segmented

when training on the altered dataset. Our network partic-

ularly excels at segmenting planes, converging to eight ef-

fective branches representing body, left wing, right wing,

engine and wheel on wings, jet engine and front wheel, ver-

tical stabilizer, and two types of horizontal stabilizers.

4.4. One­shot training vs. supervised methods

Finally, we select few, e.g., 1-3, segmented exemplars

from the training set to enforce BAE-NET to output des-

ignated parts. This allows us to evaluate BAE-NET using

ground truth labels and compare to other methods. We train

our model on the exemplar shapes using the supervised loss,

while training on the whole set using unsupervised loss.

1-exem. vs. 2-exem. vs. 3-exem. vs.

10% train set 20% train set 30% train set

Pointnet [42] 72.1 73.0 74.6

Pointnet++ [43] 73.5 75.4 76.6

PointCNN [30] 58.0 65.6 65.7

SSCN [13] 56.7 61.0 64.6

Our BAE-NET 76.6 77.6 78.7

Table 3. Quantitative comparison to supervised methods by aver-

age IOU over 15 shape categories, without combining parts in the

ground truth. Our one-shot learning with 1/2/3 exemplars outper-

forms supervised methods trained on 10%/20%/30% of the shapes,

respectively (on average each category has 765 training shapes).

Figure 9. Per-category, 1-exemplar results by BAE-NET with 8

randomly selected exemplars. Each dot plots an average IOU.

Our evaluation is mainly against supervised methods

since there has been hardly any semi-supervised segmen-

tation methods that take only a few exemplars and segment

shapes in a whole set. An exception is the very recent work

by Zhao et al. [69] which used only 5% of the training

data. In comparison, their IOU is 70% averaged over the

shapes, while our 1-exemplar result is 73.5% even by setting

all IOUs of cars to zero. Next, we compare BAE-NET to

several state-of-the-art supervised methods including Point-

Net [42], PointNet++ [43], PointCNN [30], and SSCN [13].

Since it would be unfair to provide the supervised methods

with only 1-3 exemplars to train, as we did for BAE-NET,

we train their models using 10%, 20%, or 30% of the shapes

from the datasets for comparison, where, on average, there

are 765 training shapes per category. We evaluate all meth-

8496



ods on the ShapeNet part dataset [64] by average IOU (no

part combinations are tolerated), and train individual mod-

els for different shape categories. We did not include the car

category for the same reason as in Section 4.3.

Table 3 shows quantitative comparison results, averaged

over 15 shape categories, and some visual results for the

chair category are provided in Figure 8. As we can see,

BAE-NET trained with 1/2/3 exemplars outperforms super-

vised methods with 10%/20%/30% of the training set, re-

spectively. Note that we trained the supervised models with

their original codes and parameters, which may be a better

fit for larger training sets. Hence, we performed additional

experiments (1-exemplar vs. 10% train data) by reducing

the network capacity (to 1
8 , 2

8 , ... , 78 ) and adding regular-

ization (with scales 10−3, 10−4, ... , 10−10). The best re-

sults obtained were: PointNet 73.8%, PointNet++ 74.0%,

PointCNN 58.6%, and SSCN 57.8%, which are still no bet-

ter than BAE-NET. Per-category comparison results can be

found in the supplementary material, where we also show

results of changing the number of network layers.

In general, the performance of one- or few-shot learning

hinges on few exemplars, hence their selection does make a

difference. In Figure 9, we show all the 1-exemplar results

by using 8 randomly selected exemplars, while Table 3 took

the best performing exemplar for each category. As we can

see, result sensitivity depends on the shape category. For

some categories, the numbers are consistent (e.g., around

94% for laptops), while for others, the numbers can vary

a lot (e.g., 8.9% to 72.3% for earphones), owing to shape

variations in the category. For earphones, the outlier is due

to an exemplar which has a long cord that makes the shape

smaller and misaligned after normalization.

Ideally, we hope to select exemplars that contain all the

ground truth parts and are representative of the shape collec-

tion, but this can be difficult in practice. For example, there

are two kinds of lamps – ground lamps and ceiling lamps –

that can both be segmented into three parts. However, the

order and labels of the lamp parts are different, e.g., the base

of a ground lamp and the base of a ceiling lamp have differ-

ent labels. Our network cannot infer such semantic infor-

mation from 1-3 exemplars, thus we select only one type of

lamps (ground lamps) as exemplars, and our network only

has three branches (without one for the base of the ceiling

lamp). During evaluation, we add a fake branch that only

outputs zero, to represent the missing branch.

5. Conclusion, limitations, and future work

We have introduced BAE-NET, a branched autoencoder,

for unsupervised, one-shot, and weakly supervised shape

co-segmentation. Experiments show that our network can

outperform state-of-the-art supervised methods, including

PointNet++, PointCNN, etc., using much less training data

(1-3 exemplars vs. 77-230 for the supervised methods, av-

erage over 15 shape categories). On the other hand, com-

pared to the supervised methods, BAE-NET tends to pro-

duce coarser segmentations, which are correct and can pro-

vide a good starting point for further refinement.

Many prior unsupervised co-segmentation methods [12,

18, 20, 52], which are model-driven rather than data-driven,

had only been tested on very small input sets (less than 50

shapes). In contrast, BAE-NET can process much larger col-

lections (up to 5,000+ shapes). In addition, unless otherwise

noted, all the results shown in the paper were obtained using

the default network settings, further validating the general-

ity and robustness of our co-segmentation network.

BAE-NET is able to produce consistent segmentations,

over large shape collections, without explicitly enforcing a

consistency loss. In fact, the consistency is a consequence

of the network architecture. However, our current method

does not provide any theoretical guarantee for segmentation

consistency or universal part counts; such extensions could

build upon the results of BAE-NET. Similar to prior works

on co-segmentation, we assume that shapes in the input col-

lection are consistently aligned. Learning rotation-invariant

deep models for the task is interesting future work.

For unsupervised segmentation, since we initialize the

network parameters randomly and optimize a reconstruc-

tion loss, while treating each branch equally, there is no

easy way to predict which branch will output which part.

The network may also be sensitive to the initial parameters,

where different runs may result in different segmentation

results, e.g., combining seat and back vs. seat and legs for

the chair category. Note however that both results may be

acceptable as a coarse structural interpretation for chairs.

Another drawback is that our network groups similar

and close-by parts in different shapes for correspondence.

This is reasonable in most cases, but for some categories,

e.g., lamps or tables, where the similar and close-by parts

may be assigned different labels, our network can be con-

fused. How to incorporate shape semantics into BAE-NET

is worth investigating. Finally, BAE-NET is much shallower

and thinner compared to IM-NET [6], since we care more

about segmentation (not reconstruction) quality. However,

the limited depth and width of the network make it difficult

to train on high-resolution models (say 643), which hinders

us from obtaining fine-grained segmentations.

In future work, besides addressing the issues above, we

plan to introduce hierarchies into the shape representation

and network structure, since it is more natural to segment

shapes in a coarse-to-fine manner. Also, BAE-NET provides

basic part separation and correspondence, which could be

incorporated when developing generative models.

Acknowledgment. We thank the anonymous reviewers for

their valuable feedback, Vova Kim and Daniel Cohen-Or

for discussions, and Wallace Lira for proofreading. This

research is supported by NSERC and an Adobe gift.

8497



References

[1] Jiwoon Ahn and Suha Kwak. Learning pixel-level semantic

affinity with image-level supervision for weakly supervised

semantic segmentation. In CVPR, 2018. 3

[2] Dragomir Anguelov, Daphne Koller, Hoi-Cheung Pang,

Praveen Srinivasan, and Sebastian Thrun. Recovering artic-

ulated object models from 3D range data. In Uncertainty in

artificial intelligence, 2004. 3

[3] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla.

SegNet: A deep convolutional encoder-decoder architecture

for image segmentation. TPAMI, 2017. 1

[4] Tamara L. Berg, Alexander C. Berg, Jaety Edwards, Michael

Maire, Ryan White, Yee Whye Teh, Erik Learned-Miller,

David A. Forsyth, et al. Names and faces in the news. In

CVPR, 2004. 3

[5] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat

Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-

lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and

Fisher Yu. ShapeNet: An information-rich 3D model repos-

itory. arXiv preprint arXiv:1512.03012, 2015. 2, 6

[6] Zhiqin Chen and Hao Zhang. Learning implicit fields for

generative shape modeling. In CVPR, 2019. 2, 3, 8

[7] Ramazan Gokberk Cinbis, Jakob J. Verbeek, and Cordelia

Schmid. Weakly supervised object localization with multi-

fold multiple instance learning. TPAMI, 2017. 3

[8] Jifeng Dai, Kaiming He, and Jian Sun. BoxSup: Exploit-

ing bounding boxes to supervise convolutional networks for

semantic segmentation. In ICCV, 2015. 3

[9] Thibaut Durand, Taylor Mordan, Nicolas Thome, and

Matthieu Cord. Wildcat: Weakly supervised learning of deep

convnets for image classification, pointwise localization and

segmentation. In CVPR, 2017. 3

[10] Mark Everingham, Josef Sivic, and Andrew Zisserman. Tak-

ing the bite out of automated naming of characters in tv

video. Image and Vision Computing, 2009. 3

[11] Weifeng Ge, Sibei Yang, and Yizhou Yu. Multi-evidence

filtering and fusion for multi-label classification and object

detection and semantic segmentation based on weakly su-

pervised learning. In CVPR, 2018. 3

[12] Aleksey Golovinskiy and Thomas Funkhouser. Consistent

segmentation of 3D models. Computers & Graphics, 2009.

3, 8

[13] Benjamin Graham, Martin Engelcke, and Laurens van der

Maaten. 3D semantic segmentation with submanifold sparse

convolutional networks. In CVPR, 2018. 7

[14] Donald O. Hebb. The Organization of Behavior. 1949. 1

[15] Donald D. Hoffman and Whitman A. Richards. Parts of

recognition. Cognition, 1984. 1

[16] Kuang-Jui Hsu, Yen-Yu Lin, and Yung-Yu Chuang. Co-

attention CNNs for unsupervised object co-segmentation. In

IJCAI, 2018. 3

[17] Ronghang Hu, Piotr Dollár, Kaiming He, Trevor Darrell, and

Ross Girshick. Learning to segment every thing. In CVPR,

2018. 3

[18] Ruizhen Hu, Lubin Fan, and Ligang Liu. Co-segmentation

of 3D shapes via subspace clustering. CGF, 2012. 3, 8

[19] Haibin Huang, Evangelos Kalogerakis, and Benjamin Mar-

lin. Analysis and synthesis of 3D shape families via deep-

learned generative models of surfaces. CGF, 2015. 3

[20] Qixing Huang, Vladlen Koltun, and Leonidas Guibas. Joint

shape segmentation with linear programming. TOG, 2011.

3, 8

[21] Qiangui Huang, Weiyue Wang, and Ulrich Neumann. Recur-

rent slice networks for 3D segmentation of point clouds. In

CVPR, 2018. 1

[22] Zilong Huang, Xinggang Wang, Jiasi Wang Wenyu Liu, and

Jingdong Wang. Weakly-supervised semantic segmentation

network with deep seeded region growing. In CVPR, 2018.

3

[23] Jeong Joon Park, Peter Florence, Julian Straub, Richard

Newcombe, and Steven Lovegrove. DeepSDF: Learning

continuous signed distance functions for shape representa-

tion. In CVPR, 2019. 3

[24] Armand Joulin, Francis Bach, and Jean Ponce. Discrimina-

tive clustering for image co-segmentation. In CVPR, 2010.

3

[25] Armand Joulin, Francis Bach, and Jean Ponce. Multi-class

cosegmentation. In CVPR, 2012. 3

[26] Evangelos Kalogerakis, Melinos Averkiou, Subhransu Maji,

and Siddhartha Chaudhuri. 3D shape segmentation with pro-

jective convolutional networks. In CVPR, 2017. 1

[27] Anna Khoreva, Rodrigo Benenson, Jan Hosang, Matthias

Hein, and Bernt Schiele. Simple does it: Weakly supervised

instance and semantic segmentation. In CVPR, 2017. 3

[28] Vladimir G. Kim, Wilmot Li, Niloy J. Mitra, Siddhartha

Chaudhuri, Stephen DiVerdi, and Thomas Funkhouser.

Learning part-based templates from large collections of 3D

shapes. TOG, 2013. 3

[29] Alexander Kolesnikov and Christoph H Lampert. Seed, ex-

pand and constrain: Three principles for weakly-supervised

image segmentation. In ECCV, 2016. 3

[30] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan

Di, and Baoquan Chen. PointCNN: Convolution on X-

transformed points. In NeurIPS, 2018. 7

[31] Bo-Chen Lin, Ding-Jie Chen, and Long-Wen Chang.

Unsupervised image co-segmentation based on cooperative

game. In ACCV, 2014. 3

[32] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In

CVPR, 2015. 1

[33] Tianyang Ma and Longin Jan Latecki. Graph transduction

learning with connectivity constraints with application to

multiple foreground cosegmentation. In CVPR, 2013. 3

[34] Min Meng, Jiazhi Xia, Jun Luo, and Ying He. Unsupervised

co-segmentation for 3D shapes using iterative multi-label op-

timization. CAD, 2013. 3

[35] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-

bastian Nowozin, and Andreas Geiger. Occupancy networks:

Learning 3D reconstruction in function space. In CVPR,

2019. 3

[36] Sanjeev Muralikrishnan, Vladimir G. Kim, and Siddhartha

Chaudhuri. Tags2Parts: Discovering semantic regions from

shape tags. In CVPR, 2018. 2, 3, 6, 7

8498



[37] Maxime Oquab, Léon Bottou, Ivan Laptev, and Josef Sivic.

Is object localization for free?-weakly-supervised learning

with convolutional neural networks. In CVPR, 2015. 3

[38] George Papandreou, Liang-Chieh Chen, Kevin Murphy, and

Alan L. Yuille. Weakly- and semi-supervised learning of a

DCNN for semantic image segmentation. In ICCV, 2015. 3

[39] Deepak Pathak, Philipp Krähenbühl, and Trevor Darrell.

Constrained convolutional neural networks for weakly super-

vised segmentation. In ICCV, 2015. 3

[40] Deepak Pathak, Evan Shelhamer, Jonathan Long, and Trevor

Darrell. Fully convolutional multi-class multiple instance

learning. ICLR Workshop, 2015. 3

[41] Pedro O. Pinheiro and Ronan Collobert. From image-level to

pixel-level labeling with convolutional networks. In CVPR,

2015. 3

[42] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.

PointNet: Deep learning on point sets for 3D classification

and segmentation. In CVPR, 2017. 1, 7

[43] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J.

Guibas. PointNet++: Deep hierarchical feature learning on

point sets in a metric space. In NeurIPS, 2017. 1, 7

[44] Martin Rajchl, Matthew C. H. Lee, Ozan Oktay, Konstanti-

nos Kamnitsas, Jonathan Passerat-Palmbach, Wenjia Bai,

Mellisa Damodaram, Mary A. Rutherford, Joseph V. Haj-

nal, Bernhard Kainz, and Daniel Rueckert. DeepCut: Object

segmentation from bounding box annotations using convolu-

tional neural networks. Medical imaging, 2017. 3

[45] Carsten Rother, Vladimir Kolmogorov, Tom Minka, and An-

drew Blake. Cosegmentation of image pairs by histogram

matching – incorporating a global constraint into MRFs. In

CVPR, 2006. 3

[46] Michael Rubinstein, Armand Joulin, Johannes Kopf, and Ce

Liu. Unsupervised joint object discovery and segmentation

in internet images. In CVPR, 2013. 3

[47] Jose C. Rubio, Joan Serrat, Antonio Lopez, and Nikos Para-

gios. Unsupervised co-segmentation through region match-

ing. In CVPR, 2012. 3

[48] Fatemehsadat Saleh, Mohammad Sadegh Aliakbarian, Math-

ieu Salzmann, Lars Petersson, Stephen Gould, and Jose M.

Alvarez. Built-in foreground/background prior for weakly-

supervised semantic segmentation. In ECCV, 2016. 3

[49] Ariel Shamir. A survey on mesh segmentation techniques.

CGF, 2008. 3

[50] Philip Shilane and Thomas Funkhouser. Distinctive regions

of 3D surfaces. TOG, 2007. 3

[51] Zhenyu Shu, Chengwu Qi, Shiqing Xin, Chao Hu, Li Wang,

Yu Zhang, and Ligang Liu. Unsupervised 3D shape segmen-

tation and co-segmentation via deep learning. CAGD, 2016.

3

[52] Oana Sidi, Oliver van Kaick, Yanir Kleiman, Hao Zhang, and

Daniel Cohen-Or. Unsupervised co-segmentation of a set of

shapes via descriptor-space spectral clustering. TOG, 2011.

3, 8

[53] Hyun Oh Song, Ross B. Girshick, Stefanie Jegelka, Julien

Mairal, Zaı̈d Harchaoui, and Trevor Darrell. On learning to

localize objects with minimal supervision. In ICML, 2014. 3

[54] Shubham Tulsiani, Hao Su, Leonidas J. Guibas, Alexei A.

Efros, and Jitendra Malik. Learning shape abstractions by

assembling volumetric primitives. CVPR, 2017. 3

[55] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky.

Deep image prior. In CVPR, 2018. 3

[56] Chong Wang, Weiqiang Ren, Kaiqi Huang, and Tieniu Tan.

Weakly supervised object localization with latent category

learning. In ECCV, 2014. 3

[57] Chunlai Wang, Bin Yang, and Yiwen Liao. Unsupervised im-

age segmentation using convolutional autoencoder with total

variation regularization as preprocessing. In ICASSP, 2017.

3

[58] Xiang Wang, Shaodi You, Xi Li, and Huimin Ma. Weakly-

supervised semantic segmentation by iteratively mining

common object features. In CVPR, 2018. 3

[59] Yunhai Wang, Shmulik Asafi, Oliver Van Kaick, Hao Zhang,

Daniel Cohen-Or, and Baoquan Chen. Active co-analysis of

a set of shapes. TOG, 2012. 3

[60] Zhengxiang Wang and Rujie Liu. Semi-supervised learning

for large scale image cosegmentation. In ICCV, 2013. 3

[61] Francis Williams, Teseo Schneider, Claudio Silva, Denis

Zorin, Joan Bruna, and Daniele Panozzo. Deep geometric

prior for surface reconstruction. In CVPR, 2019. 3

[62] Kai Xu, Honghua Li, Hao Zhang, Daniel Cohen-Or, Yueshan

Xiong, and Zhi-Quan Cheng. Style-content separation by

anisotropic part scales. TOG, 2010. 3

[63] Li Yi, Haibin Huang, Difan Liu, Evangelos Kalogerakis, Hao

Su, and Leonidas Guibas. Deep part induction from articu-

lated object pairs. TOG, 2018. 3

[64] Li Yi, Vladimir G. Kim, Duygu Ceylan, I Shen, Mengyan

Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Sheffer,

Leonidas Guibas, et al. A scalable active framework for re-

gion annotation in 3D shape collections. TOG, 2016. 1, 2, 4,

6, 7, 8

[65] Li Yi, Hao Su, Xingwen Guo, and Leonidas J. Guibas. Sync-

SpecCNN: Synchronized spectral CNN for 3D shape seg-

mentation. In CVPR, 2017. 1

[66] Jun Yu, Di Huang, and Zhongliang Wei. Unsupervised image

segmentation via stacked denoising auto-encoder and hierar-

chical patch indexing. Signal Processing, 2018. 3

[67] Xiaolin Zhang, Yunchao Wei, Jiashi Feng, Yi Yang, and

Thomas Huang. Adversarial complementary learning for

weakly supervised object localization. In CVPR, 2018. 3

[68] Xiangyun Zhao, Shuang Liang, and Yichen Wei. Pseudo

mask augmented object detection. In CVPR, 2018. 3

[69] Yongheng Zhao, Tolga Birdal, Haowen Deng, and Federico

Tombari. 3D point capsule networks. In CVPR, 2019. 7

[70] Chenyang Zhu, Kai Xu, Siddhartha Chaudhuri, Li Yi,

Leonidas Guibas, and Hao Zhang. CoSegNet: Deep co-

segmentation of 3D shapes with group consistency loss.

arXiv preprint arXiv:1903.10297, 2019. 3

8499


