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Abstract

Learning portable neural networks is very essential for

computer vision for the purpose that pre-trained heavy deep

models can be well applied on edge devices such as mobile

phones and micro sensors. Most existing deep neural net-

work compression and speed-up methods are very effective

for training compact deep models, when we can directly ac-

cess the training dataset. However, training data for the

given deep network are often unavailable due to some prac-

tice problems (e.g. privacy, legal issue, and transmission),

and the architecture of the given network are also unknown

except some interfaces. To this end, we propose a novel

framework for training efficient deep neural networks by

exploiting generative adversarial networks (GANs). To be

specific, the pre-trained teacher networks are regarded as a

fixed discriminator and the generator is utilized for derivat-

ing training samples which can obtain the maximum re-

sponse on the discriminator. Then, an efficient network with

smaller model size and computational complexity is trained

using the generated data and the teacher network, simulta-

neously. Efficient student networks learned using the pro-

posed Data-Free Learning (DAFL) method achieve 92.22%
and 74.47% accuracies using ResNet-18 without any train-

ing data on the CIFAR-10 and CIFAR-100 datasets, respec-

tively. Meanwhile, our student network obtains an 80.56%
accuracy on the CelebA benchmark.

1. Introduction

Deep convolutional neural networks (CNNs) have been

successfully used in various computer vision applications

such as image classification [24, 11], object detection [21]

and semantic segmentation [15]. However, launching most

∗This work was done while visiting Huawei Noah’s Ark Lab
†corresponding author

of the widely used CNNs requires heavy computation and

storage, which can only be used on PCs with modern GPU

cards. For example, over 500MB of memory and over

1010×multiplications are demanded for processing one im-

age using VGGNet [24], which is almost impossible to be

applied on edge devices such as autonomous cars and micro

robots. Although these pre-trained CNNs have a number of

parameters, Han et al. [6] showed that discarding over 85%
of weights in a given neural network would not obviously

damage its performance, which demonstrates that there is a

significant redundancy in these CNNs.

In order to compress and speed-up pre-trained heavy

deep models, various effective approaches have been pro-

posed recently. For example, Gong et al. [5] utilized vector

quantization approach to represent similar weights as clus-

ter centers. Denton et al. [3] exploited low-rank decom-

position to process the weight matrices of fully-connected

layers. Chen et al. [1] proposed a hashing based method to

encode parameters in CNNs. Han et al. [6] employed prun-

ing, quantization and Huffman coding to obtain a compact

deep CNN with lower computational complexity. Hinton et

al. [8] proposed the knowledge distillation approach, which

distills the information of the pre-trained teacher network

for learning a portable student network, etc.

Although the above mentioned methods have made

tremendous efforts on benchmark datasets and models, an

important issue has not been widely noticed, i.e. most ex-

isting network compression and speed-up algorithms have a

strong assumption that training samples of the original net-

work are available. However, the training dataset is rou-

tinely unknown in real-world applications due to privacy

and transmission limitations. For instance, users do not

want to let their photos leaked to others, and some of the

training datasets are too huge to quickly upload to the cloud.

In addition, parameters and architecture of pre-trained net-

works are also unknown sometimes except the input and

output layers. Therefore, conventional methods cannot be
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Figure 1. The diagram of the proposed method for learning efficient deep neural networks without the training dataset. The generator is

trained for approximating images in the original training set by extracting useful information from the given network. Then, the portable

student network can be effective learned by using generated images and the teacher network

directly used for learning portable deep models under these

practice constrains.

Nevertheless, only a few works have been proposed for

compressing deep models without training data. Lopes et

al. [16] utilized the “meta-data” (e.g. means and standard

deviation of activations from each layer) recorded from the

original training dataset, which is not provided for most

well-trained CNNs. Srinivas and Babu [26] compressed the

pre-trained network by merging similar neurons in fully-

connected layers. However, the performance of compressed

networks using these methods is much lower than that of

the original network, due to they cannot effectively utilize

the pre-trained neural networks. To address the aforemen-

tioned problem, we propose a novel framework for com-

pressing deep neural networks without the original training

dataset. To be specific, the given heavy neural network is re-

garded as a fixed discriminator. Then, a generative network

is established for alternating the original training set by ex-

tracting information from the network during the adversar-

ial procedure, which can be utlized for learning smaller net-

works with acceptable performance. The superiority of the

proposed method is demonstrated through extensive exper-

iments on benchmark datasets and models.

Rest of this paper is organized as follows. Section 2 in-

vestigates related works on CNN compression algorithms.

Section 3 proposes the data-free teacher-student paradigm

by exploiting GAN. Section 4 illustrates experimental re-

sults of the proposed method on benchmark datasets and

models and Section 5 concludes the paper.

2. Related Works

Based on different assumptions and applications, exist-

ing portable network learning methods can be divided into

two categories, i.e. data-driven and data-free methods.

2.1. Data­Driven Network Compression

In order to learn efficient deep neural networks, a num-

ber of methods have been proposed to eliminate redundancy

in pre-trained deep models. For example, Gong et al. [5]

employed the vector quantization scheme to represent sim-

ilar weights in neural networks. Denton et al. [3] exploited

the singular value decomposition (SVD) approach to de-

compose weight matrices of fully-connected layers. Han et

al. [6] proposed the pruning approach for removing subtle

weights in pre-trained neural networks. Wang et al. [27] fur-

ther introduced the discrete cosine transform (DCT) bases

and converted convolution filters into the frequency domain

to achieve higher compression and speed-up ratios. Yang et

al. [28] used a set of Lego filters to build efficient CNNs.

Besides eliminating redundant weights or filters, Hin-

ton et al. [8] proposed a knowledge distillation (KD)

paradigm for transferring useful information from a given

teacher network to a portable student network. Yim et

al. [29] introduced the FSP (Flow of Solution Procedure)

matrix to inherit the relationship between features from two

layers. Li et al. [13] further presented a feature mimic

framework to train efficient convolutional networks for ob-

jective detection. In addition, Rastegari et al. [20] and

Courbariaux et al. [2] explored binarized neural networks

to achieve considerable compression and speed-up ratios,

which weights are -1/1 or -1/0/1, etc.

Although the above mentioned algorithms obtained

promising results on most of benchmark datasets and deep

models, they cannot be effectively launched without the

original training dataset. In practice, the training dataset

could be unavailable for some reasons, e.g. transmission

limitations and privacy. Therefore, it is necessary to study

the data-free approach for compressing neural networks.
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2.2. Data­Free Network Compression

There are only a few methods that are proposed for com-

pressing deep neural networks without the original training

dataset. Srinivas and Babu [26] proposed to directly merge

similar neurons in fully-connected layers, which cannot be

applied on convolutional layers and networks which detail

architectures and parameters information are unknown. In

addition, Lopes et al. [16] attempted to reconstruct the orig-

inal data from “meta-data” and utilize the knowledge distil-

lation scheme to learn a smaller network.

Since the fine-tuning procedure cannot be accurately

conducted without the original training dataset, perfor-

mance of compressed methods by existing algorithms is

worse than that of baseline models. Therefore, an effective

data-free approach for learning efficient CNNs with compa-

rable performance is highly required.

3. Data-free Student Network learning

In this section, we will propose a novel data-free frame-

work for compressing deep neural networks by embed-

ding a generator network into the teacher-student learning

paradigm.

3.1. Teacher­Student Interactions

As mentioned above, the original training dataset is not

usually provided by customers for various concerns. In

addition, parameters and detailed architecture information

could also be unavailable sometimes. Thus, we propose to

utilized the teacher-student learning paradigm for learning

portable CNNs.

Knowledge Distillation (KD) [8] is a widely used ap-

proach to transfer the output information from a heavy

network to a smaller network for achieving higher perfor-

mance, which does not utilize parameters and the architec-

ture of the given network. Although the given deep models

may only be provided with limited interfaces (e.g. input and

output interfaces), we can transfer the knowledge to inherit

the useful information from the teacher networks. Let NT

andNS denote the original pre-trained convolutional neural

network (teacher network) and the desired portable network

(student network), the student network can be optimized us-

ing the following loss function based on knowledge distil-

lation:

LKD =
1

n

∑

i

Hcross(y
i
S , yi

T ). (1)

where Hcross is the cross-entropy loss, yi
T = NT (x

i) and

yiS = NS(x
i) are the outputs of the teacher network NT

and student network NS , respectively. Therefore, utilizing

the knowledge transfer technique, a portable network can

be optimized without the specific architecture of the given

network.

3.2. GAN for Generating Training Samples

In order to learn portable network without original data,

we exploit GAN to generate training samples utilizing the

available information of the given network.

Generative adversarial networks (GANs) have been

widely applied for generating samples. GANs consist of a

generator G and a discriminator D. G is expected to gener-

ate desired data while D is trained to identify the differences

between real images and those produced by the generator.

To be specific, given an input noise vector z, G maps z to

the desired data x, i.e. G : z → x. On the other hand, the

goal of D is to distinguish the real data from synthetic data

G(z). For an aribitrary vanilla GAN, the objective function

can be formulated as

LGAN =Ey∼pdata(y)[logD(y)]

+Ez∼pz(z)[log(1−D(G(z)))].
(2)

In the adversarial procedure, the generator is continuously

upgraded according to the training error produced by D.

The optimal G is obtained by optimizing the following

problem

G∗ = argmin
G

Ez∼pz(z)[log(1−D∗(G(z)))], (3)

where D∗ is the optimal discriminator. Adversarial learning

techniques can be naturally employed to synthesize train-

ing data. However according to Eq. (2), the discriminator

requires real images for training. In the absence of train-

ing data, it is thus impossible to train the discriminator as

vanilla GANs.

Recent works [19] have proved that the discriminator

D can learn the hierarchy of representations from samples,

which encourages the generalization of D in other tasks like

image classification. Odena [18] further suggested that the

tasks of discrimination and classification can improve each

other. Instead of training a new discriminator as vanilla

GANs, the given deep neural network can extract semantic

features from images as well, since it has already been well

trained on large-scale datasets. Hence, we propose to regard

this given deep neural network (e.g. ResNet-50 [7]) as a

fixed discriminator. Therefore, G can be optimized directly

without training D together, i.e. the parameters of original

network D are fixed during training G. In addition, the out-

put of the discriminator is a probability indicating whether

an input image is real or fake in vanilla GANs. However,

given the teacher deep neural network as the discriminator,

the output is to classify images to different concept sets, in-

stead of indicating the reality of images. The loss function

in vanilla GANs is therefore inapplicable for approximating

the original training set. Thus, we conduct thorough anal-

ysis on real images and their responses on this teacher net-

work. Several new loss functions will be devised to reflect

our observations.
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On the image classification task, the teacher deep neu-

ral network adopts the cross entropy loss in the training

stage, which enforces the outputs to be close to ground-

truth labels of inputs. Specifically for multi-class classifi-

cation, the outputs are encouraged to be one-hot vectors,

where only one entry is 1 and all the others are 0s. Denote

the generator and the teacher network as G and NT , re-

spectively. Given a set of random vector {z1, z2, · · · , zn},
images generated from these vectors are {x1, x2, · · · , xn},
where xi = G(zi). Inputting these images into the teacher

network, we can obtain the outputs {y1T , y2T , · · · , ynT } with

yiT = NT (x
i). The predicted labels {t1, t2, · · · , tn} are then

calculated by ti = argmax
j

(yiT )j . If images generated by G

follow the same distribution as that of the training data of

the teacher network, they should also have similar outputs

as the training data. We thus introduce the one-hot loss,

which encourages the outputs of generated images by the

teacher network to be close to one-hot like vectors. By tak-

ing {t1, t2, · · · , tn} as pseudo ground-truth labels, we for-

mulate the one-hot loss function as

Loh =
1

n

∑

i

Hcross(y
i
T , ti), (4)

where Hcross is the cross-entropy loss function. By in-

troducing the one-hot loss, we expect that a generated im-

age can be classified into one particular category concerned

by the teacher network with a higher probability. In other

words, we pursue synthetic images that are exclusively

compatible with the teacher network, rather than general

real images for any scenario.

Besides predicted class labels by DNNs, intermediate

features extracted by convolution layers are also important

representations of input images. A large number of works

have investigated the interpretability of deep neural net-

works [30, 22, 4]. Features extracted by convolution filters

are supposed to contain valuable information about the in-

put images. In particular, Zhang et al. [31] assigned each

filter in a higher convolution layer with a part of object,

which demonstrates that each filter stands for different se-

mantics. We denote features of xi extracted by the teacher

network as f i
T , which corresponds to the output before the

fully-connected layer. Since filters in the teacher DNNs

have been trained to extract intrinsic patterns in training

data, feature maps tend to receive higher activation value

if input images are real rather than some random vectors.

Hence, we define an activation loss function as:

La = −
1

n

∑

i

‖f i
T ‖1, (5)

where ‖ · ‖1 is the conventional l1 norm.

Moreover, to ease the training procedure of a deep neu-

ral network, the number of training examples in each cat-

egory is usually balanced, e.g. there are 6,000 images in

Algorithm 1 DAFL for learning portable student networks.

Input: A given teacher network NT , parameters of differ-

ent objects: α and β.

1: Initialize the generator G, the student networkNS with

fewer memory usage and computational complexity;

2: repeat

3: Module 1: Training the Generator.

4: Randomly generate a batch of vector: {zi}ni=1;

5: Generate the training samples: x← G(z);
6: Employ the teacher network on the mini-batch:

7: [yT , t, fT ]← NT (x);
8: Calculate the loss function LTotal (Fcn.7):

9: Update weights in G using back-propagation;

10: Module 2: Training the student network.

11: Randomly generate a batch of vector {zi}ni=1;

12: Utlize the generator on the mini-batch: x← G(z);
13: Employ the teacher network and the student net-

work on the mini-batch simultaneously:

14: yS ← NS(x), yT ← NT (x);
15: Calculate the knowledge distillation loss:

16: LKD ←
1
n

∑
i

H(yiS , yi
T );

17: Update weights in NS according to the gradient;

18: until convergence

Output: The student network NS .

each class in the MNIST dataset. We employ the in-

formation entropy loss to measure the class balance of

generated images. Specifically, given a probability vec-

tor p = (p1, p2, · · · , pk), the information entropy, which

measures the degree of confusion, of p is calculated as

Hinfo(p) = −
1
k

∑
i

pi log(pi). The value ofHinfo(p) indi-

cates the amount of information that p owns, which will take

the maximum when all variables equal to 1
k

. Given a set of

output vectors {y1
T , y2T , · · · , ynT }, where yiT = NT (x

i), the

frequency distribution of generated images for every class is
1
n

∑
i

yiT . The information entropy loss of generated images

is therefore defined as

Lie = −Hinfo(
1

n

∑

i

yiT ). (6)

When the loss takes the minimum, every element in vector
1
n

∑
i

yiS would equal to 1
k

, which implies that G could gen-

erate images of each category with roughly the same prob-

ability. Therefore, minimizing the information entropy of

generated images can lead to a balanced set of synthetic im-

ages.

By combining the aforementioned three loss functions,

we obtain the final objective function

LTotal = Loh + αLa + βLie, (7)
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Table 1. Classification result on the MNIST dataset.

Algorithm Required data
LeNet-5 [12] HintonNet [8]

Accuracy FLOPs #params Accuracy FLOPs #params

Teacher Original data 98.91% ∼436K ∼62K 98.39% ∼2.39M ∼2.4M

Standard back-propagation Original data 98.65% ∼144K ∼16K 98.11% ∼1.28M ∼ 1.28M

Knowledge Distillation [8] Original data 98.91% ∼144K ∼16K 98.39% ∼1.28M ∼ 1.28M

Normal distribution No data 88.01% ∼144K ∼16K 87.58% ∼1.28M ∼ 1.28M

Alternative data USPS dataset 94.56% ∼144K ∼16K 93.99% ∼1.28M ∼ 1.28M

Meta data [16] Meta data 92.47% ∼144K ∼16K 91.24% ∼1.28M ∼ 1.28M

Data-Free Learning (DAFL) No data 98.20% ∼144K ∼16K 97.91% ∼1.28M ∼ 1.28M

where α and β are hyper parameters for balancing three dif-

ferent terms. By minimizing the above function, the optimal

generator can synthesize images that have the similar distri-

bution as that of the training data previously used for train-

ing the teacher network (i.e. the discriminator network).

It is noted that some previous works [23, 17] could syn-

thesize images by optimizing the input of the neural net-

work using back-propagation. But it is difficult to generate

abundant images for the subsequent student network train-

ing, for each synthetic image leads to an independent opti-

mization problem solved by back-propagation. In contrast,

the proposed method can imitate the distribution of training

data directly, which is more flexible and efficient to generate

new images.

3.3. Optimization

The learning procedure of our algorithm can be divided

into two stages of training. First, we regard the well-trained

teacher network as a fixed discriminator. Using the loss

function LTotal in Eq. 7, we optimize a generator G to gen-

erate images that follow the similar distribution as that of

the original training images for the teacher network. Sec-

ond, we utilize the knowledge distillation approach to di-

rectly transfer knowledge from the teacher network to the

student network. The student network with fewer parame-

ters is then optimized using the KD loss LKD in Eq. 1. The

diagram of the proposed method is shown in Figure 1.

We use stochastic gradient descent (SGD) method to op-

timize the image generator G and the student network NS .

In the training of G, the first term of LTotal is the cross

entropy loss, which can be trained traditionally. The sec-

ond term La in Eq. 7 is exactly a linear operation, and the

gradient of La with respect to f i
T can be easily calculated

as:
∂La

∂f i
T

= −
1

n
sgn(f i

T ), (8)

where sgn(·) denotes sign function. Parameters WG in G

will be updated by:

∂La

∂WG

=
∑

i

∂La

∂f i
T

·
∂f i

T

∂WG

, (9)

where
∂fi

T

∂WG
is the gradient of the feature f i

T . The gradient of

the final termLie with respect to yi
T can be easily calculated

as:
∂Lie

∂yiT
= −

1

n
yi[log(

1

n

∑

j

y
j
T ) + 1], (10)

where 1 denotes n-dimensional vector with all values as 1.

Parameters in G will be additionally updated by:

∂Lie

∂WG

=
∑

i

∂Lie

∂yi
T

·
∂yi

T

∂WG

. (11)

Detailed procedures of the proposed Data-Free Learning

(DAFL) scheme for learning efficient student neural net-

works is summarized in Algorithm 1.

4. Experiments

In this section, we will demonstrate the effectiveness of

our proposed data-free knowledge distillation method and

conduct massive ablation experiments to have an explicit

understanding of each component in the proposed method.

4.1. Experiments on MNIST

We first implement experiments on the MNIST dataset,

which is composed of 28 × 28 pixel images from 10 cate-

gories (from 0 to 9). The whole dataset consists of 60,000

training images and 10,000 testing images. For choosing

hyper-parameters of the proposed methods, we take 10,000

images as a validation set from training images. Then, we

train models on the full 60,000 images to obtain the ultimate

network.

To make a fair comparison, we follow the setting in

[16]. Two architectures are used for investigating the per-

formance of proposed method, i.e. a convolution-based ar-

chitecture and a network consists of fully-connect layers.

For convolution models, we use LeNet-5 [12] as the teacher

model and LeNet-5-HALF (a modified version with half

the number of channels per layer) as the student model.

For the second architecture, the teacher network consists of

two hidden layers of 1,200 units (Hinton-784-1200-1200-

10) [8] and student network consists of two hidden layers of
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Table 2. Effectiveness of different components of the proposed data-free learning method.

One-hot loss ! ! ! !

Information entropy loss ! ! ! !

Feature maps activation loss ! ! ! !

Top 1 accuracy 88.01% 78.77% 88.14% 15.95% 42.07% 97.25% 95.53% 98.20%

800 units (Hinton-784-800-800-10). The student networks

have significantly fewer parameters than teacher networks.

For our method, α and β in Fcn.7 are 0.1 and 5, respec-

tively, and are tuned on the validation set. The generator

was trained for 200 epochs using Adam. We use a deep con-

volutional generator1 following [19] and add a batch nor-

malization at the end of the generator to smooth the sample

values.

Table 1 reports the results of different methods on the

MNIST datasets. On LeNet-5 models, the teacher network

achieves a 98.91% accuracy while the student network us-

ing the standard back-propagation achieves a 98.65% ac-

curacy, respectively. Knowledge distillation improved the

accuracy of student network to 98.91%. These methods use

the original data to train the student network. We then train

a student network exploiting the proposed method to evalu-

ate the effectiveness of the synthetic data.

We first use the data randomly generated from normal

distribution to training the student network. By utilizing the

knowledge distillation, the student network achieves only

an 88.01% accuracy. In addition, we further use another

handwritten digits dataset, namely USPS [9], to conduct the

same experiment for training the student network. Although

images in two datasets have similar properties, the student

network learned using USPS can only obtain a 94.56% ac-

curacy on the MNIST dataset, which demonstrates that it is

extremely hard to find an alternative to the original training

dataset. To this end, Lopes et al. [16] using the “meta data”,

which is the activation record of original data, to reconstruct

the dataset and achieved only a 92.47% accuracy. Noted

that the upper bound of the accuracy of student network is

98.65%, which could be achieved only if we could find a

dataset whose distribution is same as the original dataset

(i.e. MNIST dataset). The proposed method utilizing gen-

erative adversarial networks achieved a 98.20% accuracy,

which is much close to this upper bound. Also, the accuracy

of student network using the proposed algorithm is superior

to these using other data (normal distribution, USPS dataset

and reconstructed dataset using “meta data”), which suggest

that our method could imitate the distribution of training

dataset better.

On the fully-connected models, the classification ac-

curacies of teacher and student network are 98.39% and

98.11%, respectively. Knowledge Distillation brought the

1https://github.com/eriklindernoren/PyTorch-

GAN/blob/master/implementations/dcgan/dcgan.py

performance of student network by transferring informa-

tion from teacher network to 98.39%. However, in the ab-

sence of training data, the result became unacceptable. Ran-

domly generated noise only achieves 87.58% accuracy and

“meta data” [16] achieves a higher accuracy of 91.24%. Us-

ing USPS dataset as alternatives achieves an accuracy of

93.99%. The proposed method results in the highest perfor-

mance of 97.91% among all methods without the original

data, which demonstrates the effectiveness of the generator.

4.2. Ablation Experiments

In the above sections, we have tested and verified the

effectiveness of the proposed generative method for student

network learning without training data. However, there are

a number of components, i.e. three terms in Eq. 7, when

optimizing the generator. We further conduct the ablation

experiments for an explicit understanding and analysis.

The ablation experiment is also conducted on the MNIST

dataset. We used the LeNet-5 as a teacher network and

LeNet-5-HALF as a student network. The training settings

are same as those in Section 4.1. Table 2 reports the re-

sults of various design components. Using randomly gener-

ated samples, i.e. the generator G is not trained, the student

network achieves an 88.01% accuracy. However, by uti-

lizing one-hot loss and feature map activation loss or one

of them, the generated samples are unbalanced, which re-

sults in the poor performance of the student networks. Only

introducing information entropy loss, the student network

achieves an 88.14% accuracy since the samples do not con-

tain enough useful information. When combining Loh or

La with Lie, the student network achieves higher perfor-

mance of 97.25% and 95.53%, respectively. Moreover, the

accuracy of student network is 98.20% when using all these

loss functions, which achieves the best performance. It is

worth noticing that the combination of one-hot loss and

information entropy is essential for training the generator,

which is also utilized in some previous works [25, 10].

The ablation experiments suggest that each component

of the loss function of G is meaningful. By applying the

proposed method, G can generate balanced samples from

different classes with a similar distribution as that in the

original dataset, which is effective for the training of the

student network.
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Table 3. Classification result on the CIFAR dataset.
Algorithm Required data FLOPS #params CIFAR-10 CIFAR-100

Teacher Original data ∼1.16G ∼21M 95.58% 77.84%

Standard back-propagation Original data ∼557M ∼11M 93.92% 76.53%

Knowledge Distillation [8] Original data ∼557M ∼11M 94.34% 76.87%

Normal distribution No data ∼557M ∼11M 14.89% 1.44%

Alternative data Similar data ∼557M ∼11M 90.65% 69.88%

Data-Free Learning (DAFL) No data ∼557M ∼11M 92.22% 74.47%

4.3. Visualization Results

After investigating the effectiveness of the proposed

method, we further conduct visualization experiments on

the MNIST dataset. There are 10 categories of handwritten

digits from 0 to 9 in the MNIST dataset. The settings are

same as that in Section 4.1.

(a) Averaged images on the MNIST dataset.

(b) Averaged images on the generated dataset.

Figure 2. Visualization of averaged image in each category (from

0 to 9) on the MNIST dataset.

Figure 2 shows the visualization results of averaged im-

ages. Noted that the generated images are unlabeled, their

classes are defined by the prediction of the teacher network.

By exploiting the information of the given network as much

as possible, we design loss function for the generator. Fig-

ure 2 (b) shows the mean of images of each class. Although

no real image is provided, the generated images have sim-

ilar patterns with the training images, which indicates that

the generator can somehow learn the data distribution.

Filter visualization. Moreover, we visualize the filters

of the LeNet-5 teacher network and student network in Fig-

ure 3. Though the student network is trained without real-

world data, filters of the student network learned by the pro-

posed method (see Figure 3 (b)) are still similar to those of

the teacher network (see Figure 3 (a)). The visualization

experiments further demonstrate that the generator can pro-

duce images that have similar patterns as the original im-

ages, and by utilizing generated samples, the student net-

work could acquire valuable knowledge from the teacher

network.

(a) Teacher filters.

(b) Student filters.

Figure 3. Visualization of filters in the first convolutional layer

learned on the MNIST dataset. The top line shows filters trained

using the original training dataset, and the bottom line shows fil-

ters obtained using samples generated by the proposed method.

4.4. Experiments on CIFAR

To further evaluate the effectiveness of our method, we

conduct experiments on the CIFAR dataset. We used a

ResNet-34 as the teacher network and ResNet-18 as the

student network2, which is complex and advanced for fur-

ther investigating the effectiveness of the proposed method.

These networks are optimized using Nesterov Accelerated

Gradient (NAG) and the weight decay and the momentum

are set as 5 × 10−4 and 0.9, respectively. We train the net-

works for 200 epochs and the initial learning rate is set as

0.1 and divided by 10 at 80 and 120 epochs, respectively.

Random flipping, random crop and zero padding are used

for data augmentation as suggested in [7]. G and the stu-

dent networks of the proposed method are trained for 2,000

epochs and the other settings are same as those in MNIST

experiments.

Table 3 reports the classification results on the CIFAR-10

and CIFAR-100 datasets. The teacher network achieves a

95.58% accuracy in CIFAR-10. The student network using

knowledge distillation achieves a 94.34% accuracy, which

is slightly higher than that of standard BP (93.92%).

We then explore to optimize the student network with-

out true data. Since the CIFAR dataset is more complex

than MNIST, it is impossible to optimize a student network

using randomly generated data which follows the normal

distribution. Therefore, we then regard the MNIST dataset

without labels as an alternative data to train the student net-

work using the knowledge distillation. The student network

only achieves a 28.29% accuracy on the CIFAR-10 dataset.

Moreover, we train the student network using the CIFAR-

2https://github.com/kuangliu/pytorch-cifar
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100 dataset, which has considerable overlaps with the orig-

inal CIFAR-10 dataset, but this network only achieves a

90.65% accuracy, which is obviously lower than that of

the teacher model. In contrast, the student network trained

utilizing the proposed method achieved a 92.22% accuracy

with only synthetic data.

Besides CIFAR-10, we further verify the capability of

the proposed method on the CIFAR-100 dataset, which has

100 categories and 600 images per class. Therefore, the

dimensionality of the input random vectors for the gener-

ator in our method is increased to 1,000. The accuracy of

the teacher network is 77.84% and that of the student net-

work is only 76.53%, respectively. Using normal distribu-

tion data, MNIST, and CIFAR-10 to train the student net-

work cannot obtain promising results, as shown in Table 3.

In contrast, the student network learned by exploiting the

proposed method obtained a 74.47% accuracy without any

real-world training data.

4.5. Experiments on CelebA

Besides the CIFAR dataset, we conduct our experiments

on the CelebA dataset, which contains 202,599 face images

of pixel 224 × 224. To evaluate our approach fairly, we

used AlexNet [11] to classify the most balanced attribute

in CelebA [14] following the settings in [16]. The student

network is AlexNet-Half, which number of filters is half

of AlexNet. The original teacher network has about 57M

parameters while the student network has only about 40M

parameters. The networks is optimized for 100 epochs us-

ing Adam with a learning rate of 10−4. We use an alter-

native model of DCGAN [19] to generate color images of

224 × 224. The hyper-parameters of the proposed method

are same as those in MNIST and CIFAR experiments and

G.

Table 4 reported the classification results of student net-

works on the CelebA dataset by exploiting the proposed

method and state-of-the-art learning methods. The teacher

network achieves an 81.59% accuracy and the student net-

work using the standard BP achieves an 80.82% accuracy,

respectively. Lopes et al. [16] achieves only a 77.56% ac-

curacy rate using the “meta data”. The accuracy of the stu-

dent network trained using the proposed method is 80.03%,

which is comparable with that of the teacher network.

Table 4. Classification result on the CelebA dataset.
Algorithm FLOPS Accuracy

Teacher ∼711M 81.59%

Standard back-propagation ∼222M 80.82%

Knowledge Distillation [8] ∼222M 81.35%

Meta data [16] ∼222M 77.56%

Data-Free Learning (DAFL) ∼222M 80.03%

4.6. Extended Experiments

Massive experiments are conducted on several bench-

marks to verify the performance of the DAFL method

for learning student networks using generated images.

Wherein, architectures of used student networks are more

portable than those of teacher networks. To investigate the

difference between original training images and generated

images, we use these generated images to train networks of

the same architectures as those of teacher networks using

the proposed methods. The results are reported in Table 5.

It can be found in Table 5 that LeNet-5 and HintonNet

on the MNIST dataset achieve a 98.91% accuracy and a

98.39% accuracy, respectively. In contrast, accuracies of

student networks trained from scratch with same architec-

tures are 98.47% and 98.08%, respectively, which are very

close to those of teacher networks. In addition, student net-

works on the CIFAR-10 and the CIFAR-100 datasets also

obtain similar results to those of teacher networks. These re-

sults demonstrate that the proposed method can effectively

approximate the original training dataset by extracting in-

formation from teacher networks. If the network architec-

tures are given, we can even replicate the teacher networks

and achieve similar accuracies.

Table 5. Classification results on various datasets.

Dataset Model
Accuracy

Teacher Student

MNIST LeNet-5 [12] 98.91% 98.47%

MNIST HintonNet [8] 98.39% 98.08%

CIFAR-10 ResNet-34 [7] 95.58% 93.21%

CIFAR-100 ResNet-34 [7] 77.84% 75.32%

CelebA AlexNet [11] 81.59% 80.56%

5. Conclusion

Conventional methods require the original training

dataset for fine-tuning the compressed deep neural networks

with an acceptable accuracy. However, the training set and

detailed architecture information of the given deep network

are routinely unavailable due to some privacy and transmis-

sion limitations. In this paper, we present a novel frame-

work to train a generator for approximating the original

dataset without the training data. Then, a portable networks

can be learned effectively through the knowledge distilla-

tion scheme. Experiments on benchmark datasets demon-

strate that the proposed method DAFL method is able to

learn portable deep neural networks without any training

data.
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