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Abstract

In this paper, we present a deep meta metric learning (D-

MML) approach for visual recognition. Unlike most exist-

ing deep metric learning methods formulating the learning

process by an overall objective, our DMML formulates the

metric learning in a meta way, and proves that softmax and

triplet loss are consistent in the meta space. Specifically,

we sample some subsets from the original training set and

learn metrics across different subsets. In each sampled sub-

task, we split the training data into a support set as well

as a query set, and learn the set-based distance, instead

of sample-based one, to verify the query cell from multiple

support cells. In addition, we introduce hard sample min-

ing for set-based distance to encourage the intra-class com-

pactness. Experimental results on three visual recognition

applications including person re-identification, vehicle re-

identification and face verification show that the proposed

DMML method outperforms most existing approaches.1

1. Introduction

Distance metric learning has been widely used in many

visual analysis applications, which aims to learn an embed-

ding space where the distance between similar samples is

closer and that of dissimilar samples is farther. Convention-

al metric learning approaches learn the embedding space by

a linear Mahalanobis distance metric [13, 25, 57]. As lin-

ear metric learning approaches usually suffer from nonlin-

ear correlations of samples, deep metric learning methods

have been proposed to learn discriminative nonlinear em-

beddings by deep neural networks [36, 44, 55].

One of the most important applications of deep metric

learning is visual recognition, which attempts to match a

probe sample from the large gallery set, such as person

re-identification [4, 7], fine-grained recognition [9, 63], and
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1Code:https://github.com/CHENGY12/DMML
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Figure 1. Difference between global optimization methods and

meta-based methods. The top part shows that global optimization

methods learn classifiers with all training samples, which usual-

ly over-fit on the “salient” feature of training data. The bottom

part shows that meta-based methods learn the meta metrics across

sampled multiple subsets, which mine the potential information

for better generalization. (Best viewed in color)

face recognition [41, 58]. Conventional deep metric learn-

ing methods apply the contrastive loss [8, 15] or triplet

loss [3, 57] to learn discriminative feature space to measure

the similarity of visual samples. Recently, N-pair loss [44]

has been presented to take advantage of the whole train-

ing batch in each update. However, these methods hardly

explain the generalization capacity of metric from training

dataset to testing dataset. As shown in Figure 1, we take

person re-identification as an example. Assuming that most

persons in the training set are wearing colorful T-shirts and

similar plain pants while a few of them are wearing vivid

pants, global optimization methods (e.g. softmax) tend to

identify the persons only from colorful T-shirts and neglect

the potential information of pants. For the query samples

with similar T-shirts and different pants, they might fail due

to over-fitting on the training set. In contrast, without the
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limit of global objective on the overall training set, the sam-

pled sub-tasks from original task may be propitious to learn

the potential transferable information. ,

In this paper, we propose a deep meta metric learning (D-

MML) method, which formulates the metric learning pro-

cess in a meta way and learns set-based distances, instead

of sample-based ones. In detail, we sample multiple subsets

from the original training set and define a task distribution

on these subsets. With the assumption that the unseen test

task also satisfies this distribution, we aim to learn a gen-

eral metric across different subsets, called meta metric, to

well transfer to the tasks sampled from the task distribu-

tion. Specifically, in each episode, we sample a subset as

a new task and split the training data into a support set as

well as a query set. We define the support samples in each

class as a “meta-cell”, and optimize the model to match the

query sample with positive meta-cell by set-based distance.

In addition, we introduce the hard sample mining process

and margin strategy for the proposed set-based distance to

explicitly encourage intra-class compactness and inter-class

separability. In the experiments, we demonstrate the supe-

riority of our DMML method on some visual recognition

problems to baseline deep metric learning and classification

methods. To be specific, we improve the performance of

vehicle re-identification task on the VeRi-776 [31] dataset

compared with both baselines and state-of-the-art method-

s. We obtain consistent improvement over the performance

of person re-identification on the Market-1501 [65] and

DukeMTMC-reID [37] datasets as well as face verification

accuracies on the Labeled Faces in the Wild (LFW) [23] and

YouTube Faces (YTF) [59] databases.

2. Related Work

Metric Learning: Metric learning aims to learn a dis-

tance function to measure the similarity of a pair of samples,

which gains great success on many visual recognition prob-

lems, including person re-identification, face verification,

and vehicle re-identification. Early metric learning meth-

ods learn a linear Mahalanobis metric for similarity mea-

surement [14, 25, 57]. For example, LMNN [57] attempts

to ensure that the neighbors of each point always belong to

the same class, while examples from different classes are

separated by a large margin. To learn the nonlinear rela-

tionship between samples, kernel tricks are generally adopt-

ed in metric learning methods [11, 50, 61]. More recently,

several deep metric learning methods [7, 17, 22, 33, 36, 41,

44, 46, 51, 55] have been proposed to model the nonlinear-

ity of data points, which unify feature learning and metric

learning into a joint learning framework. In terms of the in-

put structure in the training procedure, deep metric learning

methods can mainly be divided into three categories: con-

trastive loss [8, 15] with pair-wise inputs, triplet loss [3, 57]

with triplet inputs, and N-pair loss [44] with batch inputs.

Contrastive loss takes the sample pairs as input and learns

to shorten the distances of positive sample pairs and sepa-

rate those negative samples. Triplet loss preserves the rank

relationship with a margin among a triplet of data points.

More recently, Sohn [44] addresses the slow convergence

problem of conventional triplet loss by pushing away mul-

tiple negative examples simultaneously in one batch using

a softmax-based objective. Besides, many methods [47, 54]

introduce joint identification loss (e.g. softmax loss) in the

metric learning framework to increase inter-class separabil-

ity and reduce intra-class variations. In general, deep met-

ric learning methods achieve great success with strong dis-

criminative power. However, these methods hardly explain

the generalization ability of the learned metrics and neglect

the relation between intra-class samples. In this paper, we

formulate metric learning from a meta perspective, which

brings greater interpretability.

Meta Learning: The goal of meta learning is to en-

able a base learning algorithm to adapt to new tasks effi-

ciently, by extracting some transferable knowledge from a

set of auxiliary tasks. For example, several meta learning

methods [1, 5, 19] interpret gradient update as a paramet-

ric and learnable function rather than a fixed ad-hoc rou-

tine. Another promising direction is proposed by MAM-

L [12], which learns initial parameters of the learner for

fast adaptation. Some recent works [24, 35, 39] retain the

knowledge with memory-augmented models (e.g. the hid-

den activations of RNN or external memory) and access im-

portant and previously unseen information associated with

newly encountered tasks. The most related methodologies

to ours are Matching Networks [52] and its later develop-

ments [40, 43], which learn a set of classifiers with prior

tasks and solve the few shot learning problem by weighting

these nearest neighbor classifiers. Different from Match-

ing Networks and Prototypical Networks [43], whose goal

is mapping few-shot samples into correct classes by their

neighbors in the support set, we focus on more general met-

ric learning for visual recognition problems instead of few-

shot learning. Additionally, we improve the set-based dis-

tance of meta formulation with hard sample mining strategy

to accelerate the learning process.

3. Approach

3.1. Deep Meta Metric Learning

Overall Formulation: Most of global optimization

learning algorithms optimize an appropriate objective func-

tion L to learn the parameters of deep networks with a single

overall observation of training data points,

θ = argmin
θ

L(θ;X ,Y), (1)

where X represents all training data points and Y =
{1, . . . , N} are corresponding labels.
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In our DMML method, instead of considering a single

objective with the overall observation of training data, we

formulate metric learning in a meta way, which better ex-

plains the learning process and generalization ability of the

metric. We decompose the single training objective into

multiple sub-tasks and learn the meta metric applicable for

all sub-tasks. In our assumption, the test task and all sub-

tasks are instances sampled from a task distribution p(T ).
We formulate the objective function of the proposed D-

MML method as:

θ = argmin
θ

ETk∼p(T )

[

Lk(θ;Xk,Yk)
]

, (2)

where Lk(θ;Xk,Yk) denotes the objective function of sam-

pled sub-task Tk. Specifically, for a given N-class train-

ing set, we randomly sample M(M ≤ N) classes from

the original task to construct a new task. Similar to the

form of meta learning, we randomly sample a support set

S = {smi |i = 1, . . . nm
s } and a query set Q = {qmi |i =

1, . . . nm
q } for the sub-task Tk, where m = 1, . . . ,M de-

notes the different classes. For simplicity, we set the num-

ber of support samples and query samples in different class-

es equal, i.e. nm
s = ns and nm

q = nq . In each episode, we

learn the meta metric to correctly verify the query sample

from Q with support samples in S . The overall formulation

of our DMML method is:

θ = argmin
θ

ETk∼p(T )

[

ES,Q∼Tk

[

Lk(θ;Q,S)
]

]

. (3)

Learning in One Episode: To learn the meta metric in

each episode, we assume all support data points of the same

class lie in a manifold, which is defined as “meta-cell”:

Mm =

{ ns
∑

i=1

αm
i f(smi )

∣

∣

∣

∣

ns
∑

i=1

αm
i = 1, 0 ≤ αm

i ≤ 1

}

,

(4)

where the coefficients αm
i are bounded by [0, 1] to ensure

the convexity of the meta-cell, and f(·) represents the em-

bedding function, which is implemented by a deep neural

network with parameters θ. Different from conventional

metric learning methods which optimize the metrics of sam-

ple pairs, we learn the set-based distances which measure

the distances between query sample and meta-cells. The

set-based metric considers intra-class constraints among the

meta-cells to learn discriminative distance metric. Specifi-

cally, we define the distance between the query sample and

the meta-cell as:

dmj = D(qm
′

j ,Mm) =

ns
∑

i=1

αm
i d

(

f(qm
′

j ), f(smi )
)

, (5)

where qm
′

j is the jth sample in the class m′, Mm denotes

the meta-cell with label m, and d(·, ·) denotes the distance

between a query sample and a support sample.

margin

M1

M3

M4

M2

q1

Figure 2. Schematic illustration of margin strategy in the DMML

method. For a query sample, we learn a metric that maintains at

least a margin between the distance to the positive meta-cell and

negative meta-cells. (Best viewed in color)

For each query sample in the query set Q, we optimize

the model to minimize its distance to the meta-cell of the

same class (i.e. the positive meta-cell) and push away other

negative ones. Considering M meta-cells {M1, . . . ,MM}
and one query sample qm

′

j , only {Mm,m = m′} is the

positive meta-cell while the others are negative meta-cells.

To preserve the rank relationship among each triplet of sam-

ples, we introduce the conventional triplet loss as follows:

Ltri(qj) =
∑

m �=m′

max
(

0, dm
′

j − dmj + τ
)

(6)

where m = m′ and m �= m′ represent positive and negative

sample pairs respectively, and τ is a margin to limit the gap

between positive and negative pairs. Then, we apply a con-

tinuous exponential function to replace max(0, x) and use

a logarithmic function to limit the range [20], deriving our

optimization objective that is equivalent with (6):

Leps(qj) = log
(

1 +
∑

m �=m′

e(d
m′

j −dm
j +τ)

)

= − log
e−dm′

j

e−dm′

j +
∑

m �=m′

e−dm
j
+τ

.
(7)

In practice, we limit the scale of margin τ with the con-

straint of −dn = min(−dmj + τ, 0), which ensures that the

distance is large than zero. As shown in Figure 2, we expect

that the distance between the query sample and the positive

meta-cell is less than other negative meta-cells by a margin

in the embedding space.

Note that (7) is also an approximation of the standard

softmax loss, where the similarity between query sample

qm
′

j and meta-cell Mm denotes the probability predicting

the qj with label m. It indicates that the classification loss

and rank based verification loss are almost identical in the

meta space, where meta-cells in DMML serve as alterna-

tive classification labels. With this bridge, the effective
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Algorithm 1 : DMML

Require: Training image set, the number of classes in

the training set N , the number of classes sampled per

episode M (M ≤ N), the number of support instances

per class ns, the number of query instances per class

nq , margin parameter τ , max episode number T .

Ensure: Parameters θ of the embedding function f(·).
1: Initialize θ.

2: for episode = 1, 2, · · · , T do

3: Randomly sample M class indices from N .

4: Randomly sample support set and query set for each

class.

5: Compute distances between each query sample and

all meta-cells using (5).

6: Optimize θ using (7) and (8).

7: end for

8: return θ.

techniques of metric learning loss can be easily transferred

into classification loss, and vice versa. Many softmax-

based methods [29, 53] aim to learn classification bound-

aries with a margin for discriminative learning of the em-

bedding space, which encourages the intra-class compact-

ness and inter-class separability. Here, with the meta space,

we naturally propose an additive negative margin softmax

loss, which adds margins on the negative samples to op-

timize the distance metric where differently labeled inputs

maintain a large margin of distance and do not threaten to

“invade” each other’s neighborhoods. Compared with L-

softmax [29], A-softmax [28], and AM-softmax [53], our

margin-based softmax is more simple and intuitive.

Given the loss function of each episode, we optimize the

expectation objective under the task distribution and ran-

dom splits of support set and query set. The final formula-

tion of the proposed standard DMML method as:

θ = argmin
θ

ETk∼p(T )

[

ES,Q∼Tk

∑

qm
′

j
∈Q

Leps(q
m′

j )

]

. (8)

For a more clear explanation, we provide Algorithm 1 to

detail the procedure of DMML.

Hard Sample Mining: In our DMML method, we pro-

pose to use set-based distance to replace sample-based ones

for verifying the query cell from multiple support cells,

which is formulated in (5). However, this general defini-

tion is difficult to optimize directly. In this subsection, we

propose two alternative set-based distances: center support

distance and hard mining distance.

The center support distance is a baseline set-based dis-

tance which uses the center point of samples in a meta-cell

to represent the whole meta-cell and computes the point-to-

point distance as the alternative distance [43].The formula-

tion of center support distance is written as:

Dc(q
m′

j ,Mm) = d
(

f(qm
′

j ), cm
)

, (9)

where the center point of samples is obtained by an aver-

age pooling as cm = 1
ns

∑ns

i=1 f(s
m
i ). However, in center

support distance, hard samples and easy samples are treated

equally, which violates the principle of hard sample min-

ing. Therefore, we propose a hard mining distance seek-

ing hard samples in the point-to-set distance, which selects

the farthest sample from query samples in each meta-cell

to calculate intra-class distance, while selecting the nearest

inter-class distance.

In the optimization process of metric learning, hard sam-

ples produce substantial gradients with a tiny minority of

data. Therefore, hard sample mining of negative exam-

ples is considered as an essential component in many metric

learning algorithms to improve the convergence speed and

verification performance. Conventional hard sample min-

ing algorithms gradually select negative samples that trigger

false alarms for bootstrapping. However, negative data min-

ing among different meta-cells is not necessary for DMM-

L, since we have already considered the distances between

query samples and all meta-cells in the objective. Instead,

we add the hard sample mining process inside the set-based

distance to reduce intra-class variances. Specifically, we re-

formulate the distance between query sample and meta-cell

in (5) with hard mining strategy as:

Dh(q
m′

j ,Mm) =

⎧

⎨

⎩

max
i

(

d
(

f(qm
′

j ), f(smi )
))

m′ = m

min
i

(

d
(

f(qm
′

j ), f(smi )
))

m′ �= m
.

(10)

The hard sample mining process enhances the discrimina-

tive capacity of DMML by seeking the outliers in the meta-

cell and punishing them for learning a robust embedding

space. As shown in Figure 3, center support distance push-

es away all points in the negative meta-cell simultaneously,

while hard mining distance gives priority to the hard sam-

ples in each meta-cell, which tends to learn a more compact

metric. In Section 4.1, we will detailedly discuss and ana-

lyze these two distance definitions.

3.2. Implementation Details

We utilized PyTorch to implement our method. We ap-

plied squared Euclidean distance d(f , f ′) = ‖f − f ′‖
2
2

as the distance metric in (5) and the following equation-

s. To demonstrate the generalization ability of the pro-

posed method for different applications, we fixed all hyper-

parameters of DMML in the experiments. In detail, we set

the class number of each sub-task and the number of support

samples in each meta-cell to M = 32 and ns = 5 respec-

tively, and fixed margin parameter τ = 0.4 in our negative-

margin-based objective function (7). During training, we
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Center support distance Hard mining distance

Before AfterBefore After

q1

M1

M1
M1

M1

M2

M3

M3

M2

M3

M2

M3

M2

q1 q1
q1

Figure 3. Center support distance and hard mining distance in DMML. Left: Center support distance calculates the center point by the

mean of all support samples in the meta-cell and computes point-to-point distance between the center point and query sample. Right: Hard

mining distance adaptively selects the nearest support point from each negative meta-cell and the farthest point from the positive meta-cell.

applied Adam Optimizer and set the base learning rate to

0.0002. The learning rate remained unchanged during the

first half of the training stage and then started to decrease

exponentially, finally to 0.005 times the base learning rate.

Besides, we applied an L2 weight decay of 0.0001. The

detailed implementation settings with different specifics of

each application are introduced in Section 4.

4. Experiments

In this section, we evaluate the proposed DMML method

on three visual recognition tasks: person re-identification,

vehicle re-identification, and face verification. Different

from the image classification problem which aims to identi-

fy query samples into classes emerging in the training pro-

cedure, the query samples in visual recognition are unseen

for the model. Therefore, how to transfer the trained mod-

el to the test dataset without suffering from over-fitting is a

bottleneck of visual recognition. We compare our method

with abundant baseline approaches and other state-of-the-

art methods to demonstrate the effectiveness and high gen-

eralization ability of our method. In addition, we conducted

ablation experiments and did parameter analysis to investi-

gate the robustness of DMML.

4.1. Person Re-identification

Datasets: Person ReID task aims to identify the pedes-

trian image of the same identity from a gallery with many

negative examples. In our experiments, we applied our

approach to two widely used datasets: Market-1501 [65]

and DukeMTMC-reID [38]. Market-1501 dataset consist-

s of 32,668 images of 1,501 identities detected by 6 cam-

eras. The whole dataset is divided into a training set with

12,968 images of 751 identities and a test set containing

3,368 query images and 19,732 gallery images of 750 iden-

tities. DukeMTMC-reID dataset consists of 36,411 images

of 1,404 persons captured by 8 cameras. Its training set in-

cludes 16,522 images of 702 persons, and its test set covers

the remaining 702 persons, including 2,228 query images

and 17,661 gallery images.

Experimental Settings: In person ReID experiments,

we employed ResNet-50 [16] as our basic network archi-

tecture of the feature representation model, which was pre-

trained on ImageNet [10] for rapid convergence. The last

spatial down-sampling operation in the network was re-

moved for high resolution. We resized input images to

256 × 128 and employed random horizontal flip and ran-

dom erasing [70] for data augmentation. In addition, we

introduced part models in the backbone network for fur-

ther performance improvement. To be specific, we pro-

posed a part-based DMML with an additional part branch

after res conv4 1 residual block, which consists of 3 verti-

cal parts representing different body regions. We supervised

the part branch and the basic backbone network with soft-

max loss and our DMML objective respectively. The input

images were resized to 384 × 128 for enough resolution of

the part model. There are two available protocols in the e-

valuation stage, single-query and multi-query, in terms of

the number of images of the dependent query identities. In

our experiments, results were all obtained in single-query

mode. We applied the cumulative matching characteristic

(CMC) curve and mean Average Precision (mAP) as evalu-

ation metrics. CMC curves record the true matching within

the top-k ranks, while mAP balances precision and recal-

l to evaluate the overall performance of the method. We

followed [65] to compute CMC scores by removing gallery

samples with the same camera views as query samples, and

then calculating average top-k accuracy over all the queries.

We report CMC accuracy of our method at rank-1, rank-5

and rank-10. Moreover, for fairness and conciseness, we

did not employ the re-ranking method [69] in our experi-

ments, which could considerably improve the performance

of person re-ID methods, especially for mAP.

Comparison with Baseline Methods: We compared

our approach with several baseline methods, which include

softmax loss [18], contrastive loss [8,15], triplet loss [3,57],

as well as more recent N-pair loss [44], lifted structured em-

bedding [36] and proxy-NCA [34]. Softmax loss is widely
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Table 1. Comparison with state-of-the-art methods on Market-

1501 dataset.

Methods Base model R-1 R-5 mAP

SVDNet [48] ResNet-50 82.3 92.3 62.1

PAN [68] PAN* 82.8 93.5 63.4

DLE [66] ResNet-50 79.5 - 59.9

TriNet [17] ResNet-50 84.9 94.2 69.1

CamStyle [71] ResNet-50 88.1 - 68.7

PoseTransfor [71] ResNet-50 87.7 - 68.9

DML [64] MobileNet 89.3 - 70.5

JLML [26] ResNet-39* 85.1 - 65.5

DPFL [6] Inception-V3 88.9 - 73.1

MGCAM [45] ResNet-50 83.8 - 74.3

HA-CNN [27] HA-CNN* 91.2 - 75.7

AlignedReID [62] ResNet-50 91.8 97.1 79.3

PCB [49] ResNet-50 92.3 97.2 77.4

DMML ResNet-50 92.4 97.3 81.0

DMML+Part ResNet-50 93.5 97.6 81.6

adopted by many CNNs due to its simplicity and probabilis-

tic interpretation. Contrastive loss is a basic form of conven-

tional deep metric learning methods, which takes the sam-

ple pairs as input and learns for verification. Triplet loss ad-

ditionally learns a large-margin metric which enhances the

inter-class separability. Further, in lifted structured embed-

ding, all negative samples in every batch are incorporated

against each positive pair. N-pair loss improves convention-

al metric learning methods by sampling multiple negative

instances and calculating a softmax-based loss on similari-

ties. Proxy-NCA introduces trainable similar and dissimi-

lar proxies which approximate the original data points and

are optimized during training. Meanwhile, center loss [58]

serves as an auxiliary loss to enlarge inter-class distances for

face recognition and person ReID tasks. In our experiments,

for fair comparisons, we employed the same network ar-

chitecture for all methods. We make comparisons between

our DMML approach and other baselines on two datasets,

which are shown in Table 3. Our DMML method beats all

baseline methods with a large margin on both rank-1 accu-

racy and mAP performance, which demonstrates the supe-

riority of DMML compared with other deep metric learn-

ing or softmax-based methods. Specifically, we obtained

the improvement of 1.2% and 2.6% respectively on rank-1

and mAP performance, in comparison with softmax + cen-

ter loss and lifted structured embedding methods. Mean-

while, our DMML method outperforms the N-pair loss by

3.0% and 3.6% respectively.

Comparison with State-of-the-art Methods: Table 1

illustrates network architectures, CMC accuracies, and

mAP scores of our method and state-of-the-arts on the

Market-1501 dataset. The * in the table denotes that the

network is individually designed. Methods in the top group

Table 2. Comparison with state-of-the-art methods on

DukeMTMC-reID dataset.

Methods Base model R-1 mAP

GAN [67] ResNet-50 67.7 47.1

PAN [68] PAN* 71.6 51.5

SVDNet [48] ResNet-50 76.7 56.8

DPFL [6] Inception-V3 79.2 60.6

CamStyle [71] ResNet-50 75.3 53.5

PoseTransfor [71] ResNet-50 78.5 56.9

HA-CNN [27] HA-CNN* 80.5 63.8

PCB [49] ResNet-50 81.8 66.1

DMML ResNet-50 84.3 70.2

DMML+Part ResNet-50 85.9 73.7

are prior works that exploit the global feature of input-

s as our basic DMML approach. The bottom group dis-

plays the results of works that use part features. As shown

in Table 1, our basic DMML method outperforms most

of the existing methods. For example, DLE [66], SVD-

Net [48], and TriNet [17] are the most similar approaches

with ours, which learn the embedding of person image with-

out part features and implement the model with ResNet-

50. Our DMML obtained a large margin improvement over

these methods due to the higher generalization ability from

meta-knowledge. Moreover, by combining DMML with the

part model, we further boosted the performance of our ap-

proach, achieving rank-1/mAP = 93.5%/81.6% on Market-

1501. Table 2 summarizes the performance of the proposed

method and other state-of-the-arts on the DukeMTMC-reID

dataset. Our DMML method and its part-based variant sig-

nificantly outperform most of existing approaches, achiev-

ing rank-1/mAP = 85.9%/73.7%.

Ablation Study: To verify the effectiveness of com-

ponents in DMML, we conducted ablation experiments on

the Market-1501 dataset for person re-identification. First,

to investigate the contribution of the designed hard sam-

ple mining method, we compare the performance of the D-

MML method with center-support distance and hard mining

distance. Then, we compare three variants of our method

with different margin strategies: no margin in the objec-

tive function, additive margin on positive samples [53], and

proposed margin strategy with additive margin on negative

samples. Table 4 summarizes the performance of the differ-

ent variants of our DMML method.

1) Hard Sample Mining: The performance in Table 4 on

center-support distance and hard mining distance demon-

strates the significant improvement of the proposed hard

sample mining process. By seeking and punishing the out-

liers in each meta-cell, our method tends to reduce intra-

class variances and learn a discriminative feature embed-

ding. Quantitatively, DMML with hard mining distance

surpasses the one with center-support distance by a large

margin with 4.3% on rank-1 accuracy and 10.7% on mAP
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Table 3. Comparison with baseline methods on Market-1501, DukeMTMC-reID, VeRi-776, LFW and YTF datasets.

Datasets Market-1501 DukeMTMC-reID VeRi-776 LFW YTF

Evaluation Metric R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP R-1 R-5 mAP VRF VRF

Contrastive 75.8 88.6 92.4 58.9 68.1 81.4 85.1 49.5 67.4 85.0 49.8 89.6 83.4

Triplet 89.6 96.2 97.6 76.2 80.7 90.7 93.1 65.4 90.0 95.2 68.1 91.0 84.2

N-pair 89.4 96.1 97.6 77.4 82.0 91.9 94.4 68.3 88.6 95.1 65.1 90.8 84.6

Lifted Struct 90.5 96.8 98.0 78.4 82.6 91.2 93.8 68.0 90.8 96.1 69.3 91.4 85.6

Proxy-NCA 88.0 95.4 97.1 71.0 77.9 88.2 91.6 58.1 86.7 93.3 56.4 88.1 81.4

Softmax 86.7 94.5 96.6 70.2 77.0 87.7 91.7 59.6 87.4 94.6 57.8 89.6 82.2

Softmax + Center Loss 91.2 96.5 97.9 77.6 82.3 91.7 93.6 66.3 90.8 95.6 66.0 91.3 84.4

DMML 92.4 97.3 98.3 81.0 84.3 92.6 94.6 70.2 91.2 96.3 70.1 91.8 85.3

Table 4. Results of ablation experiments on hard mining distance

and margin strategy on Market-1501 dataset.

Methods R-1 R-5 R-10 mAP

DMML w/o hard mining 87.1 95.6 97.5 70.3

DMML w/o Margin 91.7 97.1 98.1 80.8

DMML +AM [53] 91.9 96.9 98.2 80.7

DMML (τ = 0.4) 92.4 97.3 98.3 81.0

DMML (τ = 0.2) 92.0 97.2 98.2 80.6

DMML (τ = 0.6) 91.7 96.9 98.3 80.9

score, respectively.

2) Margin Strategy: Compared with the plain DMML

without margin parameter, the additive margin on the neg-

ative sample promotes 0.7% rank-1 accuracy. It demon-

strates the contribution of proposed margin strategy that

encourages to inter-class separability with the constraint a-

mong the triplet of data points. We evaluated the additive

margin on positive samples [53] with the same margin of

ours. The results with 0.5% rank-1 improvement show that

the proposed positive margin on the negative samples is

more effective in comparison with the negative margin on

the positive sample.

Parameters Analysis: We also analyzed the influences

of some important parameters and demonstrated the robust-

ness of the proposed DMML method. We conducted the

parameter analysis experiments on the Market-1501 dataset

with three different parameters, including margin scale τ ,

the number of classes M in each sub-task, and the num-

ber of support samples ns in each meta-cell. The bottom

part of Table 4 displays the results with different margin set-

tings, while the performance comparison on different scales

of generated sub-tasks and the number of support samples

are summarized in the Table 5.

1) Margin Scale: The experiments show that DMML is

robust on different margin scales. As shown in the bottom

part of Table 4, the performance varies smoothly with the

change of margin scales. Experimentally, we achieved the

best performance when the margin parameter τ = 0.4, thus

applied the setting on all experiments. When the margin

setting fluctuates, our DMML method still remains compa-

rable with the best setting on both rank-1 and mAP scores.

2) Number of Classes in Each Sub-task: As shown in

the top group of Table 5, we compared experimental result-

s using 16-class, 32-class, and 64-class sub-tasks with the

same support samples in the meta-cell, and obtained im-

proving performance with the increasing scale of sub-tasks.

When the number of classes is small, the increase in class

number brings relatively larger performance improvemen-

t. However, the improvement becomes slow when the scale

of sub-tasks is enough to estimate the distribution of tasks.

For example, the difference between the performance of 32-

class and 64-class sub-tasks is small. We did not conduct

experiments on a larger number of classes due to the above

observation and limited computing resources.

3) Number of Support Samples in the Meta-cell: The bot-

tom part of Table 5 shows the influence of a different num-

ber of support samples in each meta-cell. We compare the

performance with one support sample, three support sam-

ples, and five support samples under the setting of 32-class

sub-tasks. From Table 5, we can observe that the perfor-

mance is improved correspondingly with the increase of

support samples. To balance the number of sub-task classes

and support samples, we finally set M = 32 and ns = 5
respectively in our DMML method for all experiments. All

the experiments were conducted with 2 GTX 1080Ti GPUs,

except for the settings with M = 64 or ns = 7.

4.2. Vehicle Re-identification

Datasets: The goal of vehicle ReID is to retrieve all the

images of the same vehicle from a large gallery database.

We evaluated our approach on a large-scale dataset: VeRi-

776 [30]. This dataset contains over 50,000 images of 776

vehicles, which are captured by 20 surveillance cameras.

Vehicles in this dataset cover 9 types and 10 colors, among

which 576 are used for training and the rest 200 are used for

testing. In total, VeRi-776 dataset consists of 37,778 train-

ing images, 1,678 query images, and 11,579 gallery images.

Experimental Settings: Similar with our person ReID
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Table 5. Results with different numbers of selected classes M and

support samples ns on Market-1501 dataset.

M ns R-1 R-5 R-10 mAP

16 5 91.0 97.1 98.2 79.5

32 5 92.4 97.3 98.3 81.0

64 5 92.2 97.4 98.3 81.2

32 1 90.0 96.2 97.7 76.9

32 3 91.5 97.3 98.2 80.4

32 7 92.7 97.1 98.2 81.6

Table 6. Comparison with state-of-the-art methods on VeRi-776

dataset.

Methods Base model R-1 R-5 mAP

FACT [30] GoogLeNet 59.7 75.3 19.9

FACT+ST [31] SNN* 61.4 78.9 27.8

OIFE+ST [56] CNN* 68.3 89.7 51.4

CNN+LSTM [42] ResNet-50 83.5 90.0 58.3

VAMI+ST [72] F-Net* 85.9 91.8 61.3

STP [60] ResNet-50 86.3 94.4 57.4

RAM [32] RAM* 88.6 94.0 61.5

DMML ResNet-50 91.2 96.3 70.1

experiment settings, we applied ResNet-50 backbone pre-

trained on ImageNet for embedding architecture, with the

input 224 × 224 images augmented by random horizontal

flip. For fair comparisons, we followed the evaluation pro-

tocol in [30], which evaluates the methods with the CMC

curve and mAP in the single query mode.

Results: We summarized comparisons between our ap-

proach and other baseline methods in Table 3. On this

dataset, DMML achieves rank-1 = 91.2% and mAP =

70.1%, outperforming all baselines. Moreover, we also

compare the proposed DMML method with other state-of-

the-art methods, which additionally demonstrate the effec-

tiveness of our method. As shown in Table 6, DMML sur-

passes the best prior method [32] by a large margin, both in

rank-1 (+2.6%) and mAP (+8.6%).

4.3. Face Verification

Datasets: Face verification task aims to determine

whether the given two face images are from the same iden-

tity. For this task, we trained our model on an abridged VG-

GFace2 database [2], and evaluated the verification perfor-

mance on two other databases: Labeled Faces in the Wild

(LFW) [23] and YouTube Faces (YTF) [59]. VGGFace2

database consists of a training set with 3,141,890 images of

8,631 identities, and a test set with 169,396 images of 500

identities. For simplicity, we selected the first 800 identi-

ties in the original training set, each with its first 20 im-

ages, to construct our new abridged database. This setting

with a small scale of samples is more appropriate to evalu-

ate the generalization capacity of methods. Our new train-

ing database consists of 16,000 images from 800 identities.

LFW database serves as a widely-used benchmark for face

verification tasks, which contains 13,233 web-collected im-

ages from 5,749 different identities. Images in this database

form highly diverse sets of faces, varying in pose, expres-

sion, and lighting. YTF database contains 1,595 differ-

ent people emerging in 3,425 videos downloaded from Y-

ouTube, with an average length of 181.3 frames.

Experimental Settings: For face verification task, we

applied SE-ResNet-50 [21] as the network architecture,

which is pretrained with a classification loss. In the training

phase, we employed random gray-scale and random crop as

data augmentation methods. For random crop, we first re-

sized the input images to 256× 256 and randomly cropped

the patch to the size of 224 × 224. In the testing phase, we

took mean verification accuracy (VRF) as our evaluation

metric on both LFW and YTF databases. For the verifica-

tion on LFW, we followed the standard protocol, providing

test results of 6,000 face pairs. For YTF, we report the eval-

uation results on 5,000 face pairs divided into 10 splits.

Results: We compare DMML with other baselines, of

which the results are displayed in Table 3. In this ex-

periment, DMML yields comparable performance with the

strongest baseline, surpassing the lifted structured embed-

ding approach by 0.4% on VRF performance on the LFW

dataset. This result is a favorable evidence to demonstrate

the effectiveness of our DMML method.

5. Conclusion

In this work, we have proposed a deep meta metric learn-

ing (DMML) approach, which formulates the metric learn-

ing in a meta way and optimizes the set-based distance, in-

stead of sample-based one. In our method, we first treat the

single overall classification objective as multiple sub-tasks

satisfying some unknown probability and randomly split the

support and query sets in each sub-task in an episode. Then

we learn the meta metric to verify the given query sample

from multiple meta-cells in each episode with a margin-

based objective function and a hard sample mining strat-

egy. We evaluated our method on three visual recogni-

tion problems including person re-identification, vehicle re-

identification, and face verification, and outperformed most

of the existing methods. In the future, we will explore how

to learn meta-knowledge by metric learning from different

domains or modes.
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