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Abstract

Recently, a series of deep supervised hashing methods

were proposed for binary code learning. However, due to

the high computation cost and the limited hardware’s mem-

ory, these methods will first select a subset from the training

set, and then form a mini-batch data to update the network

in each iteration. Therefore, the remaining labeled data

cannot be fully utilized and the model cannot directly obtain

the binary codes of the entire training set for retrieval. To

address these problems, this paper proposes an interesting

regularized deep model to seamlessly integrate the advan-

tages of deep hashing and efficient binary code learning by

using the anchor graph. As such, the deep features and label

matrix can be jointly used to optimize the binary codes, and

the network can obtain more discriminative feedback from

the linear combinations of the learned bits. Moreover, we

also reveal the algorithm mechanism and its computation

essence. Experiments on three large-scale datasets indicate

that the proposed method achieves better retrieval perfor-

mance with less training time compared to previous deep

hashing methods.

1. Introduction

Hashing methods are widely used to learn a set of bi-

nary codes for feature representation. Since the features

only contain values 0 and 1, we can rapidly measure the

hamming distances between the data points on large-scale

datasets for image retrieval. With the desirable binary prop-

erty, hashing has been extensively applied in some related

areas, such as large-scale clustering [36], collaborative fil-

tering [34] and sketch retrieval [26, 19].

Existing hashing methods can be divided into two cate-

gories, i.e., data-independent methods and data-dependent

methods. The traditional data-independent method Locality

∗Corresponding author: Z. Lai (lai zhi hui@163.com).

Sensitive Hashing (LSH) [6] can obtain binary codes very

fast by using random projection matrix. Due to the sim-

plicity, some extensions of LSH are also developed [4, 14].

However, these methods require more bits to represent the

data for high retrieval accuracy.

On the other hand, the data-dependent methods can ob-

tain more effective binary codes by using large number of

training data to learn the hashing functions. The unsuper-

vised methods, such as Spectral Hashing (SH) [30] and

Locally Linear Hashing (LLH) [10] aim at preserving the

manifold structure of the dataset in binary space. Since it

is time-consuming to compute the affinity matrix, the An-

chor Graph Hashing (AGH) [20] designs an anchor graph

to implicitly characterize the local structure. Besides, The

Iterative Quantization (ITQ) [7] and Jointly Sparse Hashing

(JSH) [15] focus on reducing the information loss by adding

a rotation matrix to their optimization models. To utilize

the labeled information of training data, Semi-Supervised

Hashing (SSH) [28], Latent Factor Hashing (LFH) [35] and

Supervised Discrete Hashing (SDH) [25] are proposed for

discriminative binary code learning. Inspired by the out-

standing performance on single-modal retrieval, some hash-

ing methods, such as Co-Regularized Hashing (CRH) [38],

Supervised Matrix Factorization Hashing (SMFH) [27] and

Discriminant Cross-modal Hashing (DCMH) [32], are de-

signed for cross-modal retrieval. However, as these meth-

ods are based on hand-crafted features, they lack the ability

of feature learning.

To tackle this problem, hashing methods based on deep

neural network are introduced, which are called deep hash-

ing methods [24, 1]. In recent years, deep neural network

has attracted great attention since it can effectively charac-

terize the non-linear property of data and greatly improve

the classification performance [9]. To utilize the deep neural

network for feature extraction, some deep hashing methods

are proposed including the Deep Semantic Ranking Based

Hashing (DSRH) [37], Deep Supervised Hashing (DSH)

[18] and Convolutional Neural Network Hashing (CNNH)
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[31]. Since some of the deep hashing methods use two in-

dependent stages to learn the binary codes, the learned deep

features may be the sub-optimal solutions for binarization.

Recent works showed that the end-to-end hashing methods

can greatly improve the quality of the learned binary codes

[24, 11, 33]. One of the representative methods is the Deep

Pairwise Supervised Hashing (DPSH) [17]. Based on the

framework of DPSH, Deep Supervised Hashing with Triplet

Labels (DTSH) [29] extends the pairwise labels to triplet la-

bels in the objective function, and Deep Supervised Discrete

Hashing (DSDH) [16] adds a discriminant term to update

the binary codes to further exploit the labeled information.

The end-to-end deep hashing methods can greatly im-

prove the retrieval performance. However, because of the

high computation cost and limited storage space, these

methods usually select a subset from the training set to up-

date the network. Therefore, some supervised information

of the training data is ignored during the iterative learning

procedure and the model cannot directly obtain the optimal

binary codes of the training set. As such, the model is less

discriminative and the information loss will inevitably in-

crease in the process of binary code learning. Based on

these observations, it is desirable to develop a more discrim-

inative and effective method to improve the performance

by taking full use of the available labeled information. In

this paper, a framework called Deep Anchor Graph Hashing

(DAGH) is proposed for deep hashing and efficient binary

code learning. The main contributions are listed as follows:

• We propose an effective deep hashing method by re-

garding the samples in subset as anchors and design a

regression formulation to establish the connections be-

tween the anchors and all the binary codes. As such,

the exact binary codes of training set can be obtained

and the problem of information loss can be avoided.

• Through the analysis on algorithm’s procedures, the

essence of the proposed DAGH is revealed, which

shows how the framework integrates deep hashing and

efficient binary code learning seamlessly.

• We test the retrieval performance on three benchmark

datasets. Experimental results show that the proposed

method performs better than the state-of-the-art hash-

ing methods.

2. Related Work

In the designed model, we use Xall ∈ R
m×n1 to de-

note all the training samples, where xall,i ∈ R
m is the i-th

sample vector and n1 is the total number of samples. The

existing deep hashing methods, such as DPSH, DTSH and

DSDH, first select a subset from the database to form the

training subset and then update the neural network batch by

batch. For simplicity, we denote the samples in the subset

by Xpart ∈ R
m×n2 , where n2 is the total number of the

samples in the subset. The goal of hashing methods is to

learn a set of binary codes for features representation. We

use Ball ∈ R
l×n1 and Bpart ∈ R

l×n2 to denote the binary

codes of Xall and Xpart, respectively, where l is the length

of bits.

The main purpose of the traditional manifold-based

hashing methods is to preserve the latent manifold struc-

ture embedding in the high-dimensional data into the low-

dimensional binary space [30, 20]. To this end, these meth-

ods generally try to solve the following objective function:

min
Ball

n1
∑

i,j=1

||ball,i − ball,j ||
2Sij

s.t. ball,i ∈ {−1, 1}l

(1)

where ball,i is the i-th column of Ball and S ∈ R
n1×n1

is the affinity matrix. Problem (1) aims to minimize the

distance between ball,i and ball,j if xall,j is the nearest da-

ta point of xall,i in original high-dimensional space. Since

constructing the affinity matrix is time-consuming for large-

scale dataset, AGH proposes the anchor graph to character-

ize the local structure [20]. The core idea of anchor graph

is to use a small number of anchors to connect the whole

dataset so that the similarities between different data points

can be computed in an implicit way.

Similar to the problem (1), some recently proposed deep

hashing methods minimize the information loss between the

deep features and binary codes as follows:

min
Bpart,U

n2
∑

i=1

||bpart,i − ui||
2

s.t. bpart,i ∈ {−1, 1}l

(2)

where bpart,i is the i-th column of Bpart and U =
[u1,u2, ..,ui, ..,un2

] ∈ R
l×n2 is the output of the network.

Due to the high computation cost, deep hashing method-

s usually select a subset from the training set for training

and it further requires to form mini-batch data to update the

network in the inner loop. Therefore, solving problem (2)

cannot learn the optimal Ball for retrieval. In next section,

we introduce the proposed framework for discriminative bi-

nary code learning to overcome this drawback.

3. Deep Anchor Graph Hashing

As shown in problem (2), the previous deep hashing

methods directly regress the deep features to the corre-

sponding binary codes to relax the discrete optimization

problem. Therefore, in each iteration, only a mini-batch

binary code can be learned. As such, these methods need to

adopt two steps operation to obtain the optimal binary codes

of the entire training set, which will lead to information loss.
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Figure 1. Overview of DAGH. The blue box is the part of neural

network and the purple box is the part of objective function. By

designing the anchor graph based objective function, the frame-

work can achieve the following two goals. On the one hand, the

output of the network and label matrix can be used to generate the

binary codes of training set and on the other, the network can ob-

tain more discriminative and effective feedback from the learned

bits and pairwise loss.

Besides, the learned hashing function is less discriminative

since the network only fits one batch of binary codes in each

iteration. In this paper, we hope to integrate the advantages

of deep hashing and efficient binary code learning to in-

crease retrieval performance and the generalization ability

of the model. Therefore, the problems caused by subset se-

lection and mini-batch operation can be addressed.

3.1. Problem Formulation

We design a joint framework to effectively integrate deep

hashing and efficient binary code learning. First, a novel

regression term is proposed to establish the connections be-

tween the deep features and all the binary codes.

Regression term: We can find the main difference be-

tween (1) and (2) is that the distances are measured with

or without the affinity matrix. However, the previous deep

models cannot directly use all the training data to obtain

the binary codes of training set as in (1) because of the

mini-batch operation and the high computation cost of deep

learning. Therefore, we regard the selected samples as an-

chors and design the following regression term to minimize

the distances between deep features and binary codes:

min
Ball,U

R1 =

n1
∑

i=1

n2
∑

j=1

||ball,i − uj ||
2Zij

s.t. ball,i ∈ {−1, 1}l, bi
all1n1

= 0

(3)

where bi
all is the i-th row of matrix Ball and 1n1

is n1-

dimensional column vector with elements 1, Z ∈ R
n1×n2

is the designed anchor graph. The constraint bi
all1n1

= 0 is

added to make sure that each row has 50% to be -1 and 50%
to be 1 so that the bits of binary codes are balanced. The

definition of anchor graph Z in our model is as follows:

Zij =

{

1

δj
, ball,i and uj belong to the same class

0, otherwise
(4)

where Zij is the i-th row and j-th column element of Z

and δj is the total number of data points related to uj . We

regard Z as anchor graph since n2<<n1 and it is similar

to the definition of anchor graph in AGH. By solving (3),

the discrete solutions of the training set can be easily ob-

tained. Furthermore, in each iteration, the mini-batch data

can approximate to all the related binary codes so that the

learned network will become more discriminative. Prob-

lem (3) can be regarded as the combination of problems (1)

and (2). However, different from these methods, the de-

signed regression term is able to perform efficient binary

code learning and deep learning simultaneously. Then, we

need to improve the quality of the deep features and binary

codes by imposing deep hashing loss and global data infor-

mation on the model, respectively.

Deep hashing: We hope that the outputs of the network

are close to the final binary codes. Therefore, if two deep

feature vectors belong to the same class, the inner product

of them should be maximized so that the distance between

them in binary space can be minimized. Otherwise, the in-

ner product of them should be minimized. The goal can be

achieved by solving the following problem:

min
U

R2 =
∑

Aij∈A

(log(1 + eΘij )−AijΘij) (5)

where Θij = 1

2
uT
i uj and the pairwise relation is given as

follows:

f(Aij |U) =

{

σ(Θij), Aij = 1

1− σ(Θij), otherwise
(6)

where σ(Θij) = 1

1+e
−Θij

, the similarity matrix A ∈

R
n2×n2 is defined as follows: if ui and uj belongs to the

same class, Aij = 1, otherwise, Aij = 0 and Aij is the

i-th row and j-th column element of A.

Efficient binary code learning: By designing regres-

sion term (3), we can fully take advantage of the available

discriminative information to improve the quality of the bi-

nary codes as well as increase the performance of the net-

work. The common approach is to further classify them

with the label matrix as in [25, 16]. However, we hope to

solve the model in a more efficient way. Therefore, we in-

troduce the technique in [8] for binary code learning. The

discriminant term is as follows:

min
Ball,W

R3 =

n1
∑

i=1

||ball,i −WTyi||
2

s.t. ball,i ∈ {−1, 1}l, bi
all1n1

= 0

(7)

where W ∈ R
c×l is regression matrix, yi is i-th column of

Y and Y ∈ R
c×n1 is label matrix, i.e., if ball,j belongs to

the i-th class, Yij = 1, otherwise Yij = 0, c is the num-

ber of classes. Equation (7) aims to learn a discriminative
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regression matrix to construct the binary codes bit by bit us-

ing the label matrix. Therefore, each class of samples tends

to obtain the same binary code. Different from [8], we add

the constraint of bi
all1n1

= 0 to generate balanced binary

code.

DAGH framework: Finally, by integrating R1, R2 and

R3 in one framework, the objective function of DAGH is

formulated as follows:

min
W,Ball,U

L = γ1R1 + γ2R2 + γ3R3

s.t. ball,i ∈ {−1, 1}l, bi
all1n1

= 0
(8)

where γ1, γ2 and γ3 are weight coefficients. The DAGH

framework jointly performs deep hashing and binary code

learning so that the exact binary codes of training set can be

derived and the network can become more discriminative.

The overview of DAGH framework is shown in Figure 1.

3.2. Optimization Algorithm

Since the proposed model contains three variables, we

design an iterative algorithm to alternately optimize them.

Given Ball and U, we have following subproblem:

min
W

n1
∑

i=1

||ball,i −WTyi||
2 (9)

Problem (9) is a classical linear regression problem. From

(9), we can derive:

min
W

tr(−2BT
allW

TY +YTWWTY) (10)

Taking the partial derivative with respect to W to be zero,

we obtain:

W = (YYT )−1YBT
all (11)

Note that (YYT )−1Y can be computed in advance. Be-

sides, since the term of YYT ∈ R
c×c is diagonal matrix

for single label dataset and the size of c is usually small, the

computational cost can be greatly reduced.

Given W and U, we have following subproblem:

min
Ball

γ1R1 + γ3R3

s.t. ball,i ∈ {−1,1}l, bi
all1n1

= 0
(12)

Problem (12) is a series of regression problems with the dis-

crete constraints. By expanding the formulation and dis-

carding the constant, we derive the following maximization

problem:

max
Ball

tr(
γ1

γ3
BT

allUZT +BT
allW

TY)

s.t. ball,i ∈ {−1, 1}l, bi
all1n1

= 0
(13)

To fulfill the discrete constraints, the optimal Ball can be

updated by the following steps. Suppose Q = γ1

γ3

UZT +

Algorithm 1 Deep Anchor Graph Hashing (DAGH)

Input: Training data Xall, label matrix Y, number of an-

chors n2, length of codes l, weight coefficients γ1, γ2, γ3,

iteration times T1 and T2.

Train:

1: Initialize Ball as arbitrary binary matrix.

2: Start iteration:

For i = 1 : T1 do

Step 1: W = (YYT )−1YBT
all.

Step 2: Randomly select n2 data points to form the

training subset Xpart and compute the corr-

esponding anchor graph Z.

Step 3: For j = 1 : T2 do

Select mini-batch data from Xpart.

Compute ui by forward propagation.

Compute weight Θij .

Update neural network by (16).

end

Step 4: Obtain Ball according to (14).

end

Output: Hashing function ψ(·) and binary codes Ball.

WTY and qi is the i-th row vector of Q, we decide the

values of binary codes by the following rules:

Ball,ij =

{

1, if j ∈ {i}index

−1, otherwise
(14)

where Ball,ij is the i-th row and j-th column element of

Ball and {i}index is the index set of the first n1

2
maximal

elements of qi.

Given W and Ball, we have following subproblem:

min
U

L(U) = γ1R1 + γ2R2 (15)

We use back-propagation to update the network [22]. Tak-

ing the partial derivative with respect to U, we derive

∂L(U)

∂U
=

2γ1
γ2

(U−BallZ) +
1

2

∑

Aij∈A

(σ(Θij)−Aij)U

(16)

The details of the algorithm are shown in Algorithm 1.

3.3. The Algorithm Mechanism of DAGH

From the algorithm’s steps, we can reveal how the frame-

work integrates deep hashing and efficient binary code

learning seamlessly. Equation (16) shows that the deep neu-

ral network can obtain the feedback from the linear com-

binations of the binary codes, i.e., BallZ, where Ball is

learned by using all the labeled information. Therefore, the

network becomes more discriminative in each mini-batch

iteration since all the training samples are involved. On the
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other hand, the deep features and label matrix can be jointly

used to improve the quality of the binary codes according to

the solutions of problem (13). Based on these facts, we can

find that the essence of the proposed framework is to fully

utilize the global data information to enable deep features

and binary codes to influence each other through the regres-

sion term (3). As such, the optimal binary codes are derived

for retrieval.

3.4. Binary Code Learning

The learned deep neural network can be used to obtain

the binary codes of testing samples. That is:

btest,i = sign(ψ(xtest,i)) (17)

where xtest,i is the i-th testing sample, btest,i is the cor-

responding binary code, ψ(·) represents the output of the

neural network, sign(·) is the binary function.

4. Experiments

We evaluate the performance of our method on three

large-scale datasets, i.e., the CIFAR-101, Fashion-MNIST2

and NUS-WIDE3 datasets. Some unsupervised and super-

vised hashing methods are selected for comparison. The un-

supervised methods include data-independent method LSH

[6], manifold learning method SH [30], AGH [20] and iter-

ative quantization method ITQ [7]. For ITQ, we use Princi-

pal Component Analysis (PCA) [13] to reduce the dimen-

sions of data. The supervised methods SDH [25] and its

variant FSDH [8] are also added to the experiments. The

above methods are based on hand-crafted features. We se-

lect some representative deep hashing methods, i.e., DPSH

[17], DTSH [29], DSDH [16] and two recently proposed

methods Asymmetric Deep Supervised Hashing (ADSH)

[12] and method in [5], to compare with our method. Fur-

thermore, to investigate the benefit of our model for direct-

ly obtaining the binary codes of training set, we design t-

wo models with different binary code learning mechanisms,

namely DAGH-1 and DAGH-2. DAGH-1 adopts the neural

network to obtain the binary codes. That is:

ball,i = sign(ψ(xall,i)) (18)

DAGH-2 represents the proposed method, which directly

uses the binary codes derived by Algorithm 1 for retrieval.

4.1. Datasets

Three popular datasets are used to test the performance

of different methods.

CIFAR-10 contains 60,000 images belonging to 10 class-

es. 5,900 images are randomly sampled from each class to

1http://www.cs.toronto.edu/kriz/cifar.html
2https://github.com/zalandoresearch/fashion-mnist
3http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

establish the training set and the rest images are used as test-

ing data. For hand-crafted features based methods, we use

all the 59,000 training samples to learn the hashing func-

tion. For deep hashing methods, 5,000 images are selected

to form the training subset to save the computational cost.

The proposed DAGH also randomly selects 5,000 images to

be the anchors in each iteration.

Fashion-MNIST has 10 classes and each class contains

7,000 images in total. The whole dataset is divided into

one training set with 60,000 images and one testing set with

10,000 images. Specifically, we randomly select 6,000 and

1,000 images from each class to be the training and testing

set, respectively. Similar to the settings on CIFAR-10, the

traditional methods SH, AGH, ITQ, SDH and FSDH use

the entire training set to train the models and the DPSH,

DTSH, DSDH and DAGH select 5,000 images to generate

the training subset and anchor points, respectively.

NUS-WIDE is a multi-label dataset. Follow the exper-

imental settings in DPSH, we choose 21 classes from the

dataset and each class contains at least 5,000 related im-

ages. The final dataset includes over 190,000 images for

training and 2,100 images for testing. The deep hashing

methods only use 10,500 images as training subset. Since

each image contains multiple label, we determine two im-

ages belong to the same class when having at least one same

label.

For hand-crafted features based methods, we first use the

CNN pre-trained on ImageNet [3] to extract the deep fea-

tures, and then adopt PCA to perform dimensionality re-

duction. The 1000-dimensional vectors are finally obtained

for binary code learning.

4.2. Experimental Settings

To test the performances of different methods with d-

ifferent codes lengths, the number of bits is ranged from

[12, 24, 32, 48] on three datasets. For deep hashing methods

DPSH, DTSH and DSDH, we re-run the corresponding al-

gorithms by using the codes released by the authors. For fair

comparison, the same CNN is applied to all the methods for

feature learning. The selected CNN contains seven layers

as the structure in [2] and has been pre-trained on the Im-

ageNet. The parameters of different methods are carefully

set according to the descriptions of corresponding papers.

We evaluate the retrieval performance of our model-

s and compared baselines with four indicators: Precision

rate, Recall rate, F-measure rate and Mean Average Preci-

sion (MAP). Specifically, precision and recall are calculated

based on 2 hamming distances.

4.3. Discussions

The results on MAP of different methods are shown in

Table 1. Since we cannot re-run DTSH on multi-label

dataset, the results of DTSH on NUS-WIDE are not present-
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Table 1. MAP results of different methods on CIFAR-10, Fashion-MNIST and NUS-WIDE datasets with different bits.

Method
CIFAR-10 Fashion-MNIST NUS-WIDE

12 24 32 48 12 24 32 48 12 24 32 48

CNN+LSH 0.152 0.157 0.144 0.163 0.259 0.246 0.274 0.331 0.390 0.422 0.408 0.460

CNN+SH 0.203 0.183 0.179 0.175 0.356 0.316 0.318 0.295 0.419 0.410 0.406 0.432

CNN+AGH 0.277 0.265 0.254 0.232 0.478 0.389 0.347 0.327 0.526 0.511 0.482 0.466

CNN+ITQ 0.216 0.193 0.202 0.197 0.372 0.385 0.365 0.368 0.511 0.522 0.522 0.539

CNN+SDH 0.549 0.669 0.674 0.683 0.629 0.791 0.801 0.807 0.652 0.662 0.652 0.680

CNN+FSDH 0.610 0.657 0.664 0.684 0.777 0.799 0.807 0.811 0.577 0.579 0.580 0.585

DPSH 0.661 0.716 0.723 0.739 0.716 0.800 0.807 0.819 0.682 0.713 0.719 0.726

DTSH 0.770 0.825 0.819 0.834 0.835 0.860 0.861 0.867 – – – –

DSDH 0.735 0.779 0.803 0.816 0.764 0.814 0.799 0.828 0.685 0.710 0.719 0.727

DAGH-1 0.881 0.888 0.900 0.891 0.870 0.882 0.884 0.891 0.707 0.724 0.727 0.733

DAGH-2 0.934 0.933 0.934 0.932 0.932 0.938 0.937 0.937 0.760 0.789 0.793 0.802
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Figure 2. (a) Precisions, (b) Recalls and (c) F-measures obtained by supervised methods on CIFAR-10 dataset.

Table 2. MAP results of three deep hashing methods on CIFAR-10

dataset.

Method 12 bits 24 bits 32 bits 48 bits

ADSH 0.889 0.928 0.931 0.939

Method in [5] 0.786 0.813 0.821 0.828

DAGH 0.934 0.933 0.934 0.932

ed. It is obvious that the supervised methods can outper-

form the unsupervised methods. By using the pre-trained

CNN to generate the deep features, the SDH and FSDH

can also obtain promising performance on Fashion-MNIST

dataset with 32 bits. However, the deep hashing methods

are better compared to the traditional methods in most cas-

es. In other words, by combing feature learning and binary

code learning in an end-to-end framework, the deep hash-

ing methods can greatly improve the retrieval performance.

The DAGH-1 is at least 5% and 2% higher than the other

deep hashing methods on CIFAR-10 and Fashion-MNIST

datasets, respectively. The DAGH-2 is at least 9% and 7%
higher than the other deep hashing methods on CIFAR-10

and Fashion-MNIST datasets, respectively. This is because

the proposed method fully utilizes the supervised informa-

tion of the training data to improve the quality of the binary

codes. Therefore, the network can obtain more discrimina-

tive feedback for training. Since the DAGH-2 obtains the

binary codes of training set without information loss, the

performance of DAGH-2 is much better than DAGH-1. On

NUS-WIDE dataset, the DAGH-1 is slightly better than the

DPSH and DSDH. The DAGH-2 is about 6% better than the

other deep hashing methods.

In Table 2, two recently proposed methods ADSH and

method in [5] are included for comparison. The MAP re-

sults of these methods are from [12] and [5], respective-

ly. ADSH can also obtain the binary codes of the entire

training set by calculating the inner product between binary

codes and deep features. However, ADSH needs relative-

ly high computation cost to optimize the binary codes by

using discrete cyclic coordinate descent (DCC) algorithm

[25]. The proposed model avoids this problem by design-

ing a regression-based model. Besides, Table 2 shows that

the proposed method performs better in most cases.

The results on precision, recall and F-measure of super-

vised methods on CIFAR-10 and Fashion-MNIST datasets

are displayed in Figure 2 and Figure 3, respectively. From

the results of DPSH and DSDH, we can find it is challenged

to recall the data points of the same class and preserve high
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Figure 3. (a) Precisions, (b) Recalls and (c) F-measures obtained by supervised methods on Fashion-MNIST dataset.

Table 3. Training times (in minute) and MAP results of different methods on CIFAR-10 and Fashion-MNIST datasets with 12 bits.

Method DPSH DTSH DSDH DPSH-All DTSH-All DSDH-All DAGH

CIFAR-10
Time 58.5m 102.2m 58.9m 842.3m 1210.1m 846.1m 48.5m

MAP 0.661 0.770 0.735 0.925 0.893 0.931 0.934

F-MNIST
Time 59.2m 89.9m 59.7m 876.9m 1211.8m 859.5m 48.9m

MAP 0.716 0.835 0.764 0.894 0.909 0.905 0.932

Table 4. Training times for different variables of the proposed

model on three datasets with 48 bits.

W Ball U Total

CIFAR-10 0.2s 5.8s 49.1m 49.2m

F-MNIST 0.2s 5.9s 49.6m 49.7m

NUS-WIDE 1.1s 1.4m 121.6m 123.0m

precision in such small range. The traditional methods S-

DH and FSDH achieve better performance compared to the

DPSH and DSDH. This is because they are more discrimi-

native by utilizing all the training data. However, it requires

high computation cost to train DPSH and DSDH with all the

samples. The discussions on computation costs of differen-

t methods will be given in the following subsection. By

combining efficient binary code learning and deep feature

learning in one framework, the proposed DAGH can better

compress the distances of the similar data points and ob-

tain good retrieval results. As shown in the figures, DAGH-

1 outperforms the other methods in terms of precision and

DAGH-2 obtains best performance in terms of recall. Be-

sides, Figure 2(c) and 3(c) indicate that DAGH-2 is more

effective considering the results of F-measure.

4.4. Computation Cost

Table 3 displays the computation costs of different meth-

ods on CIFAR-10 and Fashion-MNIST datasets with 12 bit-

s. It is shown that the proposed method outperforms DPSH,

DTSH and DSDH with lower computation cost. Although

DTSH performs better than DPSH and DSDH, it needs n-

early 1.7 times of training cost. Since the proposed method
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Figure 4. t-SNE representation of real values obtained by (a)

DTSH and (b) DAGH.

uses the entire training set to optimize the model, we fur-

ther test the performance of different deep hashing meth-

ods utilizing all the training samples. The corresponding

results are listed in the columns of DPSH-All, DTSH-All

and DSDH-All, respectively. DPSH-All, DSDH-All and

the proposed DAGH obtain similar retrieval performance

on CIFAR-10 as shown in the third row. However, DPSH-

All and DSDH-All require 17 times more training time than

DAGH. The proposed method avoids this problem by tak-

ing advantages of anchor graph and efficient binary code

learning. Similar conclusions can also be drawn on the

Fashion-MNIST dataset. To comprehensively analyze the

training times for different variables of the proposed model,

we give the detailed training times in Table 4. Compared to

the DPSH, the additional computation costs of our method

are the optimizations of W and Ball. Since (YYT )−1Y

can be pre-computed, the total computation cost of W and

Ball is O(2lcn1 + ln2n1) and linear to the number of sam-

ples. Therefore, even if we use the entire training set to opti-

mize the model, the binary codes learning for all samples is
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Table 5. MAP results of DAGH with different regularization terms

on NUS-WIDE dataset.

R1 R1R2 R1R3 R1R2R3

12 bits 0.739 0.772 0.740 0.760

24 bits 0.748 0.776 0.775 0.789

32 bits 0.746 0.780 0.785 0.793

48 bits 0.762 0.787 0.790 0.802

Table 6. MAP results of different deep hashing methods on

CIFAR-10 dataset.

Method 12 bits 24 bits 32 bits 48 bits

DPSH 0.690 0.707 0.723 0.729

DTSH 0.699 0.686 0.711 0.732

DSDH 0.686 0.713 0.701 0.729

DAGH 0.737 0.763 0.743 0.751

very efficient. Results in Table 4 also verify this conclusion.

4.5. Visualization of Codes

In Figure 4, we display the t-SNE representation [21] of

the real values obtained by DTSH and DAGH on CIFAR-

10 dataset. Each color denotes a class of samples. To test

the generalization abilities of the models, we first learn the

12-dimensional real value vectors of the testing samples by

using the learned deep neural network, and then perform t-

SNE algorithm to visualize the real values on 2-dimensional

spaces. We select the deep hashing method DTSH for com-

parison based on the results in Table 1 and Figure 2. In-

tuitively, the proposed DAGH better classifies the binary

codes belonging to different classes and compresses the

intra-class distances.

4.6. Effectiveness of Regularization terms

Table 5 displays the results on MAP of DAGH with d-

ifferent regularization terms on NUS-WIDE dataset. R1

represents the original model (3) without any regularization

terms, R1R2 adds the deep hashing term to learn compact

deep features, R1R3 adds the term of discriminative bina-

ry code learning, and the last column presents the results of

the proposed framework. We can find that the terms of R2

and R3 do not co-operate well with 12 bits. However, as

the length of codes increases, both of them can significant-

ly improve the performance of the model, and the proposed

framework obtains the best performance as shown in the last

column. The experimental results verify the effectiveness of

the regularization terms and the framework.

4.7. Retrieval of Unseen Classes

To further verify the performance of supervised hashing

methods according to reference [23], we select 7 classes
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Figure 5. MAPs versus (a) the number of anchors and bits, (b) the

variations of γ1 and γ3.

from the CIFAR-10 dataset for the use of training. The

remaining 3 classes are used to evaluate the retrieval per-

formance of unseen classes. The MAP results of four deep

supervised hashing methods are in Table 6. As is presented

in the table, DAGH achieves better results in this case.

4.8. Parameter Sensitivity

Figure 5 shows the performance of DAGH on CIFAR-10

dataset with different parameters. Figure 5(a) shows that the

number of anchors has a slight impact on MAP. The results

on MAP versus the variations of γ1 and γ3 are shown in

Figure 5(b). For simplicity, we set γ2 = 1 and l = 24 in

this experiment. It is clear that DAGH does not perform

well when γ1 is small.

5. Conclusion

In this paper, the proposed DAGH framework uses the

anchor graph to characterize the similarities between the

deep features and all the binary codes. Therefore, the deep

features and label matrix can be effectively utilized to gen-

erate the binary codes, and inversely, the network can ob-

tain more discriminative feedback from the learned high-

quality bits. As such, the data information can be fully

exploited to improve the network. Extensive experiments

on three datasets show the superior retrieval performance

of our method, and verify that even if the proposed mod-

el utilizes the entire training set for network optimization,

the computation time of our algorithm is still less than the

existing deep methods.
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