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Figure 1. The proposed system, dubbed Floor-SP, takes aligned panorama RGBD scans as input, finds room segments, solves an opti-

mization problem to reconstruct a floorplan graph as multiple polygonal loops (one for each room), and merges them into a 2D graph via

simple post-processing heuristics. The optimization is the technical contribution of the paper, which employs the room-wise coordinate

descent strategy and sequentially solves shortest path problems to optimize the room structure.

Abstract

This paper proposes a new approach for automated

floorplan reconstruction from RGBD scans, a major mile-

stone in indoor mapping research. The approach, dubbed

Floor-SP, formulates a novel optimization problem, where

room-wise coordinate descent sequentially solves shortest

path problems to optimize the floorplan graph structure.

The objective function consists of data terms guided by

deep neural networks, consistency terms encouraging adja-

cent rooms to share corners and walls, and the model com-

plexity term. The approach does not require corner/edge

primitive extraction unlike most other methods. We have

evaluated our system on production-quality RGBD scans of

527 apartments or houses, including many units with non-

Manhattan structures. Qualitative and quantitative evalua-

tions demonstrate a significant performance boost over the

current state-of-the-art. Please refer to our project website

http:// jcchen.me/floor-sp/ for code and data.

1. Introduction

Architectural floorplans play a crucial role in designing,

understanding, and remodeling indoor spaces. Automated

floorplan reconstruction from raw sensor data is a major

milestone in indoor mapping research. The core techni-

cal challenge lies in the inference of wall graph structure,

whose topology is unknown and varies per example.

Computer Vision has made remarkable progress in the

task of graph inference, for instance, human pose estima-

tion [3] and hand tracking [30]. Unfortunately, the success

has been limited to the cases of fixed known topology (e.g.,

a human has two arms). Inference of graph structure with

unknown varying topology is still an open problem.

A popular approach to graph reconstruction is primitive

detection and selection [11, 27, 22], for example, detecting

corners, selecting subsets of corners to form edges, and se-

lecting subsets of edges to form regions. The major problem

of this bottom-up process is that it cannot recover from a

single false-negative in an earlier stage (i.e., a missing prim-

itive). The task becomes increasingly more difficult as the

primitive space grows exponentially with their degrees of

freedom, especially for non-Manhattan scenes which most

existing methods do not handle [11, 2, 21, 20].

This paper seeks to make a breakthrough in the domain

of floorplan reconstruction with three key ideas.

• First, we start from room segmentation via instance se-

mantic segmentation technique (we use Mask-RCNN [12]).

The room segmentation reduces the floorplan graph infer-

ence into the reconstruction of multiple polygonal loops,

one for each room. This reduction allows us to formulate

floorplan reconstruction as sound energy optimization over

multiple loops guided by room proposals.

• Second, we employ room-wise coordinate descent strat-

egy in optimizing the objective function. By exploiting the

fact that the room topology is a simple loop, our formulation

finds the (near-)optimal graph structure by solving a short-

est path problem for each room one by one sequentially,

while enforcing consistency with the other rooms.
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• Third, we utilize deep neural networks in evaluating the

data terms of the optimization problem, measuring the dis-

crepancy against the input sensor data. The data term is

combined with the ad-hoc 1) consistency term, encourag-

ing adjacent rooms to share corners and walls at the room

boundaries, and 2) model complexity term, penalizing the

number of corners in the graph.

We have evaluated the proposed approach on production-

quality RGBD scans of 527 apartments or houses, a few

times larger than the current largest database [20]. Our

approach makes significant improvements over the current

state-of-the-art [20]. We refer to our project website http:

//jcchen.me/floor-sp/ for code and data.

2. Related Works

We discuss related work in two domains: graph recon-

struction and indoor scan datasets.

Graph reconstruction: Graph structure inference has been

a popular field of study in Computer Vision, for instance,

inferring a human body pose [3] or the semantic relation-

ships of categories [14, 28]. In these problems, the graph

topology is defined over the label space, common to all the

instances (e.g., a head is always connected to a body). We

here focus on graph inference problems in the context of

reconstruction, where the topology varies per instance.

Room layout estimation infers a graph of architectural

feature lines from a single image, where nodes are room

corners and edges are wall boundaries. Most approaches

assume a 3D box-room to limit the topological variations in

the room layouts visible in 2D images [13, 25, 18, 5]. For

a room beyond a box shape, Dynamic Programming (DP)

was applied to search for an optimal room structure [8, 9].

DP was similarly used to solve for floorplans by limiting

their topology to be a loop [2].

Bottom-up processing is a popular approach for graph

reconstruction, where low-level primitives such as corners

are detected, which are then selected to form higher-level

primitives such as edges or regions. DNN-based junc-

tion detector was proposed for floorplan image vectoriza-

tion [21], where a junction indicates incident edge direc-

tions in the Manhattan frame. The junction information is

utilized in inferring the edges by integer programming (IP).

Similarly, Huang et al. [16] uses DNN to detect junctions

represented by a set of incident edge directions, and infer

edges by heuristics for single-image wireframe reconstruc-

tion of man-made scenes.

While many previous works utilize RGBD scans/point

clouds for high-quality indoor reconstruction [17, 19, 23,

20], FloorNet [20] is the current state-of-the-art for floor-

plan reconstruction task tested on large-scale indoor bench-

marks. FloorNet combines DNN and IP in a bottom-up pro-

cess but it has three major failure modes. First, as in any

bottom-up process, missing corners in the detection phase

automatically lead to missing walls and rooms in the final

model. Second, false candidate primitives could lead to the

reconstruction of extraneous walls and rooms. Third, to en-

able the usage of powerful IP, FloorNet needs to restrict the

solution space to Manhattan scenes.

Structured indoor modeling by Ikehata et al. [17] is the

source of inspiration for our work, which starts by room

segmentation then solves shortest path problems to recon-

struct room shapes followed by room merging and room

addition. While their system is a sequence of heuristics for

indoor modeling, our approach formulates a sound energy

minimization problem to recover the floorplan structure.

Indoor scan datasets: Affordable depth sensing hardware

enables researchers to build many indoor scan datasets. The

ETH3D dataset contains 16 indoor scans for multi-view

stereo [24]. The ScanNet dataset [6] and the SceneNN

dataset [15] capture a variety of indoor scenes. However,

most of their scans contain only one or two rooms, not

suitable for the floorplan reconstruction problem. Matter-

port3D [4] builds high-quality panorama RGBD image sets

for 90 luxurious houses. 2D-3D-S dataset [1] provides 6

large-scale indoor scans of office spaces by using the same

Matterport system. Lastly, a large-scale synthetic dataset,

SUNCG [26], offers a variety of indoor scenes.

For the floorplan reconstruction task, FloorNet [20] pro-

vides the benchmark with full floorplan annotations and

the corresponding RGBD videos from smartphones for 155

residential units. This paper utilizes production-quality

panorama RGBD scans for 527 houses or apartments with

floorplan annotations.

3. Floor-SP: System Overview

Floor-SP turns aligned panorama RGBD images into a

floorplan graph in three phases: room segmentation, room-

aware floorplan reconstruction, and loop merging (See

Fig. 2). This section provides the system overview with

minimal details. The aligned panorama RGBD scans are

first converted into 2D point-density/normal map, which is

the input to Floor-SP. Unlike FloorNet [20], we focus on

the wall structures, where doors/windows, icons, and room

semantics can be added given proper wall structures.

Room segmentation: The input panorama scans are con-

verted into a 4-channel 256×256 point-density/normal map

in a top-down view (See Sect. 6). We utilize instance se-

mantic segmentation technique (Mask R-CNN [12]) to find

room segments given the 4-channel image. The room seg-

ments set up a good foundation for floorplan reconstruction

by providing room proposals with rough shape, but they

are still far away from a good floorplan graph because 1)

Mask R-CNN segment has a raster representation (i.e., un-

known number and placement of corners); and 2) Walls are
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Figure 2. System overview: (Left) Mask-RCNN finds room segments (raster) from a top-down projection image consisting of point density

and mean surface normal, allowing us to reconstruct a floorplan as multiple room loops. (Middle) Room-wise coordinate descent optimizes

vectorzied room structures one by one by minimizing the sum of data, consistency, and model complexity terms. (Right) Simple graph

merging operations combine loops into a floorplan graph structure.

not consistently shared across rooms.

Room-aware floorplan reconstruction: Given a set of

room segments and the input point-density/normal map, we

formulate an optimization problem that reconstructs a floor-

plan graph as multiple polygonal loops, one for each room.

Deep neural networks derive data terms in the objective. We

propose a novel room-wise coordinate descent algorithm

that directly optimizes the number and placement of corners

by sequentially solving shortest-path problems.

Loop merging: Simple graph merging operations combine

multiple polygonal loops into a final floorplan graph.

Room-aware floorplan reconstruction is the technical

core of the paper, where Sect. 4 defines the problem for-

mulation, and Sect. 5 presents the optimization algorithm.

Room segmentation and loop merging are based on existing

techniques, where Sect. 6 provides their algorithmic details

and the remaining system specifications.

4. Room-aware floorplan reconstruction

The room segmentation (Ri) from Mask R-CNN allows

us to reduce the floorplan graph inference into the recon-

struction of multiple loops (Li), one for each room. Li is

defined as a sequence of pixels at integer coordinates form-

ing a polygonal curve with a loop topology. Our problem is

to minimize the following objective with respect to the set

of polygonal loops L:

∑

Li∈L

Edata(Li) + Econsis (L) +
∑

Li∈L

Emodel(Li),

subject to Li being a loop containing Ri inside. Note that

a room has an arbitrary number of corners (i.e., degrees of

freedom), which must be optimized by an algorithm.

Data term: Edata is a room-wise unary potential, measur-

ing the discrepancy with the input sensor data over the set

of pixels along each loop.

Edata(Li) =
∑

p∈C(Li)

λ1E
C
data(p) +

∑

p∈E(Li)

[

λ2E
E
data(p) + λ3E

I
data(p)

]

.

• EC
data(p) is the penalty of placing a corner at pixel p

(see Fig.3a), and hence, summed over all the corner pix-

els C(Li) on Li. The penalty is defined as one minus the

pixel-wise corner likelihood. We estimate the corner like-

lihood map from the input point-density/normal map using

Dilated Residual Networks (DRN) [29].

• EE
data(p) is the penalty of placing an edge over a pixel

p. The term is defined as one minus the pixel-wise edge

likelihood (see Fig. 3b), summed over all the edge pixels

E(Li) along Li. We use Bresenham’s line algorithm to ob-

tain edge pixels given corners. The same DRN estimates the

edge likelihood from the input point-density/normal map.

• EI
data(p) is also the penalty summed over the edge pixels,

which enforces Li not to pass through the room segment

Ri. The term is a large constant if a pixel belongs to any of

the room segments and 0 otherwise.

Consistency term: Econsis is a room-wise higher-order

potential, encouraging loops to be consistent at the room

boundaries (i.e., sharing corners and edges). We define the

penalty to be the number of pixels that are used by the cor-

ners (or edges) of all the loops together. For instance, if two

corners are close to each other, this term suggests to move

them to the same pixel so that penalty is imposed only once:

Econsis(L) =
∑

p

[λ41C(p,L)] +
∑

p

[λ51E(p,L)]

The first term 1C(p,L) is an indicator function, which be-

comes 1 if a pixel (p) is a corner of at least one loop. Simi-

larly, the second term is an indicator function for edges. See

Fig. 3 for the illustration over toy examples.

2663



Figure 3. Illustration of data and consistency terms. E
C

data and

E
E

data are defined based on corner and edge likelihood maps.

Blue pixels indicate lower costs in these toy examples. Econsis

counts the number of pixels used by room corners and room edges.

When neighboring rooms share corners and edges as shown in (c),

Econsis goes down.

Model complexity term: Emodel is the model complexity

penalty, counting the number of corners in our loops, pre-

ferring compact shapes.

Emodel(Li) = λ6{# of corners in Li}.

λ? are scalars defining the relative weights of the penalty

terms. We found our system robust to these parameters and

use the following setting throughout our experiments: λ1 =
0.2, λ2 = 0.2, λ3 = 100.0, λ4 = 0.2, λ5 = 0.1, λ6 = 1.0.

5. Sequential room-wise shortest path

The inspiration of our optimization strategy comes from

a prior work, which solves a shortest path problem and re-

constructs a floorplan as a loop [2]. This formulation con-

siders every pixel as a node of a graph, encodes objectives

into edge weights, and finds the shortest path as a loop.

Our problem solves for multiple loops over multiple

rooms. We devise room-wise coordinate descent strategy

that optimizes room structures one by one sequentially by

reducing a room-wise coordinate descent step into a short-

est path problem. While the algorithm is robust to the pro-

cessing order, we visit rooms in increasing order of their

areas (i.e. smaller rooms are handled first) so that we get

fixed results given the same input. The optimization runs

for two rounds in our experiments.

This section explains 1) Shortest path problem reduction;

2) Containment constraint satisfaction; and 3) Two approx-

imation methods for speed-boost.

Shortest path problem reduction: The reduction process

is straightforward, as our cost function is the summation of

pixel-wise penalties and the number of corners. Without

loss of generality, suppose we are optimizing L1 while fix-

ing the other loops. Our optimization problem is equivalent

to solving a shortest path problem for R1 with the following

weight definition for each edge (e) (See the supplementary

document for the derivation):

∑

p∈C(e)

λ1

2
EC

data(p) +

∑

p∈E(e)

[

λ2E
E
data(p) + λ3E

I
data(p)

]

+

∑

p∈C(e)

λ4(1− 1C(p,L \ {L1})) +

∑

p∈E(e)

λ5(1− 1E(p,L \ {L1})) + λ6.

With abuse of notation, C(e) denotes the two pixels at the

end-points of e, E(e) denotes the set of pixels along e ob-

tained by Bresenham’s line algorithm, and L\{L1} denotes

the set of loops excluding L1.

Containment constraint satisfaction: Shortest path is a

powerful formulation that searches for the optimal number

and placement of corners with one caveat: An additional

constraint is necessary to avoid a trivial solution (i.e., an

empty loop). We use a heuristic similar in spirit to the prior

work [2] to implement this constraint: “Li contains (or goes

around) Ri”. We refer the details to the supplementary doc-

ument and here summarize the process.

First, we find corner candidates from the same corner

likelihood map used for the data term (see Fig. 4). Second,

we look at the edge likelihood map to identify a good pair

of corners forming the start-edge of the loop. Third, we

draw a start-line that starts from the room mask (Ri) and

passes through the start-edge perpendicularly at its middle

point. Lastly, we remove all the edges that intersect with the

start-line to ensure that the path must go around Ri.

Note that fixing the start-edge to be part of the loop

breaks the local optimality of our coordinate descent step,

but works well in practice as it is not difficult to identify one

wall segment with high confidence.

Bounding box approximation: We make an approxima-

tion in pruning nodes and edges to reduce the computational

expenses of the shortest path algorithm (SPA). We restrict

the domain of SPA, as it is wasteful to run it over an en-

tire image domain to reconstruct one room. Given a room

mask Ri, we apply the binary dilation 10 times to expand
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Figure 4. We solve a shortest path problem for each room, where

cost functions are encoded into edge weights. In order to avoid a

trivial solution (i.e., an empty graph) and enforce the path to go

around the rough room segment (Ri), we first identify a start-edge

that is a part of a room shape with high-confidence. Next, we draw

a (red) start-line perpendicularly to split the domain. We prohibit

crossing the start-line, assign a very high penalty for going through

Ri, then solve for a shortest path that starts and ends at the two

end-points of the start-edge.

the mask and find its axis-aligned bounding box with a 5-

pixel margin, in which we solve SPA.

Dominant direction approximation: Floor-SP goes be-

yond the conventional Manhattan assumption by allowing

multiple Manhattan frames per room. We train the same

DRN architecture to estimate the wall direction likelihoods

in an increment of 10 degrees at every pixel. We perform a

simple statistical analysis to extract four Manhattan frames

(i.e., eight directions) globally , then assign its subset to

each room. We allow edges only along the selected domi-

nant directions with some tolerance on discretization errors

(See the supplementary document for details).

6. System Details

Input processing: Given a set of panorama RGBD scans

where the Z axis is aligned with the gravity direction, we

compute the tight axis-aligned bounding box of the points

on the horizontal plane. We expand the rectangle by 2.5% in

each of the four directions, apply non-uniform scaling into

a 256 × 256 pixel grid, and compute the point density and

normal in each pixel. The point density is the number of 3D

points that fall inside the pixel, which we linearly re-scale

to [0.0, 1.0] so that the highest density becomes 1.0. The

point normal is the average surface normal vector of the 3D

points associated with the pixel.

Room segmentation: We use the publicly available

Mask R-CNN implementation [7] with the default hyper-

parameters except that we lower the detection threshold

from 0.7 to 0.2. Given a segment from Mask R-CNN, we

apply the binary erosion operation for 2 iterations with 8-

connected neighborhood to obtain room segments (Ri).

Room-aware floorplan reconstruction: To estimate pixel-

wise likelihoods for corner, edge, and edge direction, we

use the official implementation of Dilated Residual Net-

works [29], which produces 32 × 32 feature maps. In or-

der to produce an output in the same resolutions as the

input, we add 3 extra layers of residual blocks [10] with

transposed convolution of stride 2 to reach the resolution

of 256 × 256. For the corner likelihood supervision, we

render each ground truth corner as a 7 × 7 disk. For the

edge likelihood and wall-direction supervision, we draw the

edge mask and direction information with a width of 5 pix-

els. The loss is binary cross entropy and the learning rate is

1e-4. Dijkstra’s algorithm solves the shortest path problem.

Loop merging: We use simple graph merging operations to

convert room loops into the final floorplan graph structure.

More concretely, we denote a contiguous set of colinear line

segments as a segment group. We repeatedly identify a pair

of parallel segment groups within 5 pixels and snap them

into a new segment group at the middle point while merging

corners. After applying the edge merging to all compatible

pairs, we merge corners that are within 3 pixels.

7. Experiments

We have evaluated the proposed system on 527 sets of

aligned panorama RGBD scans. The average numbers of

1) input 3D points for the point-density/normal image, 2)

corners in the annotations, 3) wall segments in the annota-

tions, and 4) rooms in the annotations are 432,552, 28.87,

35.88, and 7.73, respectively. Out of 4072 rooms, 489

rooms do not follow the primary Manhattan structure of the

unit. Fig. 5 shows four examples from our dataset.

527 units are split into 433 and 94 for training and test-

ing, respectively. We make the test set more challenging on

purpose for evaluations: 48 out of 94 testing units contain

challenging non-Manhattan structure, and 199 out of 667

testing rooms follow non-Manhattan geometry.

We have implemented the proposed system in Python

while using PyTorch as the DNN library. We have used a

workstation equipped with an NVIDIA 1080Ti with 12GB

GPU memory. We trained the Mask-RCNN for 70 epochs

with a batch size of 1, and the DRNs for 35 epochs with a

batch size of 4. The training of each DNN model takes at

most a day. At test time, it takes about 5 minutes to process

one apartment/house. The bottleneck is the construction of

the graph for the shortest path problem (a CPU-intensive).

7.1. Qualitative evaluations

Fig. 6 compares Floor-SP against the current state-of-

the-art FloorNet [20] and the variants of our system. Floor-

Net follows a bottom-up process, where it first detects cor-

ners then uses Integer Programming to find their valid con-

nections. FloorNet suffers from three failure modes: 1)

Missing rooms due to missing corners in the first corner de-
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Figure 5. Our dataset offers production-level panorama RGBD scans for 527 houses/apartments. We convert each scan into a point

density/normal map from a top-down view, which is the input to our system. We annotated floorplan structure as a 2D polygonal graph.

Note that for visualizing point-density/normal maps (the middle column), the intensity encodes the point density, and the hue/saturation

encodes the 2D horizontal component of the mean surface normal.

Table 1. The main quantitative evaluation results. The colors cyan, orange, magenta represent the top three entries.

Method
Corner Edge Room Room++

Prec. Recall Prec. Recall Prec. Recall Prec. Recall

FloorNet [20] 95.0 76.6 94.8 76.8 81.2 72.1 42.3 37.5

Ours (w/o Edata, Econsis) 84.4 80.4 82.3 79.8 75.1 61.3 23.3 22.0

Ours (w/o Econsis) 93.9 82.3 89.2 81.2 83.8 81.7 49.4 48.5

Ours (1st-round coordinate descent) 94.6 82.8 89.4 81.7 83.9 81.8 49.5 48.7

Ours (2nd-round coordinate descent) 95.1 82.2 90.2 81.1 84.7 83.0 51.4 50.4

tection step; 2) Extraneous rooms coming from extraneous

corner detections; and 3) Broken non-Manhattan structures,

which becomes challenging due to the excessive amount of

search space in Integer Programming.

The right three columns show the variants of proposed

Floor-SP. The left does not have the consistency term and

replaces the DNN-based data term by the ad-hoc cost func-

tions in the prior work [2]. Our overall formulation guaran-

tees a room reconstruction at each detected room segment,

producing reasonable results. On adding our DNN-based

data term Edata (middle), per-room structure improves sig-

nificantly. However, inconsistencies at the room boundaries

are often noticeable. Lastly, with the addition of the con-

sistency term (right), we see clean floorplan structures with

consistent shared room boundaries.

Fig. 7 illustrates the effect of room-wise coordinate de-

scent over multiple rounds. Red ovals indicate challeng-

ing structure causing room overlaps or holes, which are re-

solved after the second round of optimization.

7.2. Quantitative evaluations

We follow FloorNet [20] and define the following four

metrics for the quantitative evaluations:

Corner precision/recall: We declare that a corner is suc-

cessfully reconstructed if there is a ground-truth room cor-

ner within 10 pixels. When multiple corners are detected

around a single ground-truth corner, we only take the clos-

est one as correct and treat the others as false-positives.

Edge precision/recall: We declare that an edge of a graph

is successfully reconstructed if its two end-points pass the

corner test described above and the corresponding edge be-

longs to the ground-truth.

Room precision/recall: We declare that a room is success-

fully reconstructed if 1) it does not overlap with any other

room, and 2) there exists a room in the ground-truth with

intersection-over-union (IOU) score more than 0.7. Note

that this metric does not consider the positioning and shar-

ing of corners and edges.

Room++ precision/recall: We declare that a room is suc-

cessfully reconstructed in this metric, if the room is con-

nected (i.e., sharing edges) to the correct set of successfully

reconstructed rooms as in the ground-truth, besides passing

the above two room conditions.

Table 1 shows the main quantitative evaluations. Preci-

sion metrics on low-level primitives (i.e., corners and edges)
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Figure 6. Qualitative comparisons against FloorNet [20] and the variants of our approach. We select hard non-Manhattan examples

here to illustrate the reconstruction challenges in our dataset. For reconstructions by Floor-SP variants, room colors are determined by

corresponding room segments from Mask R-CNN. For the ground-truth and the FloorNet, colors are based on the room types.

are high for FloorNet, because this task does not require

high-level structural reasoning and the majority of the cor-

ners are easy ones (e.g., Manhattan corners). On the other

hand, their recall metrics are low even for low-level prim-

itives, because some room corners do not have enough 3D

points due to occlusions where DNN based corner detection

fails. Floor-SP recovers such challenging corners through

the sequential room-wise optimization process.

On room-level metrics, Floor-SP is consistently better

than FloorNet. Furthermore, the addition of the data and

consistency terms improves the room-level metrics. Finally,

room-wise coordinate descent adds a further boost to the
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performance. The quantitative results and the visualization

of all 94 test examples are in the supplementary document.

Figure 7. Multiple rounds of the coordinate descent fix mistakes

at challenging floorplan structure. The top row shows the results

after the first round of the coordinate descent optimization, and the

bottom shows the results after the second round. We also show the

total amount of energy after each round. Corresponding ground-

truth annotations are found in Fig. 6.

Figure 8. Typical failure modes. The top is the ground-truth an-

notation and the bottom is our result for each example. Our sys-

tem still makes mistakes for complex scenes and challenging non-

Manhattan structures.

7.3. Discussion

Floor-SP produces near-perfect results for Manhattan

structures. The majority of the failures are concentrated on

non-Manhattan cases. Quantitatively, our Room++ metrics

are just slightly above 50. However, we would like to point

out that our reconstructions are not terribly bad even in ex-

tremely challenging cases with poor Room++ metrics.

Look at the first example in Fig. 8. Room++ precision

and recall are both 0 with our reconstruction, while the re-

construction looks fairly reasonable. The reasons are three-

fold as marked by the numbers. 1) A small non-Manhattan

room has wrong dominant directions in the pre-processing

step, which makes it impossible for Floor-SP to recover, and

fails the IOU test; 2) Small details such as concave struc-

tures are hard to keep and the room fails the IOU test; 3)

The room segmentation by Mask R-CNN makes a mistake

Figure 9. Standard corner detection easily makes mistakes (red

disks). Mask R-CNN produces imprecise raster room segments

(white masks) or misses an entire room (right-most example).

Floor-SP uses optimization to solve for the corner placements and

their connections robustly. At the top, the orange polygon shows

our reconstruction of a room in focus. The bottom shows the cor-

responding ground truth.

on the number of rooms for a complex case, which is again

impossible to recover. Once a single room fails, all the adja-

cent rooms automatically fail in the Room++ metric, lead-

ing to the zero precision and recall in this example.

In Fig. 9, we further analyze the robustness of our ap-

proach. Corner detection with non-maximum suppression

always produce noisy results, and room segments generated

by instance segmentation network are also imprecise on de-

tails. Instead of using these primitive detections directly,

Floor-SP formulates an energy minimization problem to

solve for the number and placement of floorplan corners

and is robust to these two types of mistakes. However, when

room instance segmentation makes mistake on the number

of rooms (as in the last example in Fig. 9), our system can-

not recover but produce approximate indoor structures with

wrong room separation. This mistake is also observed in

the two examples in Fig. 8. One future research is to re-

cover from mistake made in room segmentation phase to

produce more accurate floorplan graph.

We would like to also note that the input to our system is

a single point-density/normal image from a top-down view.

We have discarded the 3D information by projecting the

points onto a 2D image as described in Sect. 6. We have

not utilized high-resolution panorama RGB images, which

are available in the dataset and could make the system more

robust like FloorNet [20].

We believe that this paper sets a major milestone in in-

door mapping research. The proposed system produces

compelling floorplan reconstruction results on production-

quality challenging scenes in large quantities. We publicly

share our code and data in our project website to promote

further research.
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