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Abstract

Adversarial robustness has emerged as an important

topic in deep learning as carefully crafted attack sam-

ples can significantly disturb the performance of a model.

Many recent methods have proposed to improve adversar-

ial robustness by utilizing adversarial training or model

distillation, which adds additional procedures to model

training. In this paper, we propose a new training

paradigm called Guided Complement Entropy (GCE) that

is capable of achieving “adversarial defense for free,” which

involves no additional procedures in the process of im-

proving adversarial robustness. In addition to maximizing

model probabilities on the ground-truth class like cross-

entropy, we neutralize its probabilities on the incorrect

classes along with a “guided” term to balance between

these two terms. We show in the experiments that our

method achieves better model robustness with even bet-

ter performance compared to the commonly used cross-

entropy training objective. We also show that our method

can be used orthogonal to adversarial training across well-

known methods with noticeable robustness gain. To the

best of our knowledge, our approach is the first one that

improves model robustness without compromising perfor-

mance.

1. Introduction

Deep neural networks have been adopted to improve

the performance of state-of-the-arts on a wide variety

of tasks in computer vision, including image classifica-

tion [9], segmentation [13], and image generations [6]. Al-

beit triumphing on predictive performance, recent liter-

*The authors contribute equally to this paper.

ature [1, 5, 16] has shown that deep neural models are

vulnerable to adversarial attacks. In an adversarial at-

tack, undetectable but targeted perturbations are added

to input samples which can drastically degrade the per-

formance of a model. Such attacks have imposed serious

threats to the safety and robustness of technologies en-

abled by deep neural models. Taking deep learning based

self-driving cars, for example, models might mistakenly

recognize a “stop sign” as a “green light” when adversarial

examples are present. Needless to say, improving adver-

sarial robustness is critical as it saves not only the model

performance but the lives of people in many cases.

Figure 1. Latent space of the models trained by different objec-

tive functions on CIFAR10. Visualization is done using t-SNE.

Left: the latent space of model trained with cross-entropy (XE).

Right: the latent space of model trained with GCE. Compared

to XE, more distinct clusters (less overlap) are formed for each

class from the training with GCE.

A wide range of work has been proposed to address the

issue of adversarial robustness. One method to improve

the model robustness is “adversarial training” [11, 14, 20]

where the model is trained with either adversarial ex-

amples [14] or a combination of both natural examples1

1The “natural examples” mentioned in this paper are the normal

samples in the original dataset, which contrasts to the “adversarial ex-

amples.”
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and adversarial examples as a form of data augmenta-

tion [20]. Here, adversarial examples refer to the arti-

ficially samples by adding targeted perturbations to the

original data [1, 4, 5, 10, 14, 16]. Other defense methods

such as Defensive Distillation [17, 18] adopt the concept

of model distillation to teach a smaller version of the orig-

inal learned network that is less sensitive to input pertur-

bations in order to make the model more robust.

One caveat for using the existing defense mechanism is

that they usually require additional processes, relying on

either adversarial training or an additional teacher model

in the distillation case. The fact that such a procedure is

dependent on a specific implementation makes robust-

ness improvement less flexible and more computation-

ally intensive. The question we ask ourselves in this pa-

per is, can we construct a training procedure that is ca-

pable of achieving “adversarial defense for free,” meaning

that model robustness is improved in a model-agnostic

way without the presence of an attack model or a teacher

model. Another issue with the existing methods is that

adversarial robustness usually come at the cost of model

performance. A recent analysis [15, 21] has shown that

adversarial training hurts model generalization, and im-

provement on robustness is approximately at the same

scale as the amount of performance degradation.

In this paper, we propose a novel training paradigm

to improve adversarial robustness that achieves adver-

sarial defense for free without using additional training

procedures. Specifically, we propose a carefully designed

training objective called “Guided Complement Entropy”

(GCE). Different to the usual choice of cross-entropy,

which focuses on optimizing the model’s likelihood on

the correct class, we additionally add penalty that sup-

presses the model’s probabilities on incorrect classes.

Those two terms are balanced through a “guided” term

that scales exponentially. Such a formulation helps to

widen the gap in the manifold between ground-truth

classes and incorrect classes, which has been proved to be

effective in recent studies on minimum adversarial dis-

tortion [23]. This can be illustrated in Fig 1 where GCE

clearly makes the clusters more separable compares to

cross-entropy. Training with GCE for model robustness

has several advantages compares to prior methods: (a) no

additional computational cost is incurred as no adversar-

ial example is involved and no extra model is required,

and (b) contrary to prior analysis [15, 21] , improving

model robustness no longer comes at a cost of model per-

formance and we see sometimes better performance as

supported in our experiment section.

The contributions of our paper are three-fold. Firstly,

to the best of our knowledge, GCE is the first work that

achieves adversarial robustness without compromising

model performance. Compares to the widely used meth-

ods which usually incur significant performance drop,

our method can maintain or even beat the performance of

models trained with cross-entropy. Secondly, our method

is the first approach that is capable of achieving adversar-

ial defense for free, which means improving robustness

does not incur additional training procedures or com-

putational cost, making the method agnostic to attack

mechanisms. Finally, our proposed method managed to

improve on top of a wide range of state-of-the-art defense

mechanisms. Future work in the field can boost robust-

ness improvements across different methods and push

the frontiers of the adversarial defense forward.

2. Related Work

Adversarial Attacks. Several adversarial attack methods

have been proposed in the “white-box” setting, which as-

sumes the structure of the model being attacked is known

in advance. As an iteration-based attack, [5] first in-

troduces a fast method to crafting adversarial examples

by perturbing the pixel’s intensity according to the gradi-

ent of the loss function. [5] is an example of the single-

step adversarial attack. As an extension to [5], [10] it-

eratively applies the gradient-based perturbation step by

step, each with a small step size. A further extension to

[10] is [4] which adds gradient-based method with mo-

mentum to boost the success rates of the generated ad-

versarial examples. In addition, an iterative method [16]

has been proposed that uses Jacobian matrices to con-

struct the saliency map for selecting pixels to modify at

each iteration. As an optimization-based attack, the C&W

attack [1] is one of the most powerful attacks using the ob-

jective function to craft adversarial examples to fool the

models.

Adversarial Defenses. Several defense strategies against

adversarial attacks have been proposed to increase the

model’s robustness. In [11], the model’s robustness is en-

hanced by using adversarial training on large scale mod-

els and datasets. [14] formulates the defense of model ro-

bustness as a min-max optimization problem, in which

the adversary is constructed to achieve high loss value

and the model is optimized to minimize the adversar-

ial loss. [20] proposes an ensemble method which in-

corporates perturbed inputs transferred from other mod-

els, and yields model with strong robustness to black-

box attacks. Besides improving the robustness by training

with adversarial examples, Defensive Distillation [17, 18]

is another effective defense approach. The idea is to

generate a “smooth" model which can reduce the sensi-

tivity of the model to the perturbed inputs. In details,

a “teacher" model is proposed with a modified softmax

function with a temperature constant. Then, using the

soft labels produced by the teacher network, a “smooth”
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model is trained and is found to be more resistant to ad-

versarial examples.

Complement Objective Training. The proposed

Guided Complement Entropy loss takes inspirations

from Complement Objective Training (COT) [2] which

employs not only a primary loss function of cross-

entropy (XE), but also a “complement” loss function to

achieve better generalization. In COT, while the XE loss

was to increase the output weight of the ground-truth

class (and therefore, to learn to predict accurately), the

“complement” loss function was designed with the in-

tention to neutralize the output weights on the incorrect

classes (and therefore facilitates the training process

and improves the final model accuracy). Although

the complement loss function in COT was originally

designed to make the ground-truth class stands out from

the other classes, it has also been shown that the models

trained using COT have achieved good robustness against

single-step adversarial attacks.

Despite the good robustness that COT achieved on

single-step adversarial attacks, the two loss objectives

that COT employs do not have a coordinating mechanism

to efficiently work together to achieve robustness against

stronger attacks, e.g., multiple-step adversarial attacks.

We conjecture that the gradients from the two loss objec-

tives may compete with each other and potentially com-

promise the improvements.

Based on the insight mentioned above, in this work,

we propose GCE as an approach to reconcile the com-

petition between the intentions of COT’s two loss objec-

tives. Rather than letting the two loss objectives work in-

dependently and coordinate merely via the normalization

of output weights, our proposed GCE loss function uni-

fies the core intentions of COT’s two loss objectives, and

explicitly formulates a mechanism to coordinate these

core intentions. We argue that, by eliminating the com-

petitions from COT’s two loss objectives, the intention of

"complement" loss can be maximumly expressed during

the training phase to achieve better robustness.

3. Guided Complement Entropy

In this section, we introduce the proposed Guided

Complement Entropy loss function, and discuss the in-

tuition behind it. We will first review the concept of Com-

plement Entropy [2] before explaining the details of GCE.

Complement Entropy. In [2], the Complement En-

tropy loss was introduced to facilitate the primary cross-

entropy loss during the training process. It was shown

that by introducing the Complement Entropy loss, the

training process can generate models with better predic-

Symbol Meaning

ŷi The predicted probability for the i th sample.

g Index of the ground-truth class.

yi j or ŷi j The j th class (element) of yi or ŷi .

N and K Total number of samples and total number of classes

Table 1. Basic Notations used in this section.

tion accuracy as well as better robustness against single-

step adversarial attacks.

−
1

N

N∑

i=1

K∑

j=1, j 6=g

(
ŷi j

1− ŷi g
) log(

ŷi j

1− ŷi g
) (1)

Eq (1) shows the mathematical formula of the Comple-

ment Entropy and notations are summarized in Table 1.

We note that the idea behind the design of Complement

Entropy is to flatten out the weight distribution among

the incorrect classes (“neutralize" the predicted weights

on those classes). Mathematically, a distribution is flat-

tened when its entropy is maximized, so Complement En-

tropy incorporates a negative sign to make it a loss func-

tion to be minimized.

Observing the results reported in [2], we argue that

the improvement on the robustness of the model comes

mostly from the property of the Complement Entropy

on neutralizing the distributional weights on incorrect

classes. Following this thought process, in this work, we

formulate the property of the Complement Entropy ex-

plicitly into a new loss function that (a) is a standalone

training objective with good empirical convergence be-

havior and (b) is explicitly designed to achieve robustness

against various adversarial attacks (including both single-

step and multi-step attacks).

Guided Complement Entropy. Based on our observa-

tions mentioned above, we propose a novel training ob-

jective, Guided Complement Entropy (GCE), which we

will show that accomplishes our two original design goals:

being a standalone training objective, and is inherently

designed for achieving robustness against adversarial at-

tacks. Eq(2) shows the mathematical formula of the pro-

posed GCE:

−
1

N

N∑

i=1

ŷα
i g

K∑

j=1, j 6=g

(
ŷi j

1− ŷi g
) log(

ŷi j

1− ŷi g
) (2)

It can be seen that the Eq(2) shares some similarity

with the formula of the Complement Entropy in Eq(1),

specifically the inner summation term, which we will call

it the complement loss factor of the GCE loss. This sim-

ilarity is intended, because it is our goal to make a loss

function that explicitly takes advantage of the property of

complement entropy on defending against adversarial at-

tacks. The main difference is that GCE also introduces a
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guiding factor of ŷα
i g

to modulate the effect of the com-

plement loss factor, according to the model’s prediction

quality during the training iterations.

The intuition behind the formula of GCE is that, on

a training instance where the predicted value for the

ground-truth class is low, we consider that the model is

not yet confident to its performance. So, we argue that, at

this instance, it is not strongly required to have the opti-

mizer to optimize eagerly according to the loss value. In-

tuitively, the proposed guiding factor serves as the control

knob that uses the predicted value for the ground-truth

class to modulate the amount of “eagerness” that the op-

timizer should treat the loss value.

Mathematically, on the instance that the model is not

confident (when ŷi g is small), the guiding factor ŷα
i g

is

also a small value, reducing the impact of the comple-

ment loss factor. On the other hand, as the model grad-

ually improves and assigns larger values to the ground-

truth class, the guiding factor will gradually increase the

impact of the complement loss factor, which will encour-

age the optimizer to become more aggressive on neutral-

izing the weights on the incorrect classes, explicitly train-

ing towards a more robust model against adversarial at-

tacks.

Analysis on the number of classes. The value of the pro-

posed GCE loss as defined in Eq(2) depends on the num-

ber of classes, K , of the learning task. When using Eq(2)

directly in a training task, because the dynamic range of

the training loss is different from that of other training

tasks, additional efforts are needed on tuning the learn-

ing schedule for achieving good performance.

Rather than using the GCE loss directly and fine-tuning

the learning schedule for every training task, we mathe-

matically divide the complement loss factor with a nor-

malizing term log(K−1) to make the dynamic range of this

normalized complement loss factor between 0 and -1. We

called the resulting loss function, the normalized Guided

Complement Entropy (Eq(3)), which is defined as

−
1

N

N∑

i=1

ŷα
i g ·

1

log(K −1)

K∑

j=1, j 6=g

(
ŷi j

1− ŷi g
) log(

ŷi j

1− ŷi g
) (3)

where K is the number of classes for a training task.

By using the normalized GCE loss, we found that, with-

out the extra effort of tuning the learning schedule, the

optimizing algorithm can converge to a well-performing

model, in terms of both the testing accuracy and the ad-

versarial robustness. Based on this analysis, we conduct

all of our experiments with the normalized Guided Com-

plement Entropy in the following sections when we men-

tion GCE.

Synthetic Data Analysis. To further study the effect of

the guiding factor of the GCE loss, ŷα
i g

, as well as how the

exponent termα influences the loss function, we visualize

the landscape of the GCE loss of a 3-class distribution and

observe:

1. How does the landscape of GCE loss differ to that of

Complement Entropy loss?

2. How does the α value modify the shape of the loss

landscape of GCE?

3. What are the implications on the convergence be-

havior, given the different loss landscapes of differ-

ent α values?

The synthetic training data we used in this exploratory

study has only three classes, and we set that the class 0 be

the ground-truth label, while the classes 1 and 2 are incor-

rect classes. To visualize the landscape of a loss function

over this 3-class synthetic data, we do a grid-sample over

the weight distributions of the three classes, and plot the

loss value on every sample point.

Fig 2 shows the visualization of the Complement En-

tropy loss function over this synthetic distribution. We

note that for a three-class distribution, the loss function

can be visualized on a 2-D heat map, where the X and Y

coordinates indicate the values of two incorrect classes,

and the heat-value corresponds to the value of the loss

function. The value of the ground-truth class is uniquely

determined by the two incorrect classes, since the three

values have to sum up to 1. Therefore, the origin point (0,

0) is the optimal point, since it is the point where the class

0 (the ground-truth class) gets the full probability value

1. Ideally, in this visualization, the loss values near the

origin should be low, and the loss value increases as we

move away from the origin. In the figure, we also use a

gray shade to indicate the area around the origin where

the output probability on the ground-truth class is larger

than the output probabilities on the two incorrect classes.

This gray-shade area is the region where the model will

output the ground-truth class as its prediction.

In Fig 2(a), although the loss value of Complement En-

tropy is low around the origin, it can be seen that the loss

values of all the points along the line X = Y all have the

equally low loss values. When X = Y , the two incorrect

classes have the same output probability values, and it

can be shown in Eq 1 that the Complement Entropy loss

value along line X = Y is the same. Having a long "valley"

in the loss landscape creates a problem when optimiz-

ing according to the Complement Entropy loss. The loss

function only leads the training to converge to the valley,

but not to the origin (the optimal point).

On the other hand, in Fig 2(b)(c)(d), it can be seen that

the landscape of the GCE loss does not have the prob-
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(a) Complement Entropy (b) GCE with α= 1 (c) GCE with α= 1/3 (d) GCE with α= 1/10

Figure 2. Characteristics of GCE under different α values. Loss values are calculated assuming three classes, with class 0 being the

ground-truth and class 1 & 2 being incorrect classes. The X axis represents the predicted probability of class 1 and the Y axis for class

2. The shaded area (at the bottom left of each sub-figure) represents the prediction being correct (i.e., ground-truth class receives the

predicted probability higher than class 1 or 2). Notice that in (a) and (d) the region of minimal loss (dark blue) does not overlap with

the shaded region, which is not ideal as the loss function couldn’t precisely reflect the prediction being correct. On the other hand,

(b)(c) represent a preferred behavior of a loss function.

Figure 3. The effect of the exponent α of the guiding factor, on

our synthetic 3-class example data. The X-axis is the output

probability of the ground-truth class (class 0), so the optimal

point is at the value 1.0. The output probability of the two in-

correct classes are set to be equal (the optimal condition for the

complement loss factor). The Y-axis is the value of the GCE loss.

Different α values create curves of approaching slopes towards

the optimal point.

lematic "valley" in which the optimization process can be

stuck. By introducing the guiding factor, ŷα
i g

, in the GCE

loss, the valley along the X = Y line is no longer flat. In-

stead, it is now a valley inclined downwards the origin (the

model’s optimal point). Moreover, the downward slope

of the valley is controlled by the exponent term, α, of the

guiding factor. By comparing the different values of α, it

can be seen that a smallerα value, sayα= 1/10, makes the

loss value drops quickly to a low value, creating a larger

“basin" near the origin.

To further inspect the effect of the exponentα, in Fig. 3,

we plot the profile of the GCE loss function along the line

X = Y , when different α values is used. The X-axis is the

output probability of the ground-truth class, so the value

1.0 is the optimal value. When α= 1, the downward slope

towards the optimal is a constant value. As the α value de-

creases, the downward slope has a bigger and bigger ini-

tial drop, followed by a shallower approach towards the

optimal point. To maintain a good optimization momen-

tum during the entire training process, our intuition is to

prefer an α value that has a reasonable initial drop, but

preserves a good final approach as we get closer to the

optimal point. Therefore, we argue that the preferable α

value should not be too close to 1, nor be too small. In our

experiments in the following section, we will try multiple

values of α and report the results.

4. Adversarial Setting

In the adversarial setting, adversaries apply attack-

ing methods to craft adversarial examples based on the

given natural examples. We consider the white-box at-

tack, which is the most challenging and difficult threat

model for classifiers to defend [1]. White-box adversar-

ial attacks know everything, e.g., parameters, about the

models that they attack on. The ǫ mentioned below is the

perturbation for the adversarial attacks.

Fast Gradient Sign Method (FGSM) [5] introduced an

efficient one-step attack. The method uses the gradient

evaluated by the training cost function to determine the

direction of the perturbation.The adversarial examples x∗

can be simply generated by :

x∗
= x+ǫ · si g n(▽xL(x,y) ) (4)

,where the ǫ is the perturbation and L(x,y) is the training

loss function.

Basic Iterative Method (BIM) [10] introduced the ex-

tension of FGSM which applies multiple steps perturba-

tion and clipped the value of features in the constrained

bounding. The BIM formulation is :

x∗
0 = x, x∗

i = cl i px,ǫ(x∗
i−1+

ǫ

r
· si g n(▽x∗

i−1
L(x∗

i−1,y) ) ) (5)

4885



where the r is the number of iterations and clipx,ǫ(·) is

the clipping function to keep the value of features being

bounded.

Projected Gradient Descent (PGD) [14] proposed a

more powerful adversary method which is the multi-step

variant FGSMk. The process of crafting the adversarial ex-

amples in PGD is similar to BIM. The difference is that the

x∗
0 is a uniformly random point in ℓ∞-ball around x.

Momentum Iterative Method (MIM) [4] integrated the

momentum property into the iterative gradient-based at-

tack to craft the adversarial examples. The method not

only stabilize the update directions during the iterative

process but also improve the situation about sticking in

the local maximum in BIM. The MIM formulation is:

gt =µ ·gt−1 +
▽xL(x∗

t−1,y)

‖▽xL(x∗
t−1,y)‖1

(6)

x∗
t = cl i px,ǫ(x∗

t−1 +
ǫ

r
· si g n(gt ) ) (7)

where gt is the gradient which accumulating the velocity

vector in the direction and µ is the decay factor.

Jacobian-based Saliency Map Attack (JSMA) [16] pro-

posed the powerful target attack which can just perturb

fewer pixels. The method identify the features that can

significantly affect output classification by the evaluation

of the saliency map. Through modifying the input fea-

tures iterative, JSMA craft the adversarial example which

cause the model misclassified in specific targets.

Carlini & Wagner (C&W) [1] introduce a optimization-

based attack and can effective defeat defensive distilla-

tion [1]. To ensure the perturbation for images is avail-

able, the method defines the box constraints to make the

pixels value in a constrained bounding. They define:

x∗
=

1

2
( tanh(w) +1) (8)

in terms of w and let 0 ≤ x∗ ≤ 1 to make the sample is valid

and optimize w with the formulation:

min
w

‖
1

2
( tanh(w) +1) −x‖2

2 + c · f (
1

2
( tanh(w) +1)) (9)

where c is the constant. The f ( ·) is the objective function

f (x) = max(max{Zpre(x)i : i 6= y}−Zpre(x)i,−κ) (10)

where the κ is the confidence and Zpre(x)i is the model

output logits.

5. Experiments

We conduct experiments to demonstrate that:

1. Models trained with GCE can achieve better classifi-

cation performance, compared to the baseline mod-

els trained using the XE loss function.

2. In addition to achieving good classification perfor-

mance on the natural, non-adversarial examples, the

models trained with GCE are also robust against sev-

eral kinds of "white-box" adversarial attacks.

3. In the setting of "adversarial training", we show that

substituting the GCE loss function in the PGD adver-

sarial training, the resulting models are more robust

than the previous results.

5.1. Performance on natural examples

In this section, we give experimental results show-

ing that models trained using GCE, in the natural, non-

adversarial setting, can outperform the previously re-

ported best models trained using XE. Specifically, we

compared the model accuracy on several image classifica-

tion datasets of different scales, ranging from MNIST [12],

CIFAR10, CIFAR100 [8] and Tiny ImageNet2.

In our experiments, for each data set, we take the best

model previously published (the baseline model), and

substitute the loss function from the original XE to the

proposed GCE. For MNIST, we use the model Lenet-5 [12]

with Adam Optimizer. For CIFAR10 and CIFAR100, we use

ResNet-56 [7]; while for Tiny ImageNet, it is trained with

ResNet-50. The ResNet-56 and ResNet-50 models were

trained following the standard settings described in [7].

In details, the models were trained using SGD optimizer

with momentum of 0.9, and weight decay is set to be

0.0001. The learning rate is set to start at 0.1, then is di-

vided by 10 at the 100th and 150th epochs.

Table 2 compares the classification error rates of the

baseline models and those of GCE’s models. We found

that the performance achieved by GCE’s models are usu-

ally as good or outperforming the models from XE, when

the guided factor, controlled by α, is appropriately cho-

sen. For example, on Tiny ImageNet, our proposed model

achieves 38.56% error rate, at α= 1/3, which is better than

the 39.54% error rate of the baseline model.

5.2. Robustness to White-box attacks

The main motivation of the proposed GCE loss, is to

train models that are robust to adversarial attacks. In this

section, we took the models that were trained above as de-

scribed in Sec. 5.1, and evaluated their robustness against

2https://tiny-imagenet.herokuapp.com, a subset of Ima-

geNet [3]
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Dataset MNIST CIFAR10 CIFAR100 Tiny ImageNet

Architecture LeNet-5 ResNet-56 ResNet-50

Baseline 0.8 7.99 31.9 39.54

α= 1/2 0.61 9.18 40.59 43.36

α= 1/3 0.67 7.18 31.75 38.56

α= 1/4 0.64 6.93 31.8 38.69

α= 1/5 0.68 6.91 31.48 38.26

Table 2. Classification error rates (%) of the baseline models (us-

ing XE) and the proposed models, evaluated on 4 image classi-

fication data sets. The α is the guided factor of the proposed

model.

the six kinds of white-box attack (described in Sec. 4). In

the experiments of this section, we set the exponent of the

guiding factor α= 1/3.

Robustness. We first evaluated the robustness of our

proposed models on the two smaller data sets, MNIST

and CIFAR10. Following the preprocessing that is com-

mon in previous work, the pixel values in both data sets

were scaled to the interval [0,1]. For the iteration-based

attacks using gradients, e.g., FGSM, BIM, PGD and MIM,

we crafted adversarial examples in the non-targeted way,

with respect to the perturbation ǫ. The iterations are set

to be 10 for BIM, and 40 for both PGD and MIM. For

the iteration-based attack using Jacobian matrix, JSMA,

the adversarial examples were perturbed with the sev-

eral values of γ (the maximum percentage of pixels per-

turbed in each image), and the perturbation ǫ=1. For the

optimization-based attack, C&W, we perform the targeted

attack using the "average case" approach, as mentioned

in the original paper [1]. Regarding the parameters of the

C&W attack, we set binary steps to be 9 and the maximum

iterations to be 1000. The initial constant is set to 0.001

and the confidence is set to 0.

Table 3 shows the results of the attacks mentioned

above. The models trained with GCE always have higher

classification accuracy than the baseline models trained

with XE, under the six white-box adversarial attacks, on

both datasets. In particular, the best accuracy improve-

ment between our models and the baseline is on the Mo-

mentum Iterative Method (MIM) attack.

For large-scale datasets, i.e., CIFAR100 and Tiny Ima-

geNet, we evaluated the robustness of our models on the

PGD attack, which is the most powerful white-box adver-

sarial attack. Table 4 compares the classification accuracy

of our models and that of the baseline models. Our mod-

els, under the PGD attack, outperform the baseline mod-

els on classification accuracy.

Robustness compared to COT. For evaluating the ad-

versarial robustness about COT and GCE, we conduct var-

ious white-box attacks on the models trained with COT

Attacks
MNIST CIFAR10

Param. XE GCE Param. XE GCE

FGSM

ǫ= 0.1

ǫ= 0.2

ǫ= 0.3

78.32

38.88

14.99

87.66

62.74

47.21

ǫ= 0.04

ǫ= 0.12

ǫ= 0.2

14.76

9.58

8.78

41.22

14.82

11.81

BIM

ǫ= 0.1

ǫ= 0.2

ǫ= 0.3

53.14

2.15

0.01

61.92

34.49

33.45

ǫ= 0.04

ǫ= 0.12

ǫ= 0.2

0.25

0.0

0.0

19.59

3.03

1.97

PGD

ǫ= 0.1

ǫ= 0.2

ǫ= 0.3

46.85

1.58

0.0

51.85

9.55

2.22

ǫ= 0.04

ǫ= 0.12

ǫ= 0.2

0.0

0.0

0.0

5.91

1.89

1.66

MIM

ǫ= 0.1

ǫ= 0.2

ǫ= 0.3

48.28

2.29

0.01

61.18

39.81

38.78

ǫ= 0.04

ǫ= 0.12

ǫ= 0.2

0.0

0.0

0.0

15.44

13.1

12.69

JSMA
γ= 0.25

γ= 0.5

1.53

0.1

26.24

17.26

γ= 0.07

γ= 0.14

1.09

0.14

18.72

10.94

C&W c = 0. 0.0 25.6 c = 0. 0.0 0.8

Table 3. Performance (%) on white-box adversarial attacks with

wide range of perturbations. The model for MNIST is Lenet-5

and CIFAR10 is Resnet-56. For FGSM, BIM, PGD and MIM, we

select three perturbations, ǫ = 0.04, 0.12 and 0.2 in our exper-

iment. In JSMA, we set the perturbation ǫ = 1. and maximum

iterations to be 100 and 200, which means the maximum pixels

that JSMA purturbs in each image. We show the max iteration

which is transformed to percentage of maximum pixels modi-

fied γ in our experiment. In C&W, we set confidence c = 0. and

maximum iterations is 1000.

Attacks
CIFAR100 Tiny ImageNet

Parameter XE GCE Parameter XE GCE

PGD

ǫ= 0.04

ǫ= 0.12

ǫ= 0.2

0.04

0.0

0.0

2.94

0.46

0.19

ǫ= 0.04

ǫ= 0.12

ǫ= 0.2

0.0

0.0

0.0

9.52

4.27

1.11

Table 4. Performance (%) on white-box adversarial attacks with

wide range of perturbations in CIFAR100. The model of CI-

FAR100 and Tiny ImageNet is Resnet-56.

and GCE with different perturbations in MNIST and CI-

FAR10. In Table 5, we show that the accuracy of various

adversarial attacks trained with GCE outperforms COT.

Attacks
MNIST CIFAR 10

Param. XE COT GCE Param. XE COT GCE

FGSM ǫ = 0.2 38.88 51.8 62.74 ǫ = 0.04 14.76 33.62 41.22

BIM ǫ = 0.2 2.15 4.35 34.49 ǫ = 0.04 0.25 7.49 19.59

MIM ǫ = 0.2 2.29 4.26 39.81 ǫ = 0.04 0.0 0.0 15.44

JSMA γ = 0.25 1.53 11.13 26.24 γ = 0.07 1.09 8.25 18.72

C&W c = 0 0.0 11.9 25.6 c = 0 0.0 0.0 0.8

Table 5. Performance (%) under various white-box adversarial

attacks between COT and GCE across MNIST and CIFAR10.

5.3. Robustness to adversarial training

The idea of adversarial training is to include adversar-

ial examples in the training phase, to create models that

are robust to other adversarial examples during the test

phase. Several frameworks of adversarial training have

been proposed. In this work, we choose to integrate our
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proposed GCE loss function in the Projected Gradient De-

scent (PGD) adversarial training, since the PGD attack is

considered an universal one, among all of the first-order

adversarial attacks [14]. We show that the resulting mod-

els from this integration are more robust than the ones

trained using the original PGD approach.

The PGD adversarial training uses a min-max objective

function to accomplish adversarial training:

min
θ

ρ(θ), where ρ(θ) = E
x,y∼D

[max
δ

L(θ, x +δ, y)]. (11)

, where D is the data distribution over pairs of training

sample x and label y. The loss function L(·) is the XE loss.

In Eq(11), the inner maximization problem is for crafting

training adversarial examples to induce maximum loss

values, while the outer minimization problem is for build-

ing a classification model, ρ(·), to minimize the adversar-

ial loss by the universal adversary. One typical approach

for optimizing this min-max objective is through an itera-

tive algorithm.

In the original work, the loss function for the inner

maximization and that for the outer minimization are the

same, which is the XE loss. In our work, we keep the loss

function for the inner maximization intact as the XE loss,

because it has been proved that the PGD framework gen-

erates the optimal adversarial examples, among all first-

order adversarial attacks, when using the XE loss. On the

other hand, for the outer minimization, that is, the train-

ing of the classification model, we replace the XE loss with

our proposed GCE loss. This way of integration is similar

to other previous work [19] that also keeps the XE as the

loss function of the inner maximization problem.

In our setup, we use GCE (α= 1/3) as the loss function

for the Empirical Risk Minimization (ERM) [22] instead of

original XE in Eq(11). Then, to compare the robustness

of the models generated using our setup, with the mod-

els trained using the original setup, we attack both these

models using the PGD white-box (with respect to the XE

loss) adversarial attack.

In our experiments, the minimization models we used

are the baseline models as described in the previous

sections, i.e., LeNet or Resnet, for their corresponding

datasets. Table 6 shows the comparison results on MNIST

and CIFAR10 datasets. More specifically, in our experi-

ments, we use the same settings of the iterative optimiza-

tion as used in the previous work [14], to conduct the ad-

versarial training and adversarial attacks: on MNIST, we

do 40 iterations of crafting adversarial examples during

training; at the testing phase, 100 iterations are used to

apply the PGD attack. On CIFAR10, 10 iterations of ad-

versarial training are used, and the adversarial attacks are

conducted with 40 iterations. We demonstrate better ro-

bustness while using GCE loss for the outer minimization.

Attacks
MNIST CIFAR10

perturbation XE GCE perturbation XE GCE

PGD ǫ= 0.3 83.67 83.85
ǫ= 0.04

ǫ= 0.08

41.50

12.93

41.57

13.16

Table 6. Performance (%) of Adversarial training under PGD ad-

versarial attacks on MNIST and CIFAR10.

Latent space of adversarial trained models. We also in-

spect the latent spaces of GCE’s models trained with PGD

adversarial training, and find that they have similar char-

acteristics of the latent spaces of the GCE’s models from

the natural training3 procedure. For example, in Fig 4, we

visualize the latent space of our model trained on the CI-

FAR10 dataset. It can be seen that, despite the presence

of many adversarial training examples, our model is still

able to disperse examples of different classes and create

visually better separated clusters.

Figure 4. Latent spaces of the adversarial-trained models on CI-

FAR10: (Left) latent space of XE’s model; (Right) latent space of

GCE’s model. The adversarial training is done using PGD with

ǫ= 0.02. Visualization is done using t-SNE.

6. Conclusion

In this paper, we present the Gudied Complement

Entropy (GCE), a novel training objective to answer the

motivational question: “how to improve the model robust-

ness, and at the same time, keep or improve the perfor-

mance when no attack is present?” GCE encourages mod-

els to learn latent representation that groups samples of

the same class into distinct clusters. Experimental results

show that, under the normal condition (no adversarial at-

tack is present), the state-of-the-art models trained with

GCE achieves better accuracy compared to cross-entropy

by up to relative 10.14% on CIFAR-10. When adversarial

attacks are present, experimental results show that mod-

els trained with GCE are more robust compared to XE.

Under PGD attacks, GCE outperforms the baseline with

improvement up to 5.91%. Our experimental results also

confirm that GCE can be combined with PGD adversarial

training to achieve an even stronger robustness.

3We use "natural training" to refer to the training process using only

the natural examples in the original dataset, in contrast to adversarial

training that takes adversarial examples during training.
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