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Abstract

Recognizing multiple labels of images is a practical and

challenging task, and significant progress has been made

by searching semantic-aware regions and modeling label

dependency. However, current methods cannot locate the

semantic regions accurately due to the lack of part-level su-

pervision or semantic guidance. Moreover, they cannot fully

explore the mutual interactions among the semantic regions

and do not explicitly model the label co-occurrence. To ad-

dress these issues, we propose a Semantic-Specific Graph

Representation Learning (SSGRL) framework that consist-

s of two crucial modules: 1) a semantic decoupling mod-

ule that incorporates category semantics to guide learning

semantic-specific representations and 2) a semantic inter-

action module that correlates these representations with a

graph built on the statistical label co-occurrence and ex-

plores their interactions via a graph propagation mechanis-

m. Extensive experiments on public benchmarks show that

our SSGRL framework outperforms current state-of-the-art

methods by a sizable margin, e.g. with an mAP improve-

ment of 2.5%, 2.6%, 6.7%, and 3.1% on the PASCAL VOC

2007 & 2012, Microsoft-COCO and Visual Genome bench-

marks, respectively. Our codes and models are available at

https://github.com/HCPLab-SYSU/SSGRL.

1. Introduction

Multi-label image classification is a fundamental yet

practical task in computer vision, as real-world images gen-

erally contain multiple diverse semantic objects. Recently,
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Semantic-Specific Graph Representation Learning 

Figure 1. Illustration of our Semantic-Specific Graph Representa-

tion Learning framework. It incorporates category semantics to

guide learning semantic-specific representation via a semantic de-

coupling module and explores their interactions via a semantic in-

teraction module.

it is receiving increasing attention [17, 28, 34], since it un-

derpins plenty of critical applications in content-based im-

age retrieval and recommendation systems [4, 31]. Besides

handling the challenges of complex variations in viewpoint,

scale, illumination and occlusion, predicting the presence of

multiple labels further requires mining semantic object re-

gions as well as modeling the associations and interactions

among these regions, rendering multi-label image classifi-

cation an unsolved and challenging task.

Current methods for multi-label image classification

usually employ object localization techniques [28, 30] or

resort to visual attention networks [34] to locate seman-

tic object regions. However, object localization techniques

[23, 35] have to search numerous category-agnostic and re-

dundant proposals and can hardly be integrated into deep

neural networks for end-to-end training, while visual atten-

tion networks can merely locate object regions roughly due

to the lack of supervision or guidance. Some other work-

s introduce RNN/LSTM [13, 24, 2] to further model con-

textual dependencies among semantic regions and capture

label dependencies. However, the RNN/LSTM sequential-

ly models regions/labels dependencies, which cannot fully
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exploit this property since direct association exists between

each region or label pair. Besides, they do not explicitly

model the statistical label co-occurrence, which is also key

to aid multi-label image classification.

To address these issues, we propose a novel Semantic-

Specific Graph Representation Learning (SSGRL) frame-

work that incorporates category semantics to guide learn-

ing semantic-specific features and explore their interac-

tions to facilitate multi-label image classification. More

specifically, we first design a semantic decoupling mod-

ule that utilizes the semantic features of the categories to

guide learning category-related image features that focus

more on the corresponding semantic regions (see Figure 1).

Then, we construct a graph based on the statistical label

co-occurrence to correlate these features and explore their

interactions via a graph propagation mechanism. Figure 1

illustrates a basic pipeline of the proposed SSGRL frame-

work.

The contributions can be summarized into three folds:

1) We formulate a novel Semantic-Specific Graph Repre-

sentation Learning framework that better learns semantic-

specific features and explores their interactions to aid multi-

label image recognition. 2) We introduce a novel semantic

decoupling module that incorporates category semantics to

guide learning semantic-specific features. 3) We conduc-

t experiments on various benchmarks including PASCAL

VOC 2007 & 2012 [7], Microsoft-COCO [19], and Visu-

al Genome with larger scale categories [16] and demon-

strate that our framework exhibits obvious performance im-

provement. Specifically, it improves the mAP from 92.5%

to 95.0% and 92.2% to 94.8% on the Pascal VOC 2007

and 2012 dataset respectively, from 77.1% to 83.8% on the

Microsoft-COCO dataset, from 33.5% to 36.6% on the Vi-

sual Genome 500 dataset compared with current state-of-

the-art methods. By simply pre-training on the Microsoft-

COCO dataset and fusing two scale results, our framework

can further boost the mAP to 95.4% on the Pascal VOC

2012 dataset.

2. Related Works

Recent progress on multi-label image classification re-

lies on the combination of object localization and deep

learning techniques [28, 30]. Generally, they introduced ob-

ject proposals [35] that were assumed to contain all possible

foreground objects in the image and aggregated features ex-

tracted from all these proposals to incorporate local infor-

mation. Although these methods achieved notable perfor-

mance improvement, the step of region candidate localiza-

tion usually incurred redundant computation cost and pre-

vented the model from end-to-end training with deep neural

networks. Zhang et al. [33] further utilized a learning based

region proposal network and integrated it with deep neural

networks. Although this method could be jointly optimized,

it required additional annotations of bounding boxes to train

the proposal generation component. To solve this issue,

some other works [34, 26, 34] resorted to attention mech-

anism to locate the informative regions, and these methods

could be trained with image level annotations in an end-

to-end manner. For example, Wang et al. [26] introduced

spatial transformer to adaptively search semantic-aware re-

gions and then aggregated features from these regions to

identify multiple labels. However, due to the lack of super-

vision and guidance, these methods could merely locate the

regions roughly.

Modeling label dependencies can help capture label co-

occurrence, which is also key to aid multi-label recognition.

To achieve this, a series of works introduced graphic model-

s, such as Conditional Random Field [8], Dependency Net-

work [10], or co-occurrence matrix [29] to capture pairwise

label correlations. Recently, Wang et al. [24] formulated a

CNN-RNN framework that utilized the semantic redundan-

cy and the co-occurrence dependency implicitly to facilitate

effective multi-label classification. Some works [33, 2] fur-

ther took advantage of proposal generation/visual attention

mechanism to search local discriminative regions and LST-

M [13] to explicitly model label dependencies. For exam-

ple, Chen et al. [2] proposed a recurrent attention reinforce-

ment learning framework to iteratively discover a sequence

of attentional and informative regions, and modeled long-

term dependencies among these attentional regions that help

to capture semantic label co-occurrence. However, the RN-

N/LSTM [13] modeled the label dependencies in a sequen-

tial manner, and they could not fully exploit the property

since mutual dependency might exist between each label

pair.

Different from all these methods, our framework in-

corporates category semantics to guide learning semantic-

aware feature vectors. In addition, we directly correlate all

label pairs in the form of a structured graph and introduce

a graph propagation mechanism to explore their mutual in-

teractions under the explicit guidance of statistical label co-

occurrence. Thus, our framework can better learn category-

related features and explore their interactions, leading to ev-

ident performance improvement.

3. SSGRL Framework

3.1. Overview

In this section, we first give an overall description of

the proposed SSGRL framework that consists of two cru-

cial modules, i.e, semantic decoupling and semantic inter-

action. Given an image, we first feed it into a fully convolu-

tional network to generate its feature maps. Then, for each

category, the semantic decoupling module incorporates the

category semantics to guide learning semantic-specific rep-

resentations that focus on the semantic regions of this cat-
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egory. Finally, the semantic interaction module correlates

these representations using a graph that is constructed based

on the statistical label co-occurrence, and it explores the se-

mantic interactions using a graph propagation network to

further learn contextualized features, which are then used

to predict the final label distribution. Figure 2 illustrates a

detailed pipeline of the SSGRL framework.

3.2. Semantic Decoupling

The semantic decoupling module aims to learn semantic-

specific feature representation by taking the category se-

mantics as guidance. Here, we adopt a semantic guided

attention mechanism to implement this module.

Given an input image I , the framework first extracts its

feature maps f I ∈ RW×H×N , where W , H , and N are

the width, height and channel number of the feature maps,

formulated as

f I = fcnn(I), (1)

where fcnn(·) is a feature extractor, and it is implemented

by a fully convolutional network. For each category c, the

framework extracts a ds-dimensional semantic-embedding

vector using the pre-trained GloVe [21] model

xc = fg(wc), (2)

where wc is the semantic word of category c. Then, we

introduce a semantic guided attention mechanism which in-

corporates the semantic vector xc to guide focusing more on

the semantic-aware regions and thus learning a feature vec-

tor corresponding to this category. More specifically, for

each location (w, h), we first fuse the corresponding im-

age feature f Iwh and xc using a low-rank bilinear pooling

method [14]

f̃ Ic,wh = PT
(
tanh

(
(UT f Iwh)⊙ (VTxc)

))
+ b, (3)

where tanh(·) is the hyperbolic tangent function, U ∈
RN×d1 , V ∈ Rds×d1 , P ∈ Rd1×d2 , b ∈ Rd2 are the

learnable parameters, and ⊙ is the element-wise multipli-

cation operation. d1 and d2 are the dimensions of the joint

embeddings and the output features. Then, an attentional

coefficient is computed under the guidance of xc by

ãc,wh = fa(f̃
I
c,wh). (4)

This coefficient indicates the importance of location (w, h).
fa(·) is an attentional function and it is implemented by a

fully connected network. The process is repeated for all lo-

cations. To make the coefficients easily comparable across

different samples, we normalize the coefficients over all lo-

cations using a softmax function

ac,wh =
exp(ãc,wh)∑

w′,h′ exp(ãc,w′h′)
. (5)

Finally, we perform weighted average pooling over all loca-

tions to obtain a feature vector

fc =
∑

w,h

ac,whfc,wh (6)

that encodes the information related to category c. We

repeat the process for all categories and obtain all the

category-related feature vectors {f0, f1, . . . , fC−1}.

3.3. Semantic Interaction

Once obtaining the feature vectors corresponding to al-

l categories, we correlate these vectors in the form of a

graph that is constructed based on the statistical label co-

occurrence and introduce a graph neural network to propa-

gate message through the graph to explore their interactions.

Graph construction. We first introduce the graph G =
{V,A}, in which nodes refer to the categories and edges

refer to the co-occurrence between corresponding cate-

gories. Specifically, suppose that the dataset covers C cat-

egories, V can be represented as {v0, v2, . . . , vC−1} with

element vc denoting category c and A can be represented

as {a00, a01, . . . , a0(C−1), . . . , a(C−1)(C−1)} with element

acc′ denoting the probability of the existence of object be-

longing to category c′ in the presence of object belonging to

category c. We compute the probabilities between all cat-

egory pairs using the label annotations of samples on the

training set, thus we do not introduce any additional anno-

tation.

Inspired by the current graph propagation works [18,

1, 27, 3], we adopt a gated recurrent update mechanism

to propagate message through the graph and learn contex-

tualized node-level features. Specifically, for each node

vc ∈ V, it has a hidden state ht
c at timestep t. In this work,

as each node corresponds to a specific category and our

model aims to explore the interactions among the semantic-

specific features, we initialize the hidden state at t = 0 with

the feature vector that relates to the corresponding category,

formulated as

h0
c = fc. (7)

At timestep t, the framework aggregates message from its

neighbor nodes, expressed as

atc =

[
∑

c′

(acc′)h
t−1
c ,

∑

c′

(ac′c)h
t−1
c

]
. (8)

In this way, the framework encourages message propaga-

tion if node c′ has a high correlation with node c, and it sup-

presses propagation otherwise. Therefore, it can propagate

message through the graph and explore node interactions

under the guidance of the prior knowledge of statistical la-

bel co-occurrence. Then, the framework updates the hidden
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Figure 2. Illustration of our Semantic-Specific Graph Representation Learning framework. Given an input image, we first feed it into

a CNN to extract image representation. Then, a semantic decoupling (SD) module incorporates category semantics to guide learning

semantic-specific representations, and a semantic interaction module correlates these representations using a graph and adopts a graph

neural network (GNN) to explore their interactions.

state based on the aggregated feature vector atc and its hid-

den state at previous timestep ht−1
c via a gated mechanism

similar to the Gated Recurrent Unit, formulated as

ztc =σ(Wzatc +Uzht−1
c )

rtc =σ(Wratc +Urht−1
c )

h̃t
c =tanh

(
Watc +U(rtc ⊙ ht−1

c )
)

ht
c =(1− ztc)⊙ ht−1

c + ztc ⊙ h̃t
c

(9)

where σ(·) is the logistic sigmoid function, tanh(·) is the

hyperbolic tangent function, and ⊙ is the element-wise mul-

tiplication operation. In this way, each node can aggregate

message from other nodes and simultaneously transfer its

information through the graph, enabling interactions among

all feature vectors corresponding to all categories. The pro-

cess is repeated T times, and the final hidden states are gen-

erated, i.e., {hT
0 ,h

T
1 , . . . ,h

T
C−1}. Here, the hidden state of

each node hT
c not only encodes features of category c, but

also carries contextualized message from other categories.

Finally, we concatenate hT
c and the input feature vector h0

c

to predict the confidence score of the presence of category

c, formulated as

oc =fo(h
T
c ,h

0
c)

sc =fc(oc)
(10)

where fo(·) is an output function that maps the con-

catenation of hT
c and h0

c into an output vector oc. We

adopt C classification functions with unshared parameters

{f0, f1, . . . , fC−1}, in which fc(·) takes oc as input to pre-

dict a score to indicate the probability of category c. We

perform the process for all categories and obtain a score

vector s = {s0, s1, . . . , sC−1}.

3.4. Network Architecture

Following existing multi-label image classification

works [34], we implement the feature extractor fcnn(·)
based on the widely used ResNet-101 [11]. Specifically, we

replace the last average pooling layer with another average

pooling layer with a size of 2×2 and a stride of 2, with other

layers unchanged for implementation. For the low rank bi-

linear pooling operation, N , ds, d1, and d2 are set as 2,048,

300, 1,024, and 1,024, respectively. Thus, fa(·) is imple-

mented by a 1,024-to-1 fully connected layer that maps the

1,024 feature vector to one single attentional coefficient.

For the graph neural network, we set the dimension of

the hidden state as 2,048 and the iteration number T as

3. The dimension of output vector oc is also set as 2,048.

Thus, the output network o(·) can be implemented by a

4,096-to-2,048 fully connected layer followed by the hy-

perbolic tangent function, and each classification network

fc(·) can be implemented by a 2,048-to-1 fully connected

layer.

3.5. Optimization

Given a dataset that contains M training samples

{Ii, yi}
M−1
i=0 , in which Ii is the i-th image and yi =

{yi0, yi1, . . . , yi(C−1)} is the corresponding annotation. yic
is assigned as 1 if the sample is annotated with catego-

ry c and 0 otherwise. Given an image Ii, we can ob-

tain a predicted score vector si = {si0, si1, . . . , si(C−1)}
and compute the corresponding probability vector pi =
{pi0, pi1, . . . , pi(C−1)} via a sigmoid function

pic = σ(sic). (11)

We adopt the cross entropy as the objective loss function

L =

N−1∑

i=0

C−1∑

c=0

(yic log pic + (1− yic) log(1− pic)) . (12)
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Top 3 All

Methods mAP CP CR CF1 OP OR OF1 CP CR CF1 OP OR OF1

WARP [9] - 59.3 52.5 55.7 59.8 61.4 60.7 - - - - - -

CNN-RNN [24] - 66.0 55.6 60.4 69.2 66.4 67.8 - - - - - -

RLSD [33] - 67.6 57.2 62.0 70.1 63.4 66.5 - - - - - -

RARL [2] - 78.8 57.2 66.2 84.0 61.6 71.1

RDAR [26] 73.4 79.1 58.7 67.4 84.0 63.0 72.0 - - - - - -

KD-WSD [20] 74.6 - - 66.8 - - 72.7 - - 69.2 - - 74.0

ResNet-SRN-att [34] 76.1 85.8 57.5 66.3 88.1 61.1 72.1 81.2 63.3 70.0 84.1 67.7 75.0

ResNet-SRN [34] 77.1 85.2 58.8 67.4 87.4 62.5 72.9 81.6 65.4 71.2 82.7 69.9 75.8

Ours 83.8 91.9 62.5 72.7 93.8 64.1 76.2 89.9 68.5 76.8 91.3 70.8 79.7
Table 1. Comparison of mAP, CP, CR, CF1 and OP, OR, OF1 (in %) of our framework and state-of-the-art methods under the settings of

all and top-3 labels on the Microsoft COCO dataset. “-” denotes the corresponding result is not provided.

The proposed framework is trained with the loss L in

an end-to-end fashion. Specifically, we first utilize the

ResNet-101 parameters pre-trained on the ImageNet dataset

[5] to initialize the parameters of the corresponding layer-

s in fcnn and initialize the parameters of other layers ran-

domly. As the lower layers’ parameters pre-trained on the

ImageNet dataset generalize well across different dataset-

s, we fix the parameters of the previous 92 convolutional

layers in fcnn(·) and jointly optimize all the other layer-

s. The framework is trained with ADAM algorithm [15]

with a batch size of 4, momentums of 0.999 and 0.9. The

learning rate is initialized as 10−5 and it is divided by 10

when the error plateaus. During training, the input image

is resized to 640 × 640, and we randomly choose a num-

ber from {640, 576, 512, 384, 320} as the width and height

to randomly crop patches. Finally, the cropped patches are

further resized to 576× 576. During testing, we simply re-

size the input image to 640 × 640 and perform center crop

with a size of 576× 576 for evaluation.

4. Experiments

4.1. Evaluation Metrics

To fairly compare with existing methods, we follow them
to adopt the average precision (AP) on each category and
mean average precision (mAP) over all categories for eval-
uation [28, 30]. We also follow previous works [34, 17]
to present the precision, recall, and F1-measure for further
comparison. Here, we assign the labels with top-3 highest
scores for each image and compare them with the ground
truth labels. Concretely, we adopt the overall precision, re-
call, F1-measure (OP, OR, OF1) and per-class precision, re-
call, F1-measure (CP, CR, CF1), which are defined as be-
low

OP =

∑
i
Nc

i∑
i
N

p

i

,

OR =

∑
i
Nc

i∑
i
N

g

i

,

OF1 =
2×OP×OR

OP+OR
,

CP =
1

C

∑

i

Nc
i

N
p

i

CR =
1

C

∑

i

Nc
i

N
g

i

CF1 =
2× CP× CR

CP + CR

(13)

where C is the number of labels, N c
i is the number of im-

ages that are correctly predicted for the i-th label, N
p
i is

the number of predicted images for the i-th label, N
g
i is the

number of ground truth images for the i-th label. The above

metrics require a fixed number of labels, but the label num-

bers of different images are generally various. Thus, we

further present the OP, OR, OF1 and CP, CR, CF1 metrics

under the setting that a label is predicted as positive if its

estimated probability is greater than 0.5 [34]. Among these

metrics, mAP, OF1, and CF1 are the most important metrics

that can provide a more comprehensive evaluation.

4.2. Comparison with Stateoftheart

To prove the effectiveness of the proposed framework,

we conduct extensive experiments on various widely used

benchmarks, i.e., Microsoft COCO [19], Pascal VOC 2007

& 2012 [7], and Visual Genome [16].

4.2.1 Comparison on Microsoft COCO

Microsoft COCO [19] is originally constructed for object

detection and segmentation, and it has been adopted to eval-

uate multi-label image classification recently. The dataset

contains 122,218 images and covers 80 common categories,

which is further divided into a training set of 82,081 images

and a validation set of 40,137 images. Since the ground

truth annotations of test set are unavailable, our method and

all existing competitors are trained on the training set and e-

valuated on the validation set. For the OP, OR, OF1 and CP,

CR, CF1 metrics with top-3 constraint, we follow existing

methods [24] to exclude the labels with probabilities lower

than a threshold (0.5 in our experiments).

The comparison results are presented in Table 1. As

shown, existing best-performing methods are RDAR and

ResNet-SRN, in which RDAR adopts a spatial transformer

to locate semantic-aware regions and an LSTM network to

implicitly capture label dependencies, while ResNet-SRN

builds on ResNet-101 and applies attention mechanism to

model label relation. The mAP, CF1, and OF1 are 73.4%,

67.4%, 72.0% by RDAR and 77.1%, 67.4%, 72.9% by
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Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

CNN-RNN [24] 96.7 83.1 94.2 92.8 61.2 82.1 89.1 94.2 64.2 83.6 70.0 92.4 91.7 84.2 93.7 59.8 93.2 75.3 99.7 78.6 84.0

RMIC [12] 97.1 91.3 94.2 57.1 86.7 90.7 93.1 63.3 83.3 76.4 92.8 94.4 91.6 95.1 92.3 59.7 86.0 69.5 96.4 79.0 84.5

VGG16+SVM [22] - - - - - - - - - - - - - - - - - - - - - 89.3

VGG19+SVM [22] - - - - - - - - - - - - - - - - - - - - - 89.3

RLSD [32] 96.4 92.7 93.8 94.1 71.2 92.5 94.2 95.7 74.3 90.0 74.2 95.4 96.2 92.1 97.9 66.9 93.5 73.7 97.5 87.6 88.5

HCP [28] 98.6 97.1 98.0 95.6 75.3 94.7 95.8 97.3 73.1 90.2 80.0 97.3 96.1 94.9 96.3 78.3 94.7 76.2 97.9 91.5 90.9

FeV+LV [30] 97.9 97.0 96.6 94.6 73.6 93.9 96.5 95.5 73.7 90.3 82.8 95.4 97.7 95.9 98.6 77.6 88.7 78.0 98.3 89.0 90.6

RDAR [26] 98.6 97.4 96.3 96.2 75.2 92.4 96.5 97.1 76.5 92.0 87.7 96.8 97.5 93.8 98.5 81.6 93.7 82.8 98.6 89.3 91.9

RARL [2] 98.6 97.1 97.1 95.5 75.6 92.8 96.8 97.3 78.3 92.2 87.6 96.9 96.5 93.6 98.5 81.6 93.1 83.2 98.5 89.3 92.0

RCP [25] 99.3 97.6 98.0 96.4 79.3 93.8 96.6 97.1 78.0 88.7 87.1 97.1 96.3 95.4 99.1 82.1 93.6 82.2 98.4 92.8 92.5

Ours 99.5 97.1 97.6 97.8 82.6 94.8 96.7 98.1 78.0 97.0 85.6 97.8 98.3 96.4 98.8 84.9 96.5 79.8 98.4 92.8 93.4

Ours (pre) 99.7 98.4 98.0 97.6 85.7 96.2 98.2 98.8 82.0 98.1 89.7 98.8 98.7 97.0 99.0 86.9 98.1 85.8 99.0 93.7 95.0

VGG16&19+SVM [22] 98.9 95.0 96.8 95.4 69.7 90.4 93.5 96.0 74.2 86.6 87.8 96.0 96.3 93.1 97.2 70.0 92.1 80.3 98.1 87.0 89.7

FeV+LV (fusion) [30] 98.2 96.9 97.1 95.8 74.3 94.2 96.7 96.7 76.7 90.5 88.0 96.9 97.7 95.9 98.6 78.5 93.6 82.4 98.4 90.4 92.0

Table 2. Comparison of AP and mAP in % of our framework and state-of-the-art methods on the PASCAL VOC 2007 dataset. Upper

part presents the results of single model and lower part presents those that aggregate multiple models. “Ours” and “Ours (pre)” denote

our framework without and with pre-training on the COCO dataset. The best and second best results are highlighted in red and blue,

respectively. “-” denotes the corresponding result is not provided. Best viewed in color.

Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

RMIC [12] 98.0 85.5 92.6 88.7 64.0 86.8 82.0 94.9 72.7 83.1 73.4 95.2 91.7 90.8 95.5 58.3 87.6 70.6 93.8 83.0 84.4

VGG16+SVM [22] 99.0 88.8 95.9 93.8 73.1 92.1 85.1 97.8 79.5 91.1 83.3 97.2 96.3 94.5 96.9 63.1 93.4 75.0 97.1 87.1 89.0

VGG19+SVM [22] 99.1 88.7 95.7 93.9 73.1 92.1 84.8 97.7 79.1 90.7 83.2 97.3 96.2 94.3 96.9 63.4 93.2 74.6 97.3 87.9 89.0

HCP [28] 99.1 92.8 97.4 94.4 79.9 93.6 89.8 98.2 78.2 94.9 79.8 97.8 97.0 93.8 96.4 74.3 94.7 71.9 96.7 88.6 90.5

FeV+LV [30] 98.4 92.8 93.4 90.7 74.9 93.2 90.2 96.1 78.2 89.8 80.6 95.7 96.1 95.3 97.5 73.1 91.2 75.4 97.0 88.2 89.4

RCP [25] 99.3 92.2 97.5 94.9 82.3 94.1 92.4 98.5 83.8 93.5 83.1 98.1 97.3 96.0 98.8 77.7 95.1 79.4 97.7 92.4 92.2

Ours 99.5 95.1 97.4 96.4 85.8 94.5 93.7 98.9 86.7 96.3 84.6 98.9 98.6 96.2 98.7 82.2 98.2 84.2 98.1 93.5 93.9

Ours (pre) 99.7 96.1 97.7 96.5 86.9 95.8 95.0 98.9 88.3 97.6 87.4 99.1 99.2 97.3 99.0 84.8 98.3 85.8 99.2 94.1 94.8

VGG16&19+SVM [22] 99.1 89.1 96.0 94.1 74.1 92.2 85.3 97.9 79.9 92.0 83.7 97.5 96.5 94.7 97.1 63.7 93.6 75.2 97.4 87.8 89.3

FeV+LV (fusion) [30] 98.9 93.1 96.0 94.1 76.4 93.5 90.8 97.9 80.2 92.1 82.4 97.2 96.8 95.7 98.1 73.9 93.6 76.8 97.5 89.0 90.7

HCP+AGS [28, 6] 99.8 94.8 97.7 95.4 81.3 96.0 94.5 98.9 88.5 94.1 86.0 98.1 98.3 97.3 97.3 76.1 93.9 84.2 98.2 92.7 93.2

RCP+AGS [25, 6] 99.8 94.5 98.1 96.1 85.5 96.1 95.5 99.0 90.2 95.0 87.8 98.7 98.4 97.5 99.0 80.1 95.9 86.5 98.8 94.6 94.3

Ours (pre & fusion) 99.9 96.6 98.4 97.0 88.6 96.4 95.9 99.2 89.0 97.9 88.6 99.4 99.3 97.9 99.2 85.8 98.6 86.7 99.4 95.1 95.4

Table 3. Comparison of AP and mAP in % of our model and state-of-the-art methods on the PASCAL VOC 2012 dataset. Upper part

presents the results of single model and lower part presents those that aggregate multiple models. “Ours” and “Ours (pre)” denote our

framework without and with pre-training on the COCO dataset. “Ours (pre & fusion)” denotes fusing our two scale results. The best and

second best results are highlighted in red and blue, respectively. Best viewed in color.

ResNet-SRN. Different from these methods, our framework

incorporates category semantics to better learn semantic-

specific feature representations and explores their interac-

tions under the explicit guidance of statistical label co-

occurrence, leading to a notable performance improvement

on all metrics. Specifically, it achieves the mAP, CF1, and

OF1 of 83.8%, 72.7%, and 76.2%, improving those of the

previous best methods by 6.7%, 5.3%, and 3.3%, respec-

tively.

4.2.2 Comparison on Pascal VOC 2007 and 2012

Pascal VOC 2007 & 2012 [7] are the most widely used

datasets to evaluate the multi-label image classification task,

and most of the existing works report their results on these

datasets. Therefore, we conduct experiments on these

datasets for more comprehensive comparison. Both datasets

cover 20 common categories. Thereinto, Pascal VOC 2007

contains a trainval set of 5,011 images and a test set of 4,952

images, while VOC 2012 consists of 11,540 images as train-

val set and 10,991 as test set. For fair comparisons, the pro-

posed framework and existing competitors are all trained on

the trainval set and evaluated on the test set.

We first present the AP of each category and mAP over

all categories on the Pascal VOC 2007 dataset in Table 2.

Most of existing state-of-the-art methods focus on locating

informative regions (e.g., proposal candidates [30, 28, 33],

attentive regions [26], random regions [25]) to aggregate lo-

cal discriminative features to facilitate recognizing multiple

labels of the given image. For example, RCP achieves a

mAP of 92.5%, which is the best result to date. Different-

ly, our framework incorporates category semantics to bet-

ter learn semantic-specific features and explores their inter-

actions under the explicit guidance of statistical label de-

pendencies, further improving the mAP to 93.4%. In addi-

tion, by pre-training the framework on the COCO dataset,

our framework can obtain an even better performance, i.e.,

95.0% as shown in Table 2. Note that existing methods ag-

gregate multiple models [22] or fuse the result with other

methods [30] to improve the overall performance. For ex-

ample, FeV+LV (fusion) aggregates its results with those

of VGG16&19+SVM, improving the mAP from 90.6% to

92.0%. Although our results are generated by a single mod-

el, it still outperforms all these aggregated results.
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Figure 3. The AP (in %) of each category of our proposed framework and the ResNet-101 baseline.

We also compare performance on the Pascal VOC 2012

dataset, as depicted in Table 3. Although VOC 2012 is

more challenging and larger in size, our framework stil-

l achieves the best performance compared with state-of-

the-art competitors. Specifically, it obtains the mAP of

93.9% and 94.8% without and with pre-training on the CO-

CO dataset, improving over the previous best method by

1.7% and 2.6%, respectively. Similarly, existing methods

also aggregate results of multiple models to boost the per-

formance. To ensure fair comparison, we train another mod-

el with an input of 448× 448. Specifically, during training,

we resize the input image to 512 × 512, and we randomly

choose a number from 512, 448, 384, 320, 256 as the width

and height to randomly crop patches, and further resize the

cropped patches to 448×448. We denote the previous mod-

el as scale-640 and this model as scale-512. The two models

are all pre-trained on the COCO dataset and retrained on the

VOC 2012 dataset. Then, We perform ten crop evaluation

(the four corner crops and the center crop as well as their

horizontally flipped versions) for each scale and aggregate

results from the two scales. As shown in the lower part of

Table 3, our framework boosts the mAP to 95.4%, suppress-

ing all existing methods with single and multiple models.

4.2.3 Comparison on Visual Genome 500

Visual Genome [16] is a dataset that contains 108,249 im-

ages and covers 80,138 categories. Since most categories

have very few samples, we merely consider the 500 most

frequent categories, resulting in a VG-500 subset. We ran-

domly select 10,000 images as the test set and the rest

98,249 images as the training set. Compared with exist-

ing benchmarks, it covers much more categories, i.e., 500

v.s. 20 on Pascal VOC [7] and 80 categories on Microsoft-

COCO [19]. To demonstrate the effectiveness of our pro-

Methods mAP

ResNet-101 [11] 30.9

ResNet-SRN [34] 33.5

Ours 36.6

Table 4. Comparison of mAP (in %) on the VG-500 dataset.

posed framework on this dataset, we implement a ResNet-

101 baseline network and train it using the same process as

ours. As ResNet-SNR [34] is the best-performing method

on Microsoft-COCO dataset, we further follow its released

code to train ResNet-SNR on this dataset for comparison.

All the methods are trained on the training set and evaluat-

ed on the test set.

The comparison results are presented in Table 4. Our

framework also performs much better than existing state-

of-the-art and ResNet-101 baseline methods. Specifically, it

achieves the mAP of 36.6%, improving that of the existing

best method by 3.1%. This comparison clearly suggests that

our framework can also work better on recognizing large-

scale categories.

4.3. Ablative study

The proposed framework builds on the ResNet-101 [11],

thus we compare with this baseline to analyze the contri-

butions of semantic-specific graph representation learning

(SSGRL). Specifically, we simply replace the last fully con-

nected layer of the ResNet-101 with a 2,048-to-C fully con-

nected layer and use C sigmoid functions to predict the

probability of each category. The training and test settings

are exactly the same as those described in Section 3.5. We

conduct experiments on the Microsoft-COCO dataset and

present the results in Table 5. As can be observed, the mAP

drops from 83.8% to 80.3%. To deeply analyze their per-

formance comparisons, we further present the AP of each
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Methods mAP

ResNet-101 [11] 80.3

Ours w/o SD 80.9

Ours w/o SD-concat 79.6

Ours w/o SI 82.2

Ours 83.8

Table 5. Comparison of mAP (in %) of our framework (Ours), our

framework without SD module (Ours w/o SD and Ours w/o SD-

concat) and our framework without SI module (Ours w/o SI) on

the Microsoft-COCO dataset.

category in Figure 3. It shows that the AP improvement

is more evident for the categories that are more difficult to

recognize (i.e., the categories that the baseline obtains lower

AP). For example, for the categories like giraffe and zebra,

the baseline obtains very high AP, and our framework just

achieves slight improvement. In contrast, for more diffi-

cult categories such as toaster and hair drier, our framework

improves the AP by a sizeable margin, 24.7% and 32.5%

improvement for toaster and hair drier, respectively.

The foregoing comparisons verify the contribution of the

proposed SSGRL as a whole. Actually, the SSGRL contains

two critical modules that work cooperatively, i.e., semantic

decoupling (SD) and semantic interaction (SI). In the fol-

lowing, we further conduct ablative experiments to analyze

the actual contribution of each module.

4.3.1 Contribution of semantic decoupling

We evaluate the contribution of SD module by comparing

the performance with and without this module. To this end,

we perform average pooling on f I to get image feature vec-

tor f , and use the following two settings to initialize the

graph nodes: 1) directly use f (namely Ours w/o SD); 2)

concatenate f and corresponding semantic vector (i.e., xc

for the node corresponding to category c), which is mapped

to a 2,048 feature vector for initialization (namely Ours w/o

SD-concat). As shown in Table 5, “Ours w/o SD” performs

slightly better than the baseline method, since it does not

incur any additional information but increases the model

complexity. “Ours w/o SD-concat” performs slightly worse

than the baseline and “Ours w/o SD”. This suggests directly

concatenating the semantic vector provide no additional or

even interferential information.

As discussed above, our framework can learn semantic-

specific feature maps that focus on corresponding semantic

regions via the semantic decoupling. Here, we further visu-

alize some examples in Figure 4. In each row, we present

the input image, the semantic maps corresponding to cate-

gories with the top 3 highest confidences, and the predicted

label distribution. It shows that our semantic decoupling

module can well highlight the semantic regions if the ob-

jects of the corresponding categories exist. For example, the
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Figure 4. Several examples of input images (left), semantic feature

maps corresponding to categories with top 3 highest confidences

(middle), and predicted label distribution (right). The ground truth

labels are highlighted in red.

second example has objects of skis, snowboard, and person,

our semantic decoupling module highlights the correspond-

ing regions of two skis, snowboard and person leg. Similar

phenomena are observed for other examples.

4.3.2 Contribution of semantic interaction

To validate the contribution of SI module, we remove the

graph propagation network, and thus the classifier fc(·) di-

rectly takes the corresponding decoupled feature vector fc
as input to predict the probability of category c (namely

Ours w/o SI). As shown in Table 5, we find that its mAP

is 82.2%, decreasing the mAP by 1.6%.

5. Conclusion

In this work, we propose a novel Semantic-Specific

Graph Representation Learning framework, in which a se-

mantic guided attentional mechanism is designed to learn

semantic-related feature vectors and a graph propagation

network is introduced to simultaneously explore interac-

tions among these feature vectors under the guidance of sta-

tistical label co-occurrence. Extensive experiments on var-

ious benchmarks including Microsoft-COCO, Pascal VOC

2007 & 2012, and Visual Genome demonstrate the effec-

tiveness of the proposed framework over all existing leading

methods.
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