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Figure 1: Point-MVSNet performs multi-view stereo reconstruction in a coarse-to-fine fashion, learning to predict the 3D flow of each point

to the groundtruth surface based on geometry priors and 2D image appearance cues dynamically fetched from multi-view images and regress

accurate and dense point clouds iteratively.

Abstract

We introduce Point-MVSNet, a novel point-based deep

framework for multi-view stereo (MVS). Distinct from

existing cost volume approaches, our method directly

processes the target scene as point clouds. More specifically,

our method predicts the depth in a coarse-to-fine manner.

We first generate a coarse depth map, convert it into a point

cloud and refine the point cloud iteratively by estimating

the residual between the depth of the current iteration

and that of the ground truth. Our network leverages 3D

geometry priors and 2D texture information jointly and

effectively by fusing them into a feature-augmented point

cloud, and processes the point cloud to estimate the 3D flow

for each point. This point-based architecture allows higher

accuracy, more computational efficiency and more flexibility

than cost-volume-based counterparts. Experimental results

show that our approach achieves a significant improvement

in reconstruction quality compared with state-of-the-art

methods on the DTU and the Tanks and Temples dataset.

Our source code and trained models are available at

https://github.com/callmeray/PointMVSNet.

* Equal contribution.

1. Introduction

Recent learning-based multi-view stereo (MVS)

methods [12, 29, 10] have shown great success compared

with their traditional counterparts as learning-based

approaches are able to learn to take advantage of scene

global semantic information, including object materials,

specularity, and environmental illumination, to get more

robust matching and more complete reconstruction. All

these approaches apply dense multi-scale 3D CNNs to

predict the depth map or voxel occupancy. However, 3D

CNNs require memory cubic to the model resolution,

which can be potentially prohibitive to achieving optimal

performance. While Maxim et al. [24] addressed this

problem by progressively generating an Octree structure,

the quantization artifacts brought by grid partitioning

still remain, and errors may accumulate since the tree is

generated layer by layer.

In this work, we propose a novel point cloud multi-view

stereo network, where the target scene is directly processed

as a point cloud, a more efficient representation, particularly

when the 3D resolution is high. Our framework is composed

of two steps: first, in order to carve out the approximate

object surface from the whole scene, an initial coarse depth

map is generated by a relatively small 3D cost volume and

1538



then converted to a point cloud. Subsequently, our novel

PointFlow module is applied to iteratively regress accurate

and dense point clouds from the initial point cloud. Similar to

ResNet [8], we explicitly formulate the PointFlow to predict

the residual between the depth of the current iteration and

that of the ground truth. The 3D flow is estimated based on

geometry priors inferred from the predicted point cloud and

the 2D image appearance cues dynamically fetched from

multi-view input images (Figure 1).

We find that our Point-based Multi-view Stereo Network

(Point-MVSNet) framework enjoys advantages in accuracy,

efficiency, and flexibility when it is compared with previous

MVS methods that are built upon a predefined 3D volume

with the fixed resolution to aggregate information from

views. Our method adaptively samples potential surface

points in the 3D space. It keeps the continuity of the surface

structure naturally, which is necessary for high precision

reconstruction. Furthermore, because our network only

processes valid information near the object surface instead

of the whole 3D space as is the case in 3D CNNs, the

computation is much more efficient. Lastly, the adaptive

refinement scheme allows us to first peek at the scene at

coarse resolution and then densify the reconstructed point

cloud only in the region of interest. For scenarios such as

interaction-oriented robot vision, this flexibility would result

in saving of computational power.

Our method achieves state-of-the-art performance on

standard multi-view stereo benchmarks among learning-

based methods, including DTU [1] and Tanks and

Temples [15]. Compared with previous state-of-the-art, our

method produces better results in terms of both completeness

and overall quality. Besides, we show potential applications

of our proposed method, such as foveated depth inference.

2. Related work

Multi-view Stereo Reconstruction MVS is a classical

problem that had been extensively studied before the rise of

deep learning. A number of 3D representations are adopted,

including volumes [26, 9], deformation models [3, 31], and

patches [5], which are iteratively updated through multi-view

photometric consistency and regularization optimization.

Our iterative refinement procedure shares a similar idea

with these classical solutions by updating the depth map

iteratively. However, our learning-based algorithm achieves

improved robustness to input image corruption and avoids

the tedious manual hyper-parameters tuning.

Learning-based MVS Inspired by the recent success of

deep learning in image recognition tasks, researchers began

to apply learning techniques to stereo reconstruction tasks

for better patch representation and matching [7, 22, 16].

Although these methods in which only 2D networks are

used have made a great improvement on stereo tasks, it is

difficult to extend them to multi-view stereo tasks, and their

performance is limited in challenging scenes due to the lack

of contextual geometry knowledge. Concurrently, 3D cost

volume regularization approaches have been proposed [14,

12, 13], where a 3D cost volume is built either in the camera

frustum or the scene. Next, the 2D image features of multi-

views are warped in the cost volume, so that 3D CNNs can

be applied to it. The key advantage of 3D cost volume is

that the 3D geometry of the scene can be captured by the

network explicitly, and the photometric matching can be

performed in 3D space, alleviating the influence of image

distortion caused by perspective transformation and potential

occlusions, which makes these methods achieve better results

than 2D learning based methods. Instead of using voxel

grids, in this paper we propose to use a point-based network

for MVS tasks to take advantage of 3D geometry learning

without being buredened by the inefficiency found in 3D

CNN computation.

High-Resolution MVS High-resolution MVS is critical to

real applications such as robot manipulation and augmented

reality. Traditional methods [17, 5, 18] generate dense 3D

patches by expanding from confident matching key-points

repeatedly, which is potentially time-consuming. These

methods are also sensitive to noise and change of viewpoint

owing to the usage of hand-crafted features. Recent learning

methods try to ease memory consumption by advanced space

partitioning [21, 27, 24]. However, most of these methods

construct a fixed cost volume representation for the whole

scene, lacking flexibility. In our work, we use point clouds

as the representation of the scene, which is more flexible and

enables us to approach the accurate position progressively.

Point-based 3D Learning Recently, a new type of deep

network architecture has been proposed in [19, 20], which

is able to process point clouds directly without converting

them to volumetric grids. Compared with voxel-based

methods, this kind of architecture concentrates on the

point cloud data and saves unnecessary computation. Also,

the continuity of space is preserved during the process.

While PointNets have shown significant performance and

efficiency improvement in various 3D understanding tasks,

such as object classification and detection [20], it is under

exploration how this architecture can be used for MVS task,

where the 3D scene is unknown to the network. In this paper,

we propose PointFlow module, which estimates the 3D flow

based on joint 2D-3D features of point hypotheses.

3. Method

This section describes the detailed network architecture

of Point-MVSNet (Figure 2). Our method can be divided

into two steps, coarse depth prediction, and iterative depth
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Figure 2: Overview of Point-MVSNet architecture. A coarse depth map is first predicted with low GPU memory and computation cost and

then unprojected to a point cloud along with hypothesized points. For each point, the feature is fetched from the multi-view image feature

pyramid dynamically. The PointFlow module uses the feature augmented point cloud for depth residual prediction, and the depth map is

refined iteratively.

refinement. Let I0 denote the reference image and {Ii}
N

i=1

denote a set of its neighbouring source images. We first

generate a coarse depth map for I0 (Section 3.1). Since the

resolution is low, the existing volumetric MVS method has

sufficient efficiency and can be used. Second we introduce

the 2D-3D feature lifting (Section 3.2), which associates

the 2D image information with 3D geometry priors. Then

we propose our novel PointFlow module (Section 3.3) to

iteratively refine the input depth map to higher resolution

with improved accuracy.

3.1. Coarse depth prediction

Recently, learning-based MVS [12, 29, 11] achieves state-

of-the-art performance using multi-scale 3D CNNs on cost

volume regularization. However, this step could be extremely

memory expensive as the memory requirement is increasing

cubically as the cost volume resolution grows. Taking

memory and time into consideration, we use the recently

proposed MVSNet [29] to predict a relatively low-resolution

cost volume.

Given the images and corresponding camera parameters,

MVSNet [29] builds a 3D cost volume upon the reference

camera frustum. Then the initial depth map for reference

view is regressed through multi-scale 3D CNNs and the

soft argmin [15] operation. In MVSNet, feature maps are

downsampled to 1/4 of the original input image in each

dimension and the number of virtual depth planes are 256 for

both training and evaluation. On the other hand, in our coarse

depth estimation network, the cost volume is constructed

with feature maps of 1/8 the size of the reference image,

containing 48 or 96 virtual depth planes for training and

evaluation, respectively. Therefore, our memory usage of

this 3D feature volume is about 1/20 of that in MVSNet.

3.2. 2D-3D feature lifting

Image Feature Pyramid Learning-based image features

are demonstrated to be critical to boosting up dense pixel

correspondence quality [29, 23]. In order to endow points

with a larger receptive field of contextual information at

multiple scales, we construct a 3-scale feature pyramid.

2D convolutional networks with stride 2 are applied to

downsample the feature map, and each last layer before

the downsampling is extracted to construct the final feature

pyramid Fi = [F1
i ,F

2
i ,F

3
i ] for image Ii. Similar to common

MVS methods[29, 11], feature pyramids are shared among

all input images.

Dynamic Feature Fetching The point feature used in our

network is compromised of the fetched multi-view image

feature variance with the normalized 3D coordinates in world

space Xp. We will introduce them separately.

Image appearance features for each 3D point can

be fetched from the multi-view feature maps using a

differentiable unprojection given corresponding camera

parameters. Note that features F1
i ,F

2
i ,F

3
i are at different

image resolutions, thus the camera intrinsic matrix should

be scaled at each level of the feature maps for correct feature

warping. Similar to MVSNet [29], we keep a variance-based

cost metric, i.e. the feature variance among different views,

to aggregate features warped from an arbitrary number of

views. For pyramid feature at level j, the variance metric for

N views is defined as below:

Cj =

N
X

i=1

⇣

F
j
i − Fj

⌘2

N
, (j = 1, 2, 3). (1)
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To form the features residing at each 3D point, we

do a concatenation of the fetched image feature and the

normalized point coordinates:

Cp = concat[Cj
p,Xp], (j = 1, 2, 3). (2)

This feature augmented point Cp is the input to our

PointFlow module.

As shall be seen in the next section, since we are

predicting the depth residual iteratively, we update the point

position Xp after each iteration and fetch the point feature

Ck
p from the image feature pyramid, an operation we name as

dynamic feature fetching. Note that this step is distinct from

cost-volume-based methods, by which the fetched features

at each voxel are determined by the fixed space partition

of the scene. In contrast, our method can fetch features

from different areas of images dynamically according to the

updated point position. Therefore, we can concentrate on

the regions of interest in the feature maps, instead of treating

them uniformly.

3.3. PointFlow

Depth maps generated from Section 3.1 have limited

accuracy due to the low spatial resolution of 3D cost volume.

We propose PointFlow, our novel approach to iteratively

refine the depth map.

With known camera parameters, we first un-project the

depth map to be a 3D point cloud. For each point, we aim to

estimate its displacement to the ground truth surface along

the reference camera direction by observing its neighboring

points from all views, so as to push the points to flow to

the target surface. Next, we discuss the components of our

module in detail.

Point Hypotheses Generation It is non-trivial to regress

depth displacement of each point from the extracted image

feature maps. Due to perspective transformation, the spatial

context embedded in 2D feature maps cannot reflect the

proximity in 3D Euclidean space.

In order to facilitate the modeling of network, we propose

to generate a sequence of point hypotheses p̃ with different

displacement along the reference camera direction as shown

in Figure 3. Let t denote the normalized reference camera

direction, and s denote the displacement step size. For

an unprojected point p, its hypothesized point set {p̃k} is

generated by

p̃k = p+ kst, k = −m, . . . ,m. (3)

These point hypotheses are critical for the network to infer

the displacement, for the necessary neighbourhood image

feature information at different depth are gathered in these

points along with spatial geometry relationship.

unprojected point

hypothesized point

reference 

camera

�
~�

Figure 3: Illustraion of point hypotheses generation and

edge construction: For each unprojected point p, the 2m +

1 point hypotheses {p̃k} are generated along the reference

camera direction. Directed edges are constructed between each

hypothesized point and its kNN points for edge convolution.

Edge Convolution Classical MVS methods have

demonstrated that local neighborhood is important for robust

depth prediction. Similarly, we take the strategy of recent

work DGCNN [28] to enrich feature aggregation between

neighboring points. As shown in Figure 3, a directed graph

is constructed on the point set using k nearest neighbors

(kNN ), such that local geometric structure information

could be used for the feature propagation of points.

Denote the feature augmented point cloud by Cp̃ =
{Cp̃1

, . . . ,Cp̃n
}, then edge convolution is defined as:

C0

p̃ = ⇤
q2kNN(p̃)

hΘ (Cp̃, Cp̃ −Cq) , (4)

where hΘ is a learnable non-linear function parameterized by

Θ, and ⇤ is a channel-wise symmetric aggregation operation.

There are multiple options for the symmetry operation,

including max pooling, average pooling, and weighted sum.

We compared max pooling and average pooling and observed

similar performance after tuning hyper-parameters carefully.

Flow Prediction The network architecture for flow

prediction is shown in Figure 4. The input is a feature

augmented point cloud, and the output is a depth residual

map. We use three EdgeConv layers to aggregate point

features at different scales of the neighborhood. Shortcut

connections are used to include all the EdgeConv outputs

as local point features. Finally, a shared multilayer

perceptron (MLP) is used to transform the pointwise

features, which outputs a probability scalar with softmax

among hypothesized points of each unprojected point. The

displacement of the unprojected points are predicted as the

probabilistic weighted sum of the displacement among all

predicted point hypotheses:

∆dp = E(ks) =
m
X

k=�m

ks× Prob(p̃k). (5)
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Figure 4: Network architecture of the proposed PointFlow module.

Note that this operation is differentiable. The output depth

residual map is obtained by projecting the displacement back,

which will be added to the initial input depth map for depth

refinement.

Iterative Refinement with Upsampling Because of the

flexibility of our point-based network architecture, the flow

prediction can be performed iteratively, which is much

harder for 3D cost-volume-based methods, because the space

partitioning is fixed after the construction of cost volume. For

depth map D(i) from coarse prediction or former residual

prediction, we can first upsample it using nearest neighbor to

higher spatial resolution and then perform the flow prediction

to obtain D(i+1). Moreover, we decrease the depth interval

s between the unprojected points and hypothesized points

at each iteration, so that more accurate displacement can be

predicted by capturing more detailed features from closer

point hypotheses.

3.4. Training loss

Similar to most deep MVS networks, we treat this

problem as a regression task and train the network with the

L1 loss, which measures the absolute difference between the

predicted depth map and the groundtruth depth map. Losses

for the initial depth map and iteratively refined ones are all

considered:

Loss =
l

X

i=0

0

@

λ
(i)

s(i)

X

p2Pvalid

�

�

�DGT (p)−D(i) (p)
�

�

�

1

1

A ,

(6)

where Pvalid represents the valid groundtruth pixel set and

l is the iteration number. The weight λ(i) is set to 1.0 in

training.

4. Experiments

4.1. DTU dataset

The DTU dataset [1] is a large-scale MVS dataset, which

consists of 124 different scenes scanned in 7 different

lighting conditions at 49 or 64 positions. The data for each

scan is composed of an RGB image and corresponding

Acc. (mm) Comp. (mm) Overall (mm)

Camp [2] 0.835 0.554 0.695
Furu [5] 0.613 0.941 0.777

Tola [25] 0.342 1.190 0.766
Gipuma [6] 0.283 0.873 0.578

SurfaceNet [12] 0.450 1.040 0.745
MVSNet [29] 0.396 0.527 0.462

Ours 0.361 0.421 0.391
Ours-HiRes 0.342 0.411 0.376

Table 1: Quantitative results of reconstruction quality on the DTU

evaluation dataset (lower is better).

camera parameters. The dataset is split into training,

validation, and evaluation sets.

4.2. Implementation details

Training We train Point-MVSNet on the DTU training

dataset. For data pre-processing, we follow MVSNet [29]

to generate depth maps from the given groundtruth point

clouds. During training, we set input image resolution to

640× 512, and number of views to N = 3. The input view

set is chosen with the same view selection strategy as in

MVSNet (Section 4.1). For coarse prediction, we construct a

3D cost volume with D = 48 virtual depth planes, which are

uniformly sampled from 425mm to 921mm. For the depth

refinement step, we set flow iterations l = 2, with depth

intervals being 8mm and 4mm, respectively. The number of

nearest neighbor points = 16. We use RMSProp of initial

learning rate 0.0005 which is decreased by 0.9 for every 2

epochs. The coarse prediction network is trained alone for 4

epochs, and then, the model is trained end-to-end for another

12 epochs. Batch size is set to 4 on 4 NVIDIA GTX 1080Ti

graphics cards.

Evaluation We use D = 96 depth layers for initial depth

prediction and set flow iterations l = 3 for depth refinement.

We predict the reference view depth map for each N = 5
view set. Then we fuse all depth maps to point clouds using

same post-processing provided by [29]. We evaluate our

method in two different input image resolutions: 1280×960
(“Ours”), and 1600× 1152 (“Ours-HiRes”).
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Figure 5: Qualitative results of scan 9 of DTU dataset. Top: Whole point cloud. Bottom: Visualization of normals in zoomed local area. Our

Point-MVSNet generates detailed point clouds with more high-frequency component than MVSNet. For fair comparison, the depth maps

predicted by MVSNet are interpolated to the same resolution as our method.
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Figure 6: F-score, accuracy and completeness of different distance

thresholds on the DTU evaluation dataset (higher is better). For fair

comparison, we upsample the depth map predicted by MVSNet to

the same resolution as our method before depth fusion (288× 216

to 640× 480).

4.3. Benchmarking on DTU dataset

We evaluate the proposed method on the DTU evaluation

dataset. Quantitative results are shown in Table 1 and

Figure 6, where the accuracy and completeness are computed

using the official code from the DTU dataset, and the f-

score is calculated as mentioned in [15] as the measure of

overall performance of accuracy and completeness. While

Gipuma [6] performs the best in terms of accuracy, our Point-

MVSNet outperforms start-of-the-art in both completeness

and overall quality. Qualitative results are shown in

Figure 5. Point-MVSNet generates a more detailed point

cloud compared with MVSNet. Especially in those edgy

areas, our method can capture high-frequency geometric

features.

4.4. PointFlow iteration

Because of the continuity and flexibility of point

representation, the refinement and densification can be

performed iteratively on former predictions to give denser

and more accurate predictions. While the model is trained

using l = 2 iterations, we test the model using iteration

ranging from 0 to 3. For each iteration, we upsample

the point cloud and decrease the depth interval of point

hypotheses simultaneously, enabling the network to capture

more detailed features. We compare the reconstruction

quality, depth map resolution, GPU memory consumption

and runtime at different iterations, along with performance

reported by state-of-the-art methods in Table 2. The

reconstruction quality improves significantly with multiple

iterations, which verifies the effectiveness of our methods.

Note that our method already outperforms the state-of-the-

art after the second iteration. Qualitative results are shown

in Figure 7.

4.5. Ablation study

In this section we provide ablation experiments and

quantitative analysis to evaluate the strengths and limitations

of the key components in our framework. For all the

following studies, experiments are performed and evaluated

on the DTU dataset, and both accuracy and completeness

are used to measure the reconstruction quality. We set the

iteration number to l = 2, and all other experiment settings

are the same as Section 4.3.

Edge Convolution By replacing the edge convolution in

Equation (4) with geometry-unaware feature aggregation:

C0

p̃ = ⇤
q2kNN(p̃)

hΘ (Cq) , (7)
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Initial Iter1 Iter2 Iter3

Figure 7: Qualitative results at different flow iterations. Top: Whole point cloud. Bottom: Zoomed local area. The generated point cloud

becomes denser after each iteration, and more geometry details can be captured.

Iter. Acc. (mm) Comp. (mm) Overall (mm) 0.5mm f-score Depth Map Res. Depth Interval (mm) GPU Mem. (MB) Runtime (s)

- 0.693 0.758 0.726 47.95 160×120 5.30 7219 0.34

1 0.674 0.750 0.712 48.63 160×120 5.30 7221 0.61
2 0.448 0.487 0.468 76.08 320×240 4.00 7235 1.14
3 0.361 0.421 0.391 84.27 640×480 0.80 8731 3.35

MVSNet[29] 0.456 0.646 0.551 71.60 288×216 2.65 10805 1.05

Table 2: Comparison result at different flow iterations measured by reconstruction quality and depth map resolution on the DTU evaluation

set. Due to the GPU memory limitation, we decrease the resolution of MVSNet [29] to 1152×864×192.

where the features of neighbor points are treated equally

with no regard for their geometric relationship to the

centroid point, the reconstruction quality drops significantly

as shown in Table 3, which illustrates the importance of

local neighborhood relationship information (captured by

Cp̃ −Cq) for feature aggregation.

Euclidean Nearest Neighbour In this part, we construct

the directed graph G using points belonging to adjacent

pixels in the reference image, instead of searching the k-NN

points, which leads to decreased reconstruction quality. The

reason is that, for images of 3D scenes, near-by pixels may

correspond to distant objects due to occlusion. Therefore,

using neighboring points in the image space may aggregate

irrelevant features for depth residual prediction, leading to

descending performance.

Feature Pyramid In this part, point cloud only fetches

features from the last layer of the feature map, instead of

from the whole feature pyramid. As shown in Table 3, in

contrast to the relatively stable performance for changing

edge convolution strategies as discussed above, the drop will

be significant in the absence of the other two components,

which demonstrates the effectiveness of the leveraging

context information at different scales for feature fetching.

4.6. Reliance on initial depth maps

Our method uses state-of-the-art approaches to get a

coarse depth map prediction, which is then iteratively refined

by predicting depth residuals. We found that our approach

is robust to noisy initial depth estimation in a certain range

through the following experiments. We added Gaussian

noise of different scales to the initial depth map and evaluated

the reconstruction error. Figure 8 shows that the error

increases slowly and is smaller than MVSNet within 6mm

noise.

4.7. Comparison to point cloud upsampling

Our work can also be considered as a data-driven point

cloud upsampling method with assisting information from

reference views. Therefore, we compare our method with

PU-Net [30], where multi-level features are extracted from

the coarse point cloud to reconstruct an upsampled point

cloud.
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EDGE EUCNN PYR Acc. (mm) Comp. (mm)

X X X 0.448 0.487

X X 5 0.455 0.489
X 5 X 0.455 0.492
5 X X 0.501 0.518
X 5 5 0.475 0.504
5 X 5 0.574 0.565
5 5 X 0.529 0.532

Table 3: Ablation study on network architectures on the DTU

evaluation dataset, which demonstrates the effectiveness of different

components. EDGE denotes edge convolution, EUCNN denotes

grouping by nearest neighbour points in Euclidean distance, and

PYR denotes the usage of image feature pyramid.
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Figure 8: Reconstruction error w.r.t. initial depth map noise. AVG

denotes average pooling, MAX denotes max pooling.

Acc. (mm) Comp. (mm) Overall (mm)

PU-Net [30] 1.220 0.667 0.943
Ours 0.361 0.421 0.391

Table 4: Comparison of reconstruction quality on the DTU

evaluation dataset with PU-Net [30].

We use the same coarse depth prediction network as in

our model, and train PU-Net to upsample the coarse point

cloud. We use the same joint loss as mentioned in their

paper, which consists of two losses — the Earth Mover’s

distance (EMD) [4] loss between the predicted point cloud

and the reference groundtruth point cloud and a repulsion

loss. For evaluation, the PU-Net is applied on the coarse

predicted point cloud twice to generate a denser point cloud

with 16 times more points. Quantitative result is shown in

Table 4. Our Point-MVSNet can generate a more accurate

point cloud from the coarse one by inducing flow for each

point from observation of context information in multi-view

images.

4.8. Foveated depth inference

The point-based network architecture enables us to

process an arbitrary number of points. Therefore, instead

of upsampling and refining the whole depth map, we can

choose to only infer the depth in the region of interest (ROI)

Figure 9: Illustration of foveated depth inference with our proposed

method. Different point density levels are denoted by different

colors: Gray for sparsest, Brown for intermediate, Green for

densest.

based on the input image or the predicted coarse depth map.

As shown in Figure 9, we generate a point cloud of three

different density levels by only upsampling and refining the

ROI in the previous stage.

4.9. Generalizability of the PointFlow Module

In order to evaluate the generalizability of our PointFlow

module, we test it on the Tanks and Temples intermediate

dataset [15], which is a large outdoor dataset captured in

complex environments. We first generate coarse depth maps

using MVSNet [29], and then apply our PointFlow module

to refine them. The f-score increases from 43.48 to 48.27
(larger is better) and the rank rises from 13.12 to 7.25 (lower

is better, date: Mar. 22, 2019). Reconstructed point clouds

are shown in supplementary materials.

5. Conclusion

We present a novel point-based architecture for high-

resolution multi-view stereo reconstruction. Instead of

building a high-resolution cost volume, our proposed Point-

MVSNet processes the scene as a point cloud directly,

which reduces unnecessary computation and preserves the

spatial continuity. Experiments show that Point-MVSNet is

able to produce high-quality reconstruction point clouds on

benchmarks. Additionally, Point-MVSNet is applicable to

foveated depth inference to greatly reducing computation,

which cannot be easily implemented for cost-volume-based

methods.
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