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Abstract

Recently, differentiable search methods have made ma-

jor progress in reducing the computational costs of neu-

ral architecture search. However, these approaches of-

ten report lower accuracy in evaluating the searched ar-

chitecture or transferring it to another dataset. This is

arguably due to the large gap between the architecture

depths in search and evaluation scenarios. In this pa-

per, we present an efficient algorithm which allows the

depth of searched architectures to grow gradually during

the training procedure. This brings two issues, namely,

heavier computational overheads and weaker search stabil-

ity, which we solve using search space approximation and

regularization, respectively. With a significantly reduced

search time (∼7 hours on a single GPU), our approach

achieves state-of-the-art performance on both the proxy

dataset (CIFAR10 or CIFAR100) and the target dataset (Im-

ageNet). Code is available at https://github.com/

chenxin061/pdarts

1. Introduction

Image recognition is a fundamental task in the computer

vision community. In the deep learning era, state-of-the-

art classification performance is mostly achieved by hand-

crafted deep neural networks [14, 30, 9, 35, 10]. Recently,

the development of neural architecture search (NAS) has

changed the convention of model design from manual to au-

tomatic, achieving remarkable success in various perceptual

tasks [16, 3, 37] including image recognition [38].

Early works on NAS focused on the optimal configura-

tion of layer type, filter size and number, activation func-

tion, etc., to construct a complete network [1, 29]. Inspired

by successful handcrafted architectures such as ResNet [9]

and DenseNet [11], follow-up works started to explore the
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Figure 1: Difference between DARTS and P-DARTS (our

approach), with the former searching architectures in a shal-

low setting and evaluating them in a deep one, and the latter

progressively increasing the searching depth to bridge the

depth gap between search and evaluation. Green and blue

indicate search and evaluation, respectively.

possibility of searching for network building blocks, or so-

called cells with reinforcement learning (RL) [36, 38] and

evolutionary algorithm (EA) [33, 23]. The discovered cells

are then stacked orderly to construct the network for spe-

cific tasks. However, those RL-based and EA-based ap-

proaches share a common pipeline to sample and evaluate

(from scratch) numerous architectures in the search space,

which results in a barely affordable computational over-

head, e.g., hundreds or even thousands of GPU-days.

Recently, Liu et al. proposed a differentiable scheme

called DARTS [19] to get rid of the time-consuming pro-

cess of architecture sampling and evaluating. It achieved

comparable performance to RL-based and EA-based meth-

ods while only requiring a search cost of a few GPU-days.

In DARTS, a cell is composed of multiple nodes, connected

with several kinds of operations, e.g., convolution, pooling.

Those operations are weighted by a few architecture param-

eters, which are learned in the search scenario. Limited by

the size of GPU memory, DARTS has to search the architec-

ture in a shallow network while evaluating in a deeper one.

This brings an issue named the depth gap (see Figure 1(a)),

which means that the search stage finds some operations

that work well in a shallow architecture, but the evaluation
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stage prefers other operations that fit a deep architecture bet-

ter. Such gap hinders these approaches in their application

to more complex visual recognition tasks.

In this work, we propose Progressive DARTS (P-

DARTS), a novel and efficient algorithm to bridge the depth

gap. As shown in Figure 1(b), we divide the search process

into multiple stages and progressively increase the network

depth at the end of each stage. While a deeper architec-

ture requires heavier computational overhead, we propose

search space approximation which, as the depth increases,

reduces the number of candidates (operations) according to

their scores in the elapsed search process. Another issue,

lack of stability, emerges with searching over a deep ar-

chitecture, in which the algorithm can be biased heavily

towards skip-connect as it often leads to most rapid error

decay during optimization, but, actually, a better option of-

ten resides in learnable operations such as convolution. To

avoid this, we propose search space regularization, which

(i) introduces operation-level Dropout [26] to alleviate the

dominance of skip-connect during training, and (ii) controls

the appearance of skip-connect during evaluation.

The effectiveness of P-DARTS is verified on the stan-

dard vision setting, i.e., searching on CIFAR10, and evalu-

ating on both CIFAR10 and ImageNet. We achieve state-

of-the-art performance (a test error of 2.50%) on CIFAR10

with 3.4M parameters. When transferred to ImageNet, it

achieves top-1/5 errors of 24.4%/7.4%, respectively, com-

parable to the state-of-the-art under the mobile setting. We

further demonstrate the benefits of search space approxima-

tion and regularization: the former reduces the search time

over CIFAR10 to 0.3 GPU-days which, to the best of our

knowledge, is the fastest to date to achieve an error rate of

3% in CIFAR10, even surpassing ENAS [22], an approach

specialized in efficiency; the latter makes it easy to apply P-

DARTS to other proxy datasets, which we show an example

on CIFAR100 (15.92% test error, 3.6M parameters).

2. Related Work

Image recognition is a fundamental task in computer vi-

sion. Recent years, with the development of deep learning,

convolutional neural networks (CNNs) have been dominat-

ing image recognition [14]. A few handcrafted architectures

have been proposed, including VGGNet [25], ResNet [9],

DenseNet [11], etc., all of which verified the importance of

human experts in network design.

Our work belongs to the emerging field of neural archi-

tecture search (NAS), a process of automating architecture

engineering technique [7]. Pioneer researchers started to

explore the possibility of automatically generating better

topology with evolutionary algorithms in the 2000’s [28].

Early NAS works tried to search for a complete network

topology [1, 29] while recent works focused on finding ro-

bust cells [33, 38, 23, 6]. Lately, EA-based [23] and RL-

based [38] NAS approaches achieved state-of-the-art per-

formance in image recognition, where architectures were

sampled and evaluated from the search space under the

guidance of an EA-based or RL-based meta-controller. A

notable drawback of the above approaches is the expensive

computational overhead (3,150 GPU-days for EA-based

AmoebaNet [23] and 1,800 GPU-days for RL-based NAS-

Net [38]). PNAS proposed to learn a surrogate model to

guide the search through the structure space, achieving 5×
speedup than NASNet. ENAS [22] proposed to share pa-

rameters among child models to prevent evaluating candi-

date architectures by training them from scratch, which sig-

nificantly reduced the search cost to less than one GPU-day.

DARTS [19] introduced a differentiable NAS frame-

work, which achieved remarkable performance and effi-

ciency improvement. Following DARTS, SNAS [34] pro-

posed to constrain the architecture parameters to be one-hot

to tackle the inconsistency in optimizing objectives between

search and evaluation scenarios. ProxylessNAS [2] adopted

the differentiable framework and proposed to search archi-

tectures on the target task instead of adopting the conven-

tional proxy-based framework.

3. Method

3.1. Preliminary: DARTS

In this work, we leverage DARTS [19] as our baseline

framework. Our goal is to search for a robust cell and apply

it to a network of L cells. A cell is defined as a directed

acyclic graph (DAG) of N nodes, {x0, x1, · · · , xN−1},

where each node is a network layer, i.e., performing a spe-

cific mathematical function. We denote the operation space

as O, in which each element represents a candidate func-

tion o(·). An edge E(i,j) represents the information flow

connecting node i and node j, which consists of a set of op-

erations weighted by the architecture parameters α(i,j), and

is thus formulated as:

fi,j(xi) =
∑

o∈Oi,j

exp(α
(i,j)
o )

∑
o′∈O exp(α

(i,j)
o′ )

o(xi), (1)

where i < j so that skip-connect can be applied. An in-

termediate node can be represented as xj =
∑

i<j fi,j(xi),
and the output node is xN−1 = concat(x2, x3, · · · , xN−2),
where concat(·) concatenates all input signals in the chan-

nel dimension. For more technical details, please refer to

the original DARTS paper [19].

3.2. Progressively Increasing the Searching Depth

In DARTS, architecture search is performed on a net-

work of 8 cells while the discovered architecture is eval-

uated on a network of 20 cells. However, there is a big

difference between the behaviors of shallow and deep net-
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Figure 2: The overall pipeline of P-DARTS (best viewed in color). For simplicity, only one intermediate stage is shown, and

only the normal cells are displayed. The depth of the search network increases from 5 at the initial stage to 11 and 17 at

the intermediate and final stages, while the number of candidate operations (shown in connections with different colors) is

shrunk from 5 to 4 and 2 accordingly. The lowest-scored ones at the previous stage are dropped (the scores are shown next

to each connection). We obtain the final architecture by considering the final scores and possibly additional rules.

works [12, 27, 9], which implies that the structures we pre-

fer in the search process are not necessarily optimum for

evaluation. We name this the depth gap between search

and evaluation. To verify it, we executed the search pro-

cess of DARTS for multiple times and found that the nor-

mal cells of discovered architectures tend to keep shallow

connections instead of deep ones. This is caused by that

shallow networks often enjoy faster gradient descent dur-

ing the search process, which contradicts the common sense

that deeper networks tend to perform better [25, 30, 9, 11].

Therefore, we propose to bridge the depth gap, and we take

the strategy that progressively increases the network depth

during the search process, so that at the end of the search,

the depth is sufficiently close to the setting used in the eval-

uation. Here we prefer a progressive manner, rather than

directly increasing the depth to the target level, because

we expect search in shallow networks to reduce the search

space with respect to the candidate operations, so as to alle-

viate the risk of search in deep networks. We will verify the

effectiveness of this progressive strategy in Section 4.4.1.

The difficulty comes from two aspects. First, the compu-

tational overhead increases linearly with the depth, which

brings issues in both time and memory. In particular, in

DARTS, GPU memory usage is proportional to the depth

of searched networks. The limited GPU memory forms

a major obstacle, and the most straightforward solution

is to reduce the number of channels in each operation –

DARTS [19] tried it but reported a slight performance de-

terioration. To address this problem, we propose a search

space approximation scheme to progressively reduce the

number of candidate operations at the end of each stage,

which refers to the scores of operations in the previous stage

as the criterion of selection. Details of search space approx-

imation are presented in Section 3.2.1.

Second, we find that when searching on a deeper ar-

chitecture, the differentiable approaches tend to bias to-

wards the skip-connect operation, because it accelerates for-

ward/backward propagation and often leads to the fastest

way of gradient descent. However, since such an operation

is parameter-free, its ability to learn visual representations

is relatively weak. To this end, we propose another scheme

named search space regularization, which adds operation-

level Dropout [26] to prevent the architecture from ‘over-

fitting’ and restricts the number of preserved skip-connects

for further stability. Details of search space regularization

are presented in Section 3.2.2.

3.2.1 Search Space Approximation

The idea of search space approximation is shown as a toy

example in Figure 2. The search process is split into multi-

ple stages, including an initial stage, one or a few intermedi-

ate stages and a final stage. For each stage, Sk, the search

network consists of Lk cells and the size of the operation
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space is Ok, i.e., |Ok
(i,j)| = Ok.

According to our motivation, at the initial stage, the

search network is relatively shallow but the operation space

is large (O1
(i,j) ≡ O). After each stage, Sk−1, the architec-

ture parameters αk−1 are learned and the scores of the can-

didate operations on each connection are ranked according

to αk−1. We increase the depth of the searched architecture

by stacking more cells, i.e., Lk > Lk−1, and approximate

the operation space in the meantime. This is to say, the new

operation set Ok
(i,j) has a smaller size than Ok−1

(i,j), or equiv-

alently, Ok < Ok−1. The criterion of approximation is to

drop a part of less important operations, which are defined

to be those assigned with a lower weight during the previous

stage, Sk−1. As shown in Table 3, this strategy is memory

efficient, which makes our approach easy to be deployed on

regular GPUs, e.g., with a memory of 16GB.

This process of increasing architecture depth continues

until it is sufficiently close to that used in the evaluation.

After the last search stage, we determine the final cell topol-

ogy (bold lines in Figure 2(c)) according to the learned ar-

chitecture parameters αK . Following DARTS, we keep two

top-weighted non-zero operations (at most 1 for a distinct

edge) for each intermediate node.

3.2.2 Search Space Regularization

At the start of each stage, Sk, we train the (modified) archi-

tecture from scratch, i.e., all network weights are initialized,

because several candidates have been dropped1. However,

training a deeper network is harder than training a shal-

low one [27]. In our particular setting, we observe that in-

formation prefers to flow through skip-connect instead of

convolution or pooling, which is arguably due to the rea-

son that skip-connect often leads to rapid gradient descent,

especially on the proxy datasets (CIFAR10 or CIFAR100)

which are relatively small and easy to fit. Consequently, the

search process tends to generate architectures with many

skip-connect operations, which limits the number of learn-

able parameters and thus produces an unsatisfying perfor-

mance at the evaluation stage. This is essentially a kind of

over-fitting.

We address this problem by search space regularization,

which consists of two parts. First, we insert operation-level

Dropout [26] after each skip-connect operation to partially

‘cut off’ the straightforward path through skip-connect, and

facilitate the algorithm to explore other operations. How-

ever, if we constantly block the path through skip-connect,

1We also tried to start with architecture parameters learned from the

last stage, Sk−1, and adjust them according to Eq. 1 to ensure that the

weights of preserved operations should still sum to one. This strategy re-

ported lower accuracy. Actually, we find that only an average of 5.3 (out

of 14 normal edges) most significant operations in S1 continue to have the

largest weight in S2, and the number is 6.7 from S2 to S3 – this is to say,

deeper architectures may have altered preferences.

the algorithm will drop them by assigning low weights to

them, which is harmful to the final performance. To ad-

dress this contradiction, we gradually decay the Dropout

rate during the training process in each search stage, thus

the straightforward path through skip-connect is blocked at

the beginning and treated equally afterward when parame-

ters of other operations are well learned, leaving the algo-

rithm itself to make the decision.

Despite the use of Dropout, we still observe that skip-

connect, as a special kind of operation, has a significant im-

pact on recognition accuracy at the evaluation stage. Em-

pirically, we perform 3 search processes on CIFAR10 with

the same search setting, but find that the number of pre-

served skip-connects in the normal cell, after the final stage,

varies from 2 to 4. In the meantime, as we observed be-

fore, the recognition performance at the evaluation stage is

also highly correlated to this number. This motivates us to

design the second regularization rule, architecture refine-

ment, which simply controls the number of preserved skip-

connects, after the final search stage, to be a constant M .

This is done with an iterative process, which starts with

constructing a cell topology using the standard algorithm

described by DARTS. If the number of skip-connects is not

exactly M , we search for the M skip-connect operations

with the largest architecture weights in this cell topology

and set the weights of others to 0, then redo cell construc-

tion with modified architecture parameters.

We emphasize that the second regularization technique

must be applied on top of the first one, otherwise, in the

situations without operation-level Dropout, the search pro-

cess is producing low-quality architecture weights, based on

which we could not build up a powerful architecture even

with a fixed number of skip-connects.

3.3. Relationship to Prior Work

PNAS [17] explored the search space progressively by

searching for operations node-by-node within each cell.

Our approach has a similar search manner but comes from a

different motivation. We perform the progressive search at

the cell level to enlarge the architecture depth, while PNAS

did it at the operation level (within a cell) to reduce the num-

ber of architectures to evaluate.

SNAS [34] aimed at eliminating the bias between the

search and evaluation objectives of differentiable NAS ap-

proaches by forcing the architecture weights on each edge

to be one-hot. Our work is also able to get rid of the bias,

which we investigate from enlarging the architecture depth.

ProxylessNAS [2] introduced a differentiable NAS

scheme to directly learn architectures on the target task (and

hardware) without a proxy dataset. It achieved high mem-

ory efficiency by applying binary masks to operations and

forcing only one path in the over-parameterized network to

be activated and loaded into GPU. Different from it, our
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Architecture
Test Err. (%) Params Search Cost

Search Method
C10 C100 (M) (GPU-days)

DenseNet-BC [11] 3.46 17.18 25.6 - manual

NASNet-A + cutout [38] 2.65 - 3.3 1800 RL

AmoebaNet-B + cutout [23] 2.55 - 2.8 3150 evolution

Hireachical Evolution [18] 3.75 - 15.7 300 evolution

PNAS [17] 3.41 - 3.2 225 SMBO

ENAS + cutout [22] 2.89 - 4.6 0.5 RL

DARTS (first order) + cutout [19] 3.00 17.76† 3.3 1.5‡ gradient-based

DARTS (second order) + cutout [19] 2.76 17.54† 3.3 4.0‡ gradient-based

SNAS + moderate constraint + cutout [34] 2.85 - 2.8 1.5 gradient-based

ProxylessNAS [2] + cutout 2.08 - 5.7 4.0 gradient-based

P-DARTS CIFAR10 + cutout 2.50 17.20 3.4 0.3 gradient-based

P-DARTS CIFAR100 + cutout 2.62 15.92 3.6 0.3 gradient-based

P-DARTS CIFAR10 (large) + cutout 2.25 15.27 10.5 0.3 gradient-based

P-DARTS CIFAR100 (large) + cutout 2.43 14.64 11.0 0.3 gradient-based

Table 1: Comparison with state-of-the-art architectures on CIFAR10 and CIFAR100. † indicates that this result is obtained by

training the corresponding architecture on CIFAR100. ‡ We ran the publicly available code with necessary modifications to fit

PyTorch 1.0, and a single run took about 0.5 GPU-days for the first order and 2 GPU-days for the second order, respectively.

approach tackles the memory overhead by search space ap-

proximation. Besides, ProxylessNAS searched for global

topology instead of cell topology, which requires strong pri-

ors on the target task as well as the search space, while P-

DARTS does not need such priors. Our approach is much

faster than ProxylessNAS (0.3 GPU-days vs. 4 GPU-days

on CIFAR10).

4. Experiments

4.1. Datasets

We conduct experiments on three popular image classi-

fication datasets, including CIFAR10, CIFAR100 [13] and

ImageNet [4]. Architecture search is performed on CI-

FAR10 and CIFAR100, and the discovered architectures are

evaluated on all three datasets.

Each of CIFAR10 and CIFAR100 has 50K/10K train-

ing/testing RGB images with a fixed spatial resolution of

32×32. These images are equally distributed over 10/100

classes. In the architecture search scenario, the training set

is equally split into two subsets, one for tuning network pa-

rameters (e.g., convolutional weights) and the other for tun-

ing the architecture (i.e., operation weights). In the evalua-

tion scenario, the standard training/testing split is used.

We use ILSVRC2012 [24] to test the transferability of

the architectures discovered on CIFAR10 and CIFAR100.

ILSVRC2012 is a subset of ImageNet [4] which contains

1,000 object categories and 1.28M training and 50K valida-

tion images. Following the conventions [38, 19], we apply

the mobile setting where the input image size is 224×224

and the number of multi-add operations is restricted to be

less than 600M.

4.2. Architecture Search

4.2.1 Implementation Details

The whole search process consists of 3 stages. Since we

adopt DARTS as the backbone framework, the search space

and network configuration are the same as DARTS at the

initial stage (stage 1) except that the number of cells is set

to be 5 (this is for acceleration – we tried the original setting

and obtained similar results). The number of cells increases

from 5 to 11 for the intermediate stage (stage 2) and 17 for

the final stage (stage 3). Meanwhile, the size of operation

space is set to be 8, 5 and 3 at stage 1, 2 and 3, respectively.

The initial Dropout probability on skip-connect for the

reported results is set to be 0.0, 0.4, 0.7 on CIFAR10 for

stage 1, 2 and 3, respectively, and 0.1, 0.2, 0.3 for CI-

FAR100. Considering the tradeoff between classification

accuracy and computational overhead, the final discovered

cells are restricted to keep at most 2 skip-connects. Such a

setting also guarantees a fair comparison with DARTS and

other state-of-the-art approaches. For each stage, we train

the network using a batch size of 96 for 25 epochs, where

in the first 10 epochs only network parameters are tuned

while network and architecture parameters are learned in

the rest 15 epochs. An Adam optimizer with learning rate

η = 0.0006, weight decay 0.001 and momentum β =
(0.5, 0.999) is adopted for architecture parameters. GPU

memory-related hyper-parameters are selected depending

on the memory size of the GPU used in the experiments.
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Architecture
Test Err. (%) Params ×+ Search Cost

Search Method
top-1 top-5 (M) (M) (GPU-days)

Inception V1 [30] 30.2 10.1 6.6 1448 - manual

MobileNet [10] 29.4 10.5 4.2 569 - manual

ShuffleNet V2 2× [20] 25.1 - ∼5 591 - manual

NASNet-A [38] 26.0 8.4 5.3 564 1800 RL

AmoebaNet-C [23] 24.3 7.6 6.4 570 3150 evolution

PNAS [17] 25.8 8.1 5.1 588 225 SMBO

MnasNet-92 [32] 25.2 8.0 4.4 388 - RL

DARTS (second order) [19] 26.7† 8.7 4.7 574 4.0 gradient-based

SNAS (mild constraint) [34] 27.3 9.2 4.3 522 1.5 gradient-based

ProxylessNAS (GPU) [2] 24.9 7.5 7.1 465 8.3 gradient-based

P-DARTS (searched on CIFAR10) 24.4 7.4 4.9 557 0.3 gradient-based

P-DARTS (searched on CIFAR100) 24.7 7.5 5.1 577 0.3 gradient-based

Table 2: Comparison with state-of-the-art architectures on ImageNet (mobile setting). † The result is 25.4% under our setting.

For acceleration, we leverage the first-order optimization

scheme of DARTS to learn the architecture parameters.

4.2.2 Search Results

Architectures discovered by P-DARTS on CIFAR10 tend

to preserve more deep connections than the one discov-

ered by DARTS, as shown in Figure 3(c) and Figure 3(d).

Moreover, connections in the architecture discovered by

P-DARTS cascade for more levels than DARTS, in other

words, there are more layers in the cell, making the evalua-

tion network further deeper and achieving better classifica-

tion performance.

Notably, our method also allows architecture search on

CIFAR100 while prior approaches mostly failed. The eval-

uation results in Table 1 show that the discovered architec-

ture outperforms those transferred ones. We also perform

architecture search on CIFAR100 with DARTS using the

publicly available code but get an architecture full of skip-

connects, which results in much worse performance.

4.3. Architecture Evaluation

4.3.1 Evaluation on CIFAR10 and CIFAR100

An evaluation network of 20 cells and 36 initial channels is

trained from scratch for 600 epochs with batch size 128.

Cutout regularization [5] of length 16, drop-path [15] of

probability 0.3 and auxiliary towers [30] of weight 0.4 are

applied. A standard SGD optimizer with a weight decay of

0.0003 for CIFAR10 and 0.0005 for CIFAR100 and a mo-

mentum of 0.9 is used. The initial learning rate is 0.025,

which is decayed to 0 following the cosine rule. We fur-

ther increase the number of initial channels from 36 to 64

to explore the performance limitation of our searched archi-

tecture, which is denoted as the large setting.

Evaluation results and comparison with state-of-the-art

approaches are summarized in Table 1. As demonstrated

in Table 1, P-DARTS achieves a 2.50% test error on CI-

FAR10 with a search cost of only 0.3 GPU-days. To obtain

a similar performance, AmoebaNet [23] spent four orders of

magnitude more computational resources (0.3 GPU-day vs.

3150 GPU-days). Our P-DARTS also outperforms DARTS

and SNAS by a large margin. Notably, architectures discov-

ered by P-DARTS outperform ENAS, the previously most

efficient approach, in both classification performance and

search cost, while with fewer parameters.

We transfer architectures discovered on CIFAR10 to CI-

FAR100 for both DARTS and P-DARTS. The evaluation

results show the superiority of P-DARTS. Furthermore, we

also conduct architecture search on CIFAR100. The dis-

covered architecture outperforms DARTS on both CIFAR10

and CIFAR100. For a fair comparison, architecture search

is also performed on CIFAR100 for DARTS with the pub-

licly released code but get much higher evaluation test er-

ror. An interesting point is that architecture discovered on

CIFAR10 outperforms that discovered on CIFAR100 when

evaluated on CIFAR10, and vice versa. Such a phenomenon

provides evidence to the existence of dataset bias in NAS.

4.3.2 Evaluation on ImageNet

The ILSVRC 2012 [24] is used to test the transferability of

architectures discovered on CIFAR10 and CIFAR100. We

adopt the same network configuration as DARTS, i.e., an

evaluation network of 14 cells and 48 initial channels. Each

network is trained from scratch for 250 epochs with batch

size 1024 on 8 Nvidia Tesla V100 GPUs, which takes 3 days

with our PyTorch [21] implementation. The network pa-

rameters are optimized using an SGD optimizer with an ini-
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Figure 3: Normal cells discovered by different search stages of P-DARTS and second-order DARTS (DARTS V2). The

depths of search networks are 5, 11 and 17 cells for stage 1, 2 and 3 of P-DARTS and 8 for DARTS V2. When the depth

of the search network increases, more deep connections are preserved. Note that the operation on edge E(0,1) of stage 1 is a

parameter-free skip connect, thus it is strictly not a deep connection.

tial learning rate of 0.5 (decayed linearly after each epoch),

a momentum of 0.9 and a weight decay of 3 × 10−5. Ad-

ditional enhancements including label smoothing [31] and

auxiliary loss tower are applied during training. Learning

rate warmup [8] is applied for the first 5 epochs since large

batch size and learning rate are adopted.

Evaluation results and comparison with state-of-the-art

approaches are summarized in Table 2. Architectures dis-

covered on CIFAR10 and CIFAR100 by P-DARTS outper-

form DARTS by a large margin in terms of classification

performance, which demonstrates the transfer capability of

the discovered architectures. Notably, P-DARTS achieves

lower test error than MnasNet [32] and ProxylessNAS [2],

whose search space is carefully designed for ImageNet.

4.4. Diagnostic Experiments

4.4.1 Comparison on the Depth of Search Networks

Since the search process of P-DARTS is split into multiple

stages, we extract architectures from each search stage with

the same rule. Architectures of different stages are evalu-

ated to demonstrate their capability for image classification.

The topology of discovered architectures (only normal cells

are shown) and their corresponding performance are sum-

marized in Figure 3. Additionally, we add the architecture

discovered by second-order DARTS (DARTS V2, 8 cells in

the search network) for comparison.

The architecture generated by stage 3 achieves the low-

est test error among others, which validates the effective-

ness of our scheme. From Figure 3 we can observe that

these architectures share some common edges, for example

sep conv 3×3 at edge E(ck−2,2) for stage 1, 2 and 3 and at

edge E(ck−1,0) for stage 2, 3 and DARTS V2. Meanwhile,

there are also differences between them, which may be the

key factor that affects the capability of these architectures.

Architectures generated by shallow search networks prefer

to keep shallow connections, while with deeper search net-

works, the discovered architectures start to pick interme-

diate nodes as input for rear nodes, resulting in cells with

deep connections. This is because it is harder to optimize a

deep search network so the algorithm has to explore more

paths to find the optimum, which results in more complex

and powerful architectures.

4.4.2 Effectiveness of Search Space Approximation

The search process takes ∼7 hours (0.3 days) on a single

Nvidia Tesla P100 GPU with 16GB memory to produce the

final architectures. We collect GPU memory usage data of

architecture search process for 3 individual runs, which is

shown in Table 3. The memory usage is stable and out

of memory error barely occurs, showing the validity of the

search space approximation scheme on memory efficiency.

We perform experiments to demonstrate the effective-

ness of improving classification accuracy. We only perform

the final stage of the search process on two different search
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Run No.
Mem. Usage (GB)

Stage 1 Stage 2 Stage 3

1 9.8 14.0 14.2

2 9.8 14.4 14.5

3 9.8 14.2 14.3

Table 3: Peak GPU memory usage at different stages during

three individual runs. The memory limit is 16GB.

spaces with the same setting. The first search space is ap-

proximated by the previous search stages and the other is

randomly sampled from the full search space. To obtain a

better result for the randomly sampled one, we repeat the

whole process for 3 times with different seeds and pick the

best one. The best performance for the randomly sampled

search space is 3.43% test error, which is much worse than

2.58%, the one obtained by the approximated search space.

Such results reveal the necessity of the search space approx-

imation scheme.

4.4.3 Effectiveness of Search Space Regularization

We perform experiments to validate the effectiveness of

search space regularization, i.e., operation-level Dropout

and architecture refinement. Firstly, experiments are con-

ducted to test the effect of the operation-level Dropout

scheme. Two sets of initial Dropout rates are tested, i.e., 0.0,

0.0, 0.0 (without Dropout) and 0.0, 0.3, 0.6 (with Dropout)

for stage 1, 2 and 3, respectively. To eliminate the potential

influence of the number of skip-connects, the comparison is

made across multiple values of M .

Test errors for architectures discovered without Dropout

are 2.93%, 3.28% and 3.51% for M = 2, 3 and 4, respec-

tively. When searching with Dropout, the corresponding

test errors are 2.69%, 2.84% and 2.97%, significantly out-

performing those without Dropout. According to the ex-

perimental results, all 8 operations in the normal cell of the

architecture discovered without Dropout are skip-connects

before architecture refinement, while it is 4 for architecture

discovered with Dropout. The reduction of skip-connect op-

erations verifies the effectiveness of search space regular-

ization on stabilizing the search process.

During experiments, we observe strong coincidence be-

tween the classification performance of architecture and the

number of skip-connect operations in it. We conduct a quan-

titative experiment to verify it. Architecture refinement is

applied to one search process to produce multiple architec-

tures where the number of preserved skip-connect opera-

tions varies from 0 to 4.

The test errors are positively correlated to the number

of skip-connects except for M = 0, i.e, 2.78%, 2.68%,

2.69%, 2.84% and 2.97% for M = 0 to 4, while the param-

eters count is inversely proportional to it, i.e., 4.1M, 3.7M,

3.3M, 3.0M and 2.7M, respectively. The reason lies in that,

with a fixed number of operations in a cell, the eliminated

parameter-free skip-connect operations are replaced by op-

erations with learnable parameters, e.g., convolution, result-

ing in a more complex and powerful architecture.

The above observation offers inspiration for the second

search space regularization, architecture refinement, whose

capability is validated by the following experiments. We

run another 3 architecture search experiments with initial

Dropout rates of 0.0, 0.3 and 0.6 for stage 1, 2 and 3, re-

spectively. Before architecture refinement, the test error is

2.79 ± 0.16% and the evaluated architectures are with 2,

3 and 4 skip-connects in normal cells. After architecture

refinement, all three architectures are with 2 skip-connects

in normal cells, resulting in a diminished test error of 2.65

± 0.05%. The reduction of standard deviation reveals the

improvement of the stability for the search process.

We also apply our proposed regularization methods to

the original DARTS, and the test error on CIFAR10 is re-

duced from 3.00% to 2.78%, still considerably higher than

P-DARTS (2.50%). This reveals that the proposed regular-

ization scheme is also effective in searching for relatively

shallower architectures, yet another source of improvement

comes from increasing search depth.

5. Conclusions

In this work, we propose a progressive version of dif-

ferentiable architecture search to bridge the depth gap be-

tween search and evaluation scenarios. The core idea is

to gradually increase the depth of candidate architectures

during the search process. To alleviate the issues of com-

putational overhead and instability, we design two practical

techniques to approximate and regularize the search pro-

cess, respectively. Our approach reports the fastest NAS

speed to achieve an error rate of 3% on CIFAR10, mean-

while achieving superior performance in both the proxy

dataset and the target dataset.

Our research defends the importance of depth in differ-

entiable architecture search, and paves a new way of ap-

proximation by sacrificing width, i.e., the number of oper-

ations. We expect that in the future with more powerful

computational resources, depth is still the dominant factor

in exploring the architecture space.
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