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Abstract

3D hand pose estimation has made significant progress

recently, where Convolutional Neural Networks (CNNs)

play a critical role. However, most of the existing CNN-

based hand pose estimation methods depend much on the

training set, while labeling 3D hand pose on training data is

laborious and time-consuming. Inspired by the point cloud

autoencoder presented in self-organizing network (SO-Net)

[18], our proposed SO-HandNet aims at making use of the

unannotated data to obtain accurate 3D hand pose estima-

tion in a semi-supervised manner. We exploit hand feature

encoder (HFE) to extract multi-level features from hand

point cloud and then fuse them to regress 3D hand pose

by a hand pose estimator (HPE). We design a hand fea-

ture decoder (HFD) to recover the input point cloud from

the encoded feature. Since the HFE and the HFD can

be trained without 3D hand pose annotation, the proposed

method is able to make the best of unannotated data during

the training phase. Experiments on four challenging bench-

mark datasets validate that our proposed SO-HandNet can

achieve superior performance for 3D hand pose estimation

via semi-supervised learning.

1. Introduction

Hands are critical parts of human body in our daily ac-

tivities. Automatic real-time 3D hand pose estimation has

attracted a lot of attentions due to its wide applications such

as human-computer interaction (HCI), computer graphics

and virtual/augmented reality, etc.

After many years of intensive research, 3D hand pose

estimation has advanced significantly both in accuracy and

∗Corresponding author: tuzhigang@whu.edu.cn

Figure 1. Overview of our proposed SO-HandNet for 3D hand

pose estimation. In the training phase, we simultaneously use the

annotated data and unannotated data to train the model. For train-

ing data with 3D hand annotation, both 3D hand pose and a new

point cloud are predicted from encoded features. And the network

is optimized by point cloud Chamfer loss and hand pose loss. For

training data without 3D pose annotation, we use the point cloud

Chamfer loss to optimize the HFE and HFD. In the testing phase,

the HFE and the HPE are utilized to estimate 3D hand pose.

efficiency [5, 7, 10, 11, 12, 13, 21, 22, 23, 24, 29, 33, 35, 36,

39, 41]. Most of the proposed state-of-the-art 3D hand pose

estimation methods are based on convolutional neural net-

works (CNNs). Since CNNs perform well in processing im-

ages, many works modify 2D CNNs to deal with depth im-

ages [36] or their 2D projections[11]. However, features ex-

tracted by 2D CNNs are not directly suitable for 3D pose es-

timation due to the lack of 3D spatial information. To better

capture the geometric characteristics of depth data, recent
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studies [12, 21] convert depth images to 3D volumetric rep-

resentations and then use 3D CNNs to estimate hand pose.

However, the 3D volumes have rather larger memory and

computation requirements [37]. Although these methods

have achieved significant progress in estimation accuracy,

they usually require large amount of fully annotated train-

ing data which are difficult to obtain. Only few methods

[3, 25, 31, 38] have considered to use unannotated data for

training hand pose estimation networks. [31, 38] use gener-

ative deep neural network with a shared latent space to learn

hand model. [38] attempts to learn a manifold of hand poses

via a combination of variational autoencoder and genera-

tive asversarial networks. However, their method requires

a mapping function between two separate mainfolds which

makes the network difficult to train. [3] leverages synthe-

sized data to enrich existing datasets, but synthetic depth

maps are different from real-world data. [31] proposes to

learn a single laten space from images, which cannot fully

utilize 3D information in depth images.

To tackle these problems, motivated by the recent work

of SO-Net [18] which utilizes the spatial distribution to per-

form hierarchical feature extraction for point cloud and pro-

poses a point cloud autoencoder as pre-training to improve

network performance, we aim at regressing 3D hand pose

directly from 3D point cloud and using point cloud autoen-

coder mechanism in semi-supervised training stage. [10] is

the first work to regress hand pose directly from 3D point

cloud. Compared with PointNet++ [28] in [10], the self-

organizing network in our HFE perfoms hierarchical fea-

ture extraction with systematically adjust the receptive field

overlap. Accordingly, the feature encoder of our method

is able to reveal the spatial distribution of the input point

cloud. Most importantly, we apply an autoencoder struc-

ture whose decoder recovers point cloud from the global

representation of point set. To learn a more discriminative

global feature, we compare the recovered point cloud with

the original point cloud. Therefore, we are able to combine

annotated data with unannotated date to train the network.

The idea of autoencoder has been recently applied to the

hand pose estimation task [31]. Different from our method,

they directly deal with RGB image or depth image.

As illustrated in Figure 1, we propose an end-to-end re-

gression method for 3D hand pose estimation from a single

depth image. The depth image is first converted into a set

of 3D points. Then the point set is sampled and normal-

ized before fed into the network. An encoder is utilized to

encode the input point cloud into a global feature through

a hierarchical extraction mechanism, and intermediate fea-

tures which are called node features are also collected. Both

the global feature and node features are used for the 3D

hand pose estimation. Additionally, in the training phase,

the obtained global feature can reconstruct a point cloud to

compare with the original input point cloud. Thereby, we

optimize the representation ability of the global feature by

minimizing the gap between the reconstructed and original

point cloud. The advantage of the proposed method is clear

when applied to the case that part of the training set is an-

notated and the rest is unannotated. In this condition, we

use the labeled data to train the whole network and the un-

labeled data to help train the encoder and decoder. In sum-

mary, our method has the following contributions:

• We propose to estimate 3D hand pose directly from 3D

point cloud with semi-supervised learning. We design a

semi-supervised training strategy which uses few annotated

data to train the whole pipeline and makes full use of unan-

notated data to optimize the network.

• For 3D hand pose estimation, a novel point cloud encoder-

decoder mechanism is presented to extract and evaluate fea-

tures. The self-organizing encoder models the spatial distri-

bution of point cloud by hierarchically extracting features

guided by a self-organized map. The decoder reconstructs

hand point cloud from the encoded global feature, which

helps to learn the point cloud encoder.

• We conduct comprehensive experiments on four hand

pose estimation datasets. Experimental results show that

our proposed SO-HandNet performs better than recent

semi-supervised methods. Besides, it outperforms or is

comparable with state-of-the-art fully-supervised methods.

2. Related work

Hand Pose Estimation. The field of depth-based hand

pose estimation has become attractive thanks to the sig-

nificant advance and progress of cost-effective depth sen-

sors, such as Microsoft Kinect [46] and Intel RealSense

[15]. Methods of depth-based hand pose estimation can be

categorized into generative approaches, discriminative ap-

proaches and hybrid approaches. Comprehensive review

of hand pose estimation can be found in [34, 43]. Our

3D hand pose estimation method is related to discrimina-

tive approaches with application of deep neural networks.

Tompson et al. [36] firstly apply CNNs in hand pose esti-

mation task. They train CNNs to output heat-map images

and then infer the corresponding 3D hand pose. However,

3D spatial information is lost in 2D heat-maps. Ge et al.

[11] address this issue by projecting the depth images onto

multi-views and then recovering 3D coordinates from mul-

tiple heat-maps. Ge et al. [12] encode point cloud as 3D

volumetric representation of hand and use 3D CNNs to di-

rectly regress 3D hand pose. Ge et al. [10] propose a Hand-

PointNet to directly process the 3D point cloud for hand

pose estimation, and design a fingertip refinement network

to refine the fingertip location. Moon et al. [21] exploit

voxel-to-voxel predictions that use a 3D voxelized grid and

estimate the per-voxel likelihood for each keypoint. Addi-

tionally, there are methods combine semantic segmentation

[6], augment data in the skeleton space [3] and guide learn-
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ing by synthetic images [29]. Recently, semi-supervised

learning has been employed to hand pose estimation task.

Wan et al. [38] use two deep generative models with a

shared latent space to model the statistical relationships of

depth images and corresponding hand poses. They design

an architecture which learns from unlabeled data in a semi-

supervised approach. Spurr et al. [31] propose to learn hand

model by a cross-modal trained latent space via a gennera-

tive deep neural network. They also make use of unlabeled

data via cross-training. [25] uses labeled synthetic and un-

labeled real data to learn the feature mapping between real

data and synthetic data. Our method is inspired by [10],

but is essentially different from it. Multi-scale and multi-

resolution grouping are employed to combine features from

multiple scales. Besides, our feature encoder can explic-

itly models the spatial distribution of the input point set.

Moreover, the proposed method designs a semi-supervised

training mode for specific case.

3D Deep Learning. 3D deep learning is rising along

with big 3D datasets such as ShapeNet [4] and Mod-

elNet [40]. 3D data can be represented as rasterized

form (e.g., multi-view images and volumetric) or geomet-

ric form (e.g., polygonal mesh, point cloud and primitive-

based CAD models), and there are deep learning methods

[14, 16, 20, 26, 27, 28, 30, 32, 40, 42] to process them.

Our work is closely related to methods that directly take

point cloud as input. Qi et al. [26] present PointNet which

is the pioneer in directly processing point cloud by deep

learning. They use symmetric max pooling to aggregate lo-

cal point features into a global descriptor which is invari-

ant to the permutation of the input points. Later, they de-

sign PointNet++ [28] to group points into several groups

in different levels to hierarchically extract feature from dif-

ferent scales. By combining and modifying the prior work

PointNet [26] and NetVLAD [2], Uy et al. exploit a Point-

NetVLAD method [1]. This deep network allows end-to-

end training and inference to extract the global descriptor

from the input 3D point set. Li et al. [19] present PointCNN

which uses typical CNNs to learn features from point cloud.

In SO-Net [18], Li et al. present a permutation invariant

self-organizing network (SO-Net) which explicitly models

the spatial distribution of input point cloud during feature

extraction. The receptive field of the network can be sys-

tematically adjusted by conducting point-to-node k nearest

neighbor search. In this paper, we use an architecture like

SO-Net to perform hierarchical feature extraction from in-

put point cloud. More details about SO-Net is given in Sec-

tion 3.1.

3. Proposed Method

Similar to [10], our hand pose estimation approach is a

regression-based method. Generally, the hand pose regres-

sion method takes a depth image containing a hand as input,

and outputs the estimated locations of the 3D hand joints in

the camera coordinate system (C.S.). The hand depth image

is converted into a set of 3D points, and the points are sam-

pled and normalized before inputted to the network. In this

work, we display a pipeline which consists of three parts.

The HFE is exploited to perform hierarchical feature extrac-

tion, and then the HPE is used to fuse multi-level features to

regress the 3D hand pose. In addition, we utilize the HFD

to optimize the feature encoding procedure in the training

phase.

In the following, we first briefly introduce the pipeline

of point cloud preprocessing and review the mechanism of

the SO-Net which is designed for point cloud analysis, then

describe our proposed hand pose estimation method.

3.1. SO­Net Revisited

SO-Net [18] is a type of permutation invariant architec-

ture for deep learning with unordered point clouds. The

network models the spatial distribution of a set of points by

building a self-organizing map (SOM) [17], and then per-

forms hierarchical feature extraction on individual points

and SOM nodes, finally produces a discriminative feature

of the input point cloud. As shown in Figure 2, a SOM with

size of M = m × m is built to produce two-dimensional

representation of the input N points. The SOM is con-

structed via unsupervised competitive learning approach.

Given the output of the SOM, a point-to-node k nearest

neighbors (kNN) search is conducted. In this process, kNN

are searched on the SOM nodes S for each point pi. By

subtraction with the associated nodes, each pi is normal-

ized into k points, accordingly the point cloud is trans-

formed into kN normalized points. A series of fully con-

nected layers is employed to extract individual point fea-

tures. Following the above kNN association, a channel-wise

max pooling operation is conducted to get the node feature

from the point features associated with the corresponding

SOM node. Then the M node features are forward into a

series of shared layers, and aggregated into a global fea-

ture that represents the input point cloud. Compared with

PointNet++ [28] which handles the point cloud by grouping

strategy, SO-Net utilizes an efficient separate-and-assemble

Figure 2. Left: The initial nodes of an 8 × 8 self-organizing map

(SOM). Right: Example of a SOM training result. After an un-

supervised competitive learning procedure, the nodes fit well with

the input point cloud.
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Figure 3. The architecture of our proposed SO-HandNet. In the HFE, input points N × C are normalized with the k-nearest SOM node.

After a series of shared FC layers, normalized points are transferred into point features and later max-pooled into node features, these node

features are aggregated into a global representation accordingly. In the HPE, multi-level features extracted by the HFE are combined and

then forward into FC layers to regress the output pose. In this figure, N refers to the point number, C refers to the input channel (C equals

to 3 when only inputs points and equals to 6 while the surface normal of each point is also applied), k refers to the k neighbors in kNN

search, M refers to the node number, NJ refers to the joint number.

approach as the SOM is able to explicate the spatial distri-

bution of points.

3.2. Point Cloud Processing

The hand depth image is first converted into a set of 3D

points according to the intrinsic parameters of the depth

camera. In order to promote computational efficiency, the

3D point set is sampled to N points. In our implemen-

tation, we set the number of sampled points N as 1024,

and transform and normalize the sampled 3D point set into

an oriented bound box coordinate system (OBB C.S) [10].

The original hand point cloud may have multiple orienta-

tions in camera C.S., but the orientation of point cloud is

more consistent after normalized to OBB C.S. Experiments

in [10] show that the OBB-based point cloud normalization

can improve the performance of hierarchical point feature

extraction.

3.3. Hand Pose Regression Network

We design an end-to-end trainable network for 3D hand

pose estimation. The pose regression problem inputs a set

of normalized points X = {xi}
N
i=1

= {(pi, ni)}
N
i=1

and

outputs estimated pose P̂ = {posei}
NJ

i=1
= {(xi, yi, zi)}

NJ

i=1

with NJ hand joints of three dimensions, where pi is the 3D

coordinate of the point and ni is the 3D surface normal. A

regression function fr is given by the following equation:

P̂ = fr(X, θr), (1)

where θr is the trainable parameters of regression function

fr. In our method, we apply deep CNNs to optimize the

parameters θr in order to minimize the gap between the es-

timated hand pose P̂ and the ground truth hand pose P .

Hand Feature Encoder (HFE). Our HFE fHFE hierar-

chically extracts multi-level features from the input point

cloud. As shown in Figure 3, we reconstruct the encoder of

SO-Net [18] to process our hand point cloud. With the guid-

ance of SOM, the encoder is able to capture features hierar-

chically and output multi-level features including point fea-

tures, node features and a global feature. The input of HFE

can be only the normalized point coordinates or the combi-

nation of coordinates and surface normal vectors. With the

application of kNN search which is guided by SOM, the in-

put can be converted into kN normalized points, and then

a series of shared fully connected layers are utilized to ex-

tract individual point features. The resulting point features

are fed into a channel-wise max pooling to get the node fea-

tures. Accordingly, the node features are forward to a series

of shared layers and aggregated to a global vector which

represents the whole input point set.

Hand Feature Decoder (HFD). We design a HFD

fHFD to recover the input point cloud from the encoded

global feature vector. As shown in Figure 4, we gener-

ate point cloud from a network with two parallel branches

[8, 18], i.e. a fully connected branch and a deconvolu-

tion branch. It has been proved in [8] that the two-branch

approach has better performance in producing point cloud

than the single-branch method. The fully connected branch

predicts N̂1 points. This branch helps the decoder enjoys

high flexibility since each point is predicted independently.

The deconvolution branch predicts a feature matrix with the

size of 3×W ×H , where N̂1 = W ×H is the number of

points. Thanks to spatial continuity induced by the convo-

lution layers, the recovered points are more geometric con-

sistent. Additionally, weight sharing of this branch helps

it requires less parameters compared to the fully connected

branch. Above introduces the design of HFD, and we pro-

pose to use the Chamfer distance (CD) as our decoder loss

(LossD) to evaluate the similarity between the recovered
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Figure 4. The architecture of the hand feature decoder (HFD) which takes the input point cloud and recovers a new point cloud. The FC

branch predicts each point independently and shows good performance at describing intricate structures. The upconv branch consists of

deconvolution and convolution, and used to exploit spatial continuity. The conv2pc module consists of two 1× 1 convolution layers. The

predictions of two branches are later merged together to form the whole set of points.

point cloud Xr ∈ R
3 and the input point cloud X ∈ R

3:

LossD(Xr, X) =
1

|Xr|

∑

x∈Xr

min
y∈X

‖ x− y ‖
2

2

+
1

|X|

∑

y∈X

min
x∈Xr

‖ x− y ‖
2

2
.

(2)

Note that the number of points in X and Xr are not neces-

sarily the same. For each point, CD finds the nearest neigh-

bor in the other point set and sums the distances up.

Hand Pose Estimator (HPE). To recover hand pose

from the features extracted in HFE, we construct a hand

pose estimator fHPE . Since multi-level features are ob-

tained in the pipeline of encoder, they can be applied as the

input of HPE. But whether those features have an impact

on pose estimation needs to be verified. According to the

characteristics of different level features as well as the com-

bination methods, four variants of input features of HPE are

constructed. The input can be the global feature or the other

three variants (as shown in Figure 5), we compare the per-

formance of these different fusion methods in Section 4.1.

The integrated features are forward into a shared fully con-

nected layer to ensure each channel has the same size, and

then using average pooling to fuse the redundant informa-

tion. Besides, a series of fully connected layers are applied

to regress the coordinate of hand joints. When training the

network, we use the Euclidean distance (ED) as the loss

function on predicted poses as defined in the equation be-

low:

LossE(P̂ , P ) =
1

|NJ |

NJ∑

i=1

(‖ ˆposei − posei ‖
2

2
), (3)

where ˆposei is the predicted coordinate of the i-th joint and

posei is the corresponding ground truth coordinate.

3.4. Semi­supervised training

Annotating the ground-truth for 3D pose estimation is

both challenging and time-consuming when constructing a

dataset. We introduce a semi-supervised training method

to use less annotated data to train an applicable hand pose

estimation model by making full use of unannotated data

(as shown in Figure 1). When using the unannotated data

to train the network, the HFD recovers a new point cloud

which is compared with the original point cloud and then a

point cloud Chamfer loss LossD is computed. In this case,

the training loss Losst1 is defined as:

Losst1 = LossD. (4)

This training Loss Losst1 is applied to optimize the HFE

and HFD. When using the annotated data to train the net-

work, apart from the Chamfer loss LossD is computed by

HFD, the HPE predicts the 3D hand pose and computes the

pose loss LossE . For the annotated data, the training loss

Losst2 is defined as:

Losst2 = λ× LossE + LossD, (5)

where λ is the weighting factor. The training loss Losst2 is

used to optimize the whole network.

4. Experiments

In this section, to evaluate the proposed method, four

challenging publicly available hand pose datasets are se-

lected for experimenting. ICVL Dataset [35] contains

22,059 frames for training and 1,596 frames for testing. The

dataset provides the ground truth of 16 hand joints of each

frame. MSRA Dataset [33] contains more than 76K frames

from 9 subjects. Each subject has 17 gestures captured and

each gesture has about 500 frames. For each frame, the

dataset provides the bounding box of the hand region as well

as the coordinates of 21 hand joints. Following pervious

works, we utilize the leave-one-subject-out cross-validation

strategy for evaluation. NYU Dataset [36] contains 72,757

training-set frames and 8,252 testing-set frames. For each

frame, the RGBD data from 3 Kinects is provided. In our

experiment, we only use the depth image. The ground truth

contains J = 36 annotated joints, we conduct evaluation on
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Figure 5. Strategies of feature fusion. (a) Fusing global and node

features in M channels. (b) Fusing global and node features in

kN channels. (c) Fusing global, node and point features in kN

channels.

the subset of J = 14 hand joints as [7, 10, 12, 39] and also

we only use view 1 for both training and testing. HANDS

2017 Challenge Frame-based Dataset [44] contains 957k

training and 295k testing frames, which are sampled from

BigHand2.2M [45] and FHAD [9] dataset. This dataset has

21 annotated joints.

We evaluate the hand pose estimation performance with

two commonly used metrics. The first metric is the per-

joints mean error in Euclidean space over all test frames

as well as the overall mean error for all joints over all test

frames. The second metric is the fraction of good frames in

which the maximum joint error is bellow a threshold.

For network architecture, we input the sampled and nor-

malized points as well as the surface normal vectors. The

number of sampled points N is set as 1024, and the k of

kNN search is 3. We choose a SOM of size 8 × 8. Our

experiments are conducted within PyTorch framework on a

workstation with Intel Xeon E5-2620, 64GB of RAM and a

NVIDIA TITAN Xp GPU.

4.1. Self­comparisons

Impact of fusion strategies. To better represent the in-

put point cloud, the HFE hierarchically extracts multi-level

features: point features, node features and global feature.

First, we would like to find out whether the node feature

and the point feature actually help the pose regression. We

use the global feature as the input of HPE as the baseline

method, and construct three fusion strategies to combine

features (as shown in Figure 5). (a) Global + Node features

(v1). The global feature vector is repeated M times and then

concatenated with the M node features. (b) Global + Node

Figure 6. Self-comparison on ICVL dataset. The impact of fu-

sion strategies on per-joint mean error and overall mean error are

shown.

Figure 7. Self-comparison on ICVL dataset. The mean error of our

model trained supervised and semi-supervised with the percentage

of annotated data.

features (v2). The global feature vector is repeated kN

times and then concatenated with the kN associated node

features. (c) Global + Node + Point features. Transfer

global feature and node features into kN features as above,

and then combine global, node and point features to an in-

tegration feature. We evaluate these different fusion strate-

gies on ICVL dataset. Notably the size of different com-

bined features have no influence on our estimation process,

since a shared FC and average fooling are conducted to con-

vert the combined features into a fixed size. As presented

in Figure 6, Global + Node features (v1) gets the highest

accuracy. Compared with only using global feature, fusing

with node feature improves the performance. We also com-

pare two fusion strategies to incorporate the global and node

features, and find that v1 outperforms v2. Besides, adding

point features to the prior fusion makes no contribution and

slightly damages the performance.

Impact of semi-supervised learning. We study the

impact of semi-supervised learning on ICVL dataset and

HANDS 2017 Challenge Frame-based dataset. With the

same network architecture, we use part of the annotated data

from the training set to train the whole network and mean-

while use the rest of data to train the autoencoder without

using their pose information. As shown in Figure 7, the
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performance is significantly promoted compared with the

method that only trained by the same size of annotated data

on ICVL dataset. When using 25%, 50% and 75% of anno-

tated data to conduct model training, semi-supervised train-

ing witnessed an improvement at 13.2%, 11.7% and 0.7%

accordingly. When the ratio of the annotated data is small

e.g. 25%, using unlabeled data can get significant improve-

ment on hand pose estimation. The performance of train-

ing with 25% annotated data via semi-supervised scheme

is comparable to training with 50% annotated data in nor-

mal scheme. This characteristic can also be observed when

comparing the performance of the method that using 50%

annotated data for training in the semi-supervised manner

with the method that using 75% annotated data for train-

ing in general way. On HANDS 2017 Challenge Frame-

based Dataset, we use 10% of annotated data as well as

the rest unlabeled data to conduct model training, and the

improvement is also significant (as shown in Table 1). The

mean error of fully-supervised training is 40.03 mm after 15

epochs, while the mean error of our semi-supervised train-

ing is 24.65 mm. Note that no data augmentation is imple-

mented in our experiments.

Method Fully-supervised Our Semi-supervised

Mean error 40.03 mm 24.65 mm

Table 1. The mean error of our model trained supervised and semi-

supervised with the 10% of labeled data on HANDS 2017 Chal-

lenge Frame-based Dataset.

4.2. Comparisons with State­of­the­arts

We compare our method with some of the state-of-the-art

methods including LRF [35], Deep Model [47], DeepProir

[23], Crossing Nets [38], Cascade [33], HBE [48], V2V-

PoseNet [21]. As shown in Table 2, we achieved compa-

rable accuracy when utilize all annotated training data un-

der the condition that without any data augmentation. We

get better result than all the other methods except to V2V-

PoseNet. Remarkably, we use less data to train the network

and the computational cost of us is also much lower (as

shown in Table 3). In general, we obtain comparable perfor-

mance with state-of-the-art supervised methods in real-time

hand pose estimation.

To verify the effectiveness of the semi-supervised train-

ing strategy, we compare our method with the state-of-the-

arts [3, 31, 38] which also aim at solving the challenging

of data annotation. Different from the proposed method

that reduces the amount of annotated data for training and

making full use of unannotated data, the key idea of Baek

et al. [3] is to synthesize data in the skeleton space for

data augmentation. The percentage of annotated frames of

Beak et al. is 100% and they train the model by the aug-

mented set which is around 10 times larger than the original

Method Mean Error(mm)

LRF 12.6

Deep Prior 11.6

Deep Model 10.4

Crossing Nets 10.2

Cascade 9.9

HBE 8.6

Ours 7.7

V2V-PoseNet 6.3

Table 2. Comparison of the mean error with the state-of-the-arts

on ICVL dataset.

Method Parameter Quantity Testing Speed

V2V-PoseNet 457.5M 3.5fps

Ours 16.6M 58fps

Table 3. Comparison of parameter quantity and testing time on

single GPU.

Figure 8. Comparison with Crossing Nets on ICVL (left) and NYU

(right) datasets. The mean error of semi-supervised trained model

with the percentage of annotated data.

training set. As can be seen in Table 4, comparing with

[3], our method obtains better performance when using the

same amount of annotated data, moreover, our method is

also superior to them when using only part of annotated

frames. The Crossing Nets [38] is one of the milestone

works that perform accurate hand pose estimation in the

semi-supervised setting. We compare our method to [38]

with the same percentage of annotated training data. As

shown in Figure 8 and Table 4, our method outperforms

them in most of the experiments. Whats more, as the num-

ber of annotated frames increased from 25% to 75%, their

method shows little improvement, whereas our method gets

significant promotion. Figure 9 shows that our method

has better performance than most recently semi-supervised

methods [31, 38] over most of the error thresholds on three

datasets. On NYU dataset, when the maximum allowed dis-

tance is between 20mm and 30mm, the fraction of good

frames of our method is about 30% better than them. On

MSRA dataset, when the maximum allowed distance is be-

tween 20mm and 30mm, the fraction of good frames of our

method is about 15% better than them. On ICVL dataset,
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Figure 9. Comparison of our approach with recently state-of-the-art semi-supervised methods on NYU (left), MSRA (middle) and ICVL

(right) datasets. The proportion of good frames over different error thresholds are presented in this figure.

Method Annotated Frame Usage Augmented Set ICVL(mm) NYU(mm)

Beak et al.(baseline) 100% No 12.1 17.3

Beak et al.(w/o aug.; refine) 100% No 10.4 16.4

Beak et al.(w/o refine) 100% Yes, 10 times 9.1 14.9

Beak et al. 100% Yes, 10 times 8.5 14.1

Crossing Nets

25% No 10.5 16.1

50% No 10.0 16.0

75% No 10.1 15.9

100% No 10.2 15.5

Ours

25% No 11.1 14.9

50% No 9.4 14.1

75% No 9.1 12.8

100% No 7.7 11.2

Table 4. Comparison of our work with semi-supervised methods on ICVL and NYU datasets. We evaluate the performance by test

estimation error as well as the percentage of annotated data and total data used for model training. Our network produces better accuracy

and more applicable to circumstance when the annotated data is limited.

when the maximum allowed distance is 15%, the fraction

of good frames of our method is about 10% better than [31]

and about 20% better than [38]. In summary, our method

provides a practical mode to reduce the reliance on anno-

tated data in hand pose estimation task and outperforms re-

cent semi-supervised methods.

4.3. Runtime and Model Size

The testing time of us is 17.2ms in average, specially,

8.2ms for data processing including point sample and sur-

face normal computation, 9.0ms for the hand pose estima-

tion. Our approach runs in real-time at about 58fps. In

addition, the size of HFE, HFD and HPE are 8.1M, 74M

and 8.5M respectively. Since we only employ the HFE and

HPE in the testing stage, the model size of our network is

16.6MB.

5. Conclusions

In this paper, we present a novel network for 3D hand

pose estimation from a single depth image. To better

represent the original data and perform more efficiently

feature extraction, we convert the depth image into point

cloud and extract multi-level features by a self-organizing

encoder. Multi-level features are fused to regress accurate

3D hand pose. Moreover, we utilize a decoder to optimize

the encoding process in the training phase. Additionally,

to alleviate the burden of laborious 3D hand pose annota-

tion on training data, we propose to train our hand pose

estimation network in a semi-supervised manner with both

annotated data and unannotated data. Experimental results

on four datasets show that our proposed SO-HandNet

achieves superior performance in semi-supervised training

for 3D hand pose estimation from depth images.
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