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Abstract

Deep learning has recently been applied with impressive

results to extreme low-light imaging. Despite the success of

single-image processing, extreme low-light video process-

ing is still intractable due to the difficulty of collecting raw

video data with corresponding ground truth. Collecting

long-exposure ground truth, as was done for single-image

processing, is not feasible for dynamic scenes. In this pa-

per, we present deep processing of very dark raw videos: on

the order of one lux of illuminance. To support this line of

work, we collect a new dataset of raw low-light videos, in

which high-resolution raw data is captured at video rate.

At this level of darkness, the signal-to-noise ratio is ex-

tremely low (negative if measured in dB) and the traditional

image processing pipeline generally breaks down. A new

method is presented to address this challenging problem.

By carefully designing a learning-based pipeline and intro-

ducing a new loss function to encourage temporal stability,

we train a siamese network on static raw videos, for which

ground truth is available, such that the network generalizes

to videos of dynamic scenes at test time. Experimental re-

sults demonstrate that the presented approach outperforms

state-of-the-art models for burst processing, per-frame pro-

cessing, and blind temporal consistency.

1. Introduction

We are interested in capturing videos of dynamic scenes

in the dark: people dancing in the moonlight, an intimate

conversation by candlelight, a nocturnal animal foraging.

Can such scenes ever be captured effectively, in motion, by

widely accessible consumer-grade cameras?

Extreme low-light videography is challenging due to low

photon counts. Using high ISO can increase brightness but

also amplifies noise. Aperture size is limited in consumer-

grade cameras and mobile devices. Flash changes the char-

acter of the scene and is problematic for videography. And

long exposure times (seconds or tens of seconds) are not

feasible for videos of dynamic scenes. This leaves us with

computational techniques for low-light video processing.

Researchers have developed many techniques to reduce

noise for low-light imaging [40, 38, 13, 33, 16, 11, 20, 45,

46, 3, 8, 29, 22, 47]. These techniques generally assume

that images are captured in somewhat dim environments

with moderate levels of noise. In addition, these methods

are often trained and evaluated using synthetic noise mod-

els, which do not reflect the severe quantization, bias, and

clipping that arise in extreme low-light conditions.

Recent work proposed end-to-end learning for low-light

image processing [9, 41]. The idea is to train a deep net-

work on a dataset of short-exposure raw and long-exposure

reference images, such that the network learns the image

processing pipeline to maximize low-light imaging perfor-

mance. However, these datasets contain images of static

scenes and do not address video, and the trained networks

exhibit temporal instability that is not easily remedied with

post-hoc temporal consistency enhancement. Another ap-

proach to low-light photography that has seen significant re-

cent progress is burst processing [18, 28, 35, 15]. However,

these methods are generally not designed for video capture

(e.g., due to the use of ‘lucky imaging’) and require dense

correspondence estimation across the input frames, which

can fail due to the massive noise conditions we consider.

In this paper, we tackle deep processing of extreme low-

light video, from raw sensor data to sRGB output. This

brings challenges beyond those presented by individual

low-light images. For example, long-exposure videos of

dynamic scenes cannot be obtained, since videos must be

acquired at video rate. Thus ‘ground-truth’ long-exposure

video of dark dynamic scenes is not available. It is thus not

clear how to train models that produce temporally consis-

tent output in this regime.

To study this problem, we collect a new low-light video

dataset and present a systematic approach for this prob-

lem. We captured 202 static raw videos for training and

evaluation, each of which has corresponding long-exposure

ground truth. We also capture real-world low-light videos

with hand shake and subject motion. For these videos, long-

exposure ground truth is not available, and they are used for

perceptual experiments. Using the collected data, we de-

velop a new learning-based pipeline for extreme low-light

video processing. The proposed method involves train-

ing a deep siamese network [6] with a specially designed

loss that encourages temporal stability. We show that the

network can be trained on static videos but generalizes
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to dynamic scenes. Experimental results demonstrate that

our method significantly outperforms state-of-the-art ap-

proaches, as measured by reference-based distortion met-

rics as well as reference-free perceptual studies.

2. Related Work

Single-image denoising. Image denoising has been ex-

tensively studied [40, 38, 13, 33, 16, 11, 20]. Most ap-

proaches are based on specific image priors such as smooth-

ness, sparsity, low rank, or self-similarity. Learning-based

methods further advanced performance in recent years [46,

3, 10, 8, 29, 22, 47, 7]. Lehtinen et al. [26] showed that a de-

noising network can be trained without clean ground-truth

if the noise is unbiased. Some networks can denoise and

demosaic images jointly [21, 14] or even replace much of

the image processing pipeline [9, 41]. However, as demon-

strated in our experiments, frame-by-frame processing can

exhibit significant temporal artifacts when applied to video.

Multiple-image denoising. When video or burst images

are available, noise can be reduced using spatial and tem-

poral correlations. Liu et al. [28] and Hasinoff et al. [18]

propose to merge a burst of images by robust and efficient

aligment methods. Godard et al. [15] propose to use recur-

rent networks for multi-frame denoising, where the burst

sequence needs to be pre-warped to the reference frame.

Mildenhall et al. [35] propose to align and denoise bursts

via learned per-pixel kernels.

In these works, burst denoising involves reference im-

age selection and outputs a single frame. In contrast, video

denoising is more challenging since every frame needs to

be processed for the output video, which needs to be tem-

porally consistent. State-of-the-art video denoising meth-

ods include VBM4D [32] and non-local Bayes [25], which

rely on grouping similar patches and jointly filtering them

to form the result. When noise is small or moderate, these

methods can achieve excellent results. However, these

methods do not address the biases present in extreme low-

light data due to clipping and quantization.

Low-light image and video enhancement. Methods

have been developed that can enhance brightness and con-

trast of images and videos acquired in moderately dim en-

vironments [12, 34, 30, 36, 17, 31]. However, these meth-

ods generally assume that image details are preserved in the

sRGB camera output. In contrast, in the extreme low-light

settings we consider, the associated challenges in the image

processing pipeline are not addressed by these models, e.g.,

noise and color cast.

Noisy image datasets. Image and video denoising

datasets have traditionally been created using synthetic

Figure 1. Example videos from the dataset. For each video, the

first image is the long exposure reference image. The later frames

are the short-exposure images, which are dark in extreme low-light

conditions. Note that the last two videos in the second row are

from the test set, which contains dynamic scenes. The reference

long-exposure images are blurry due to subject and camera motion

and thus cannot serve as ground truth for quantitative evaluation.

noise models, such as Gaussian and Poisson noise, ap-

plied to clean images and videos; see Plötz and Roth for

review [37]. More recently, datasets were created with

real noisy images produced by imaging sensors. These in-

clude the RENOIR dataset [4], the Darmstadt Noise Dataset

(DND) [37], the Smartphone Image Denoising Dataset

(SIDD) [2], and the See in the Dark (SID) dataset [9]. Burst

image datasets [28, 18, 15] have also been used for low-

light image denoising; however, the bursts are short (less

than 10 frames) and scene motion is small. We collect a

new dataset of extreme low-light raw videos, with up to

110 frames each. To the best of our knowledge, this is the

first public dataset with real-world low-light raw video se-

quences.

3. Dark Raw Video Dataset

Raw video processing has been rarely studied due to lim-

ited available data. We collected a new Dark Raw Video

(DRV) dataset to bridge this gap. We used a Sony RX100 VI

camera, which can capture raw image sequences at approx-

imately 16 to 18 frames per second in continuous shooting

mode, and the buffer can keep around 110 frames in total.

This is equivalent to 5.5-second videos at 20 fps. The res-

olution for the Bayer image is 3672 × 5496. The dataset

contains both indoor and outdoor scenes.

Another challenge for learning-based raw video process-

ing is the difficulty to collect noise-free videos in dark con-

ditions. Following the SID dataset [9], we capture low-light

raw data and corresponding long-exposure images. How-

ever, this scheme only works for static scenes. Therefore,

we collect two sets of videos: one contains static videos

with corresponding long-exposure ground truth, and the

other contains dynamic videos without ground truth. We

hypothesized that a model trained on static videos can gen-

eralize to some extent to dynamic videos. Examples are

shown in Fig. 1. Most scenes in the dataset are in the 0.5 to
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5 lux range.

To collect a static video, we used a tripod and controlled

the camera remotely via a mobile app. The long and short

exposure image sequences are perfectly aligned. We have

202 static videos for training and quantitative evaluation.

We randomly divide them into approximately 64% for train-

ing, 12% for validation, and 24% for testing. Some scenes

are in different lighting conditions (e.g., light sources with

different color temperatures, illuminance, and positions).

Videos for the same scene are distributed within one of the

training, testing, and validation sets but not across these

sets.

We capture a separate set of dynamic video sequences.

The motion is due to scene motion, camera motion, or both.

These videos do not have ground-truth long-exposure refer-

ences. They are used for perceptual experiments.

The exposure differences between the raw low-light in-

put and the long-exposure ground truth in the static set are

between factors of 120 and 300. We apply digital gains on

the low-light raw frames in preprocessing based on these

exposure ratios to match the brightness of the correspond-

ing long exposure images.

Noise analysis. We analyze the noise distribution in the

DRV dataset and compare it with a synthetic noise model

used in recent work [35]. In the synthetic model, a noisy

pixel is assumed to be distributed according to

xp ∼ N (yp, σ
2

r + σsyp). (1)

Here xp is the noisy observation, yp is the true pixel value,

and σr and σs are parameters for read and shot noise. To

simulate synthetic noise for comparison, we use the same

sampling strategies for σr and σs as [35].

The low-light data is linearized by first subtracting the

black level and then applied the digital gain mentioned

above. After this, the overall intensity of the processed input

matches that of the ground truth. (And thus of the synthetic

noise model, which is applied to the ground truth for com-

parison.) The comparison is shown in Fig. 2. This figure

shows the distribution of the real data, compared to the dis-

tribution of the synthetic noise model. The distributions are

estimated via Parzen density estimation.

Perfectly clean data would correspond to a delta function

at 1. As can be seen in the figure, the synthetic noise model

is symmetric about 1. On the other hand, our real low-light

data is severely biased, in part due to clipping and quanti-

zation. For example, there is a peak at zero because many

sensor readings are too weak and are quantized to zero even

in the 14-bit raw sensor data. Furthermore, the noise in the

DRV data is an order of magnitude stronger than predicted

by the synthetic model. (Note that the density is plotted on

a logarithmic scale and observe the data at very high noise

ratios, such as -10 and 10.) Overall, the average signal-to-

noise ratio (SNR) for the synthetic model is 18.59 dB, while

-10 -5 0 5 10

Noisy Pixel / True Pixel

10
-4

10
-3

10
-2

10
-1

10
0

D
e
n
s
it
y

Our data R

Our data G

Our data B

Burst data R

Burst data G

Burst data B

Figure 2. Comparison between real low-light noise in the DRV

dataset and a synthetic noise model (used in [35]). The X-axis is

the ratio between a noisy raw pixel and the corresponding ground-

truth value. The Y-axis is the normalized density of these ratios

across all pixels in the dataset, computed via kernel density esti-

mation. Note that the Y-axis is in log-scale. Noise in our low-light

data is stronger by an order of magnitude, and exhibits severe non-

monotonic bias.

in the real data it is -3.24 dB. That is, the SNR in our low-

light data, as measured in dB, is negative.

4. Method

Raw image and video processing involves the entire im-

age processing pipeline. The system needs to be designed

carefully, which is as important as the machine learning al-

gorithms applied. Brooks et al. validated that a carefully

designed raw image processing system can significantly im-

prove results without significant changes in network struc-

ture and loss function [7]. We think the following criteria

are desired for a low-light video processing system:

a). Start from raw. In our extreme low-light dataset,

the raw sensor readings are extremely weak. In 8-bit JPEG

camera output, most of the signal is destroyed and most

pixel values are quantized to zero. We take the 14-bit raw

frames as input.

b). Model image processing pipeline. A successful

model should take care of the image processing pipeline

during training [9, 7]. We train the network from the raw

data to final sRGB output, which avoid error accumulation

caused by multi-step optimization.

c). Spatial and temporal denoising. Both spatial and

temporal correlations should be utilized to reduce noise.

d). Generalization. While ground truth is only avail-

able for static sequences in DRV, the trained model must

generalize to dynamic videos.

e). Temporal consistency. The output video should be

temporally stable, without salient flickering artifacts.

In accordance with these requirements, we designed a

new learning-based pipeline that uses a deep network to

process extreme low-light videos. The training is schemat-

ically summarized in Fig. 3. First, the raw Bayer video

frames are preprocessed. The preprocessing includes Bayer

to raw RGB conversion, black level subtraction, binning
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Figure 3. The entire training phase of our method on static videos with ground truth.

and global digital gain. The Bayer data is split into sepa-

rate RGB channels to form the raw RGB where the green

channel is obtained by averaging the two green pixels in

each two-by-two block. We trade off resolution for image

quality by applying 2 × 2 binning, which is a commonly

used strategy for low-light imaging and applies to all the

methods involved in the experiments. The pixel values are

linearly scaled based on the exposure value (EV) difference

and clipped to match the brightness and dynamic range of

the ground truth. In addition, temporal noise is reduced

by VBM4D [32] without the need of training data, which

works for both static and dynamic videos. Dense corre-

spondence is almost impossible to be estimated accurately

in extreme noisy conditions, which is required in some ex-

isting methods [27, 18, 15] but not in our system. The result

after these preprocessing stages is shown in Fig. 3 as “Raw

RGB video”. As the Bayer pattern has been destroyed dur-

ing preprocessing, no demosaicing is applied.

The preprocessed raw RGB frames are fed to a deep net-

work that is trained to perform all subsequent processing

needed to obtain the results demonstrated in the ground-

truth images. The network takes a single frame as input.

For training, two frames from a static sequence in DRV are

sampled at random and are fed to the network in siamese

mode. Let Ŷ 1 and Ŷ 2 denote these two frames and let the

ground truth for this sequence be denoted by Y ∗. The loss

for this training pair is defined as follows:

L(Ŷ 1, Ŷ 2, Y ∗) = Lr + Lc, (2)

where Lr is referred to as the the recovery loss and Lc is

called the self-consistency loss. They are defined as fol-

lows:

Lr =
∑

l

1

N l

∑

k=1,2

‖Φl(Y ∗)− Φl(Ŷ k)‖1 (3)

Lc =
∑

l

λ

N l
‖Φl(Ŷ 1)− Φl(Ŷ 2)‖1. (4)

Here Φl denotes the VGG [42] features at the l-th layer and

N l is the number of such features. λ is a regularization

parameter and was empirically set to 0.05 for the results.

The recovery loss Lr encourages the output to be close to

the ground truth. However, this alone is not sufficient for

temporal consistency. Two outputs may have the same ℓ1
distance to the ground truth in feature space, but may be far

from each other. This corresponds to temporal instability

(flickering). To alleviate temporal instability, we use the

self-consistency loss, which encourages the two outputs to

be close to each other.

The network produces output in sRGB space. We use

a ResUnet structure akin to [24] by adding 16 residual

blocks [19] to a Unet [39, 9].

Our method easily satisfies the first and second criteria

discussed earlier. Noise is reduced using spatial and tempo-

ral correlations in preprocessing by VBM4D. Other tempo-

ral filters may also work for this purpose although not tried.

The trained network can then adapt to the characteristics of

the preprocessed input and optimize for fidelity given this

input. The siamese network and self-consistency loss, used

during training, encourages the network to produce tempo-

rally stable output. (As we shall see in the experiments, this

temporal stability characteristic carries over into dynamic

videos at test time.) Since the network operates on a single

frame at test time, it generalizes to dynamic videos.

4.1. Implementation details

We implement our method using Tensorflow [1]. We

found that training on complete images rather than patches

is important to capture global statistics (e.g., for white bal-

ance). We train our model on an Nvidia Tesla V100 GPU

with 32 GB of memory. We use the Adam optimizer [23]

and the batch size is one. The initial learning rate is 10−4

and is reduced to 10−5 after 500 epochs. We train the

network for 1000 epochs. We use the input, “conv1 2”,

“conv2 2”, “conv3 2”, and “conv4 2” layers of the VGG

network as features in the loss.

4.2. Discussion of alternative options

Dense correspondence. Some existing methods rely on

pre-warping [28, 18, 15] or learning to align [35] to reduce

noise temporally. Almost all optical flow methods assume

that little to no noise is present in the input frames. How-

ever, this assumption breaks down in our setting. Even after
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(a) (b) (c)

Figure 4. Optical flow on preprocessed raw RGB images. (a) and

(b) are two consecutive frames from a dynamic DRV sequence. In

this sequence, the metronome, with a text sign, is ticking, while

the rest of the scene is static. (c) Optical flow between the two

frames, estimated by PWC-Net [43]. The flow contains significant

errors.

preprocessing with VBM4D, there is still substantial noise

and artifacts. Fig. 4 shows the optical flow estimated on our

data (dynamic sequence) using the state-of-the-art PWC-

Net [43]. The flow has significant errors. This suggests

that dense flow estimation is problematic in our conditions.

Denoising followed by color conversion. Another option

is to learn joint alignment and denoising [35], followed by

subsequent pipeline processing (e.g., to map from raw RGB

to sRGB). As we will see in controlled experiments, such

decoupled processing is suboptimal because the later pro-

cessing stages do not optimally adapt to the characteristics

of the input provided to them. In practice, the later process-

ing stages significantly amplify errors from earlier stages.

Temporal consistency. Another possibility is to enhance

temporal consistency in post-processing. Existing methods

use the input videos to guide such enhancement [5, 24]. The

underlying assumption is that the input video is temporally

consistent. This is not true in our case. Due to the extremely

low SNR, the input video is temporally unstable. Applying

state-of-the-art temporal consistency techniques to our data

(e.g., SID [9] for per-frame processing, followed by learned

blind temporal consistency [24]) therefore yields severe vis-

ible artifacts, as shown in Fig. 5.

(a) (b)

Figure 5. (a) Result by SID [9]. (b) Applying learned blind tempo-

ral consistency [24] as post-processing results in visible artifacts.

Note the blue patch on the ball.

5. Experiments

5.1. Experimental setup

Real camera processing pipelines are often commercial

secrets. Following existing work [9], we use a simplified

pipeline Rawpy (a Python wrapper for LibRaw) as the ref-

erence traditional non-learning-based pipeline. The long-

exposure raw images are processed by Rawpy to form the

sRGB ground truth. We use the metadata of the ground truth

raw data for all Rawpy processing. This benefits the tradi-

tional pipeline, as the white balance estimation is worse in

low-light conditions. For our method and SID [9], we use

the preprocessed low-light raw frames as input and learn

to convert the colors without the need for metadata. As

one of our baselines, we train the kernel prediction network

(KPN) [35] for spatial and temporal denoising with default

settings using the author-provided code; the denoised re-

sults are followed by Rawpy to produce the sRGB output.

Both VBM4D [32] and KPN use 8 frames for temporal de-

noising.

5.2. Image quality evaluation

We evaluate different methods on the static test videos.

The 5th frame of the output video is compared with the

ground truth using Peak Signal to Noise Ratio (PSNR) and

the Structural Similarity Index (SSIM) [44]. The average re-

sults over the entire test set are listed in Table 1. Our method

significantly outperforms the baselines. The ablations con-

firm the benefits of temporal preprocessing and the siamese

network.

Table 1. Quantitative evaluation of image quality on the static

video test set.

PSNR (dB) SSIM

Input+Rawpy 12.94 0.165

VBM4D [32]+Rawpy 14.77 0.315

KPN [35]+Rawpy 18.81 0.540

SID [9] w/o VBM4D 27.32 0.790

SID [9] 27.69 0.803

Ours 28.26 0.815

Ours w/o siamese 27.66 0.805

Ours w/o VBM4D [32] 27.62 0.803

Ours w/o both 27.26 0.793

An example is shown in Fig. 6. The camera output is

almost completely black when the exposure time is fixed

to 1/30 seconds in this dark environment. Applying digital

gain on the raw RGB image, as shown in Fig. 6(b), reveals

the content but also amplifies the noise and bias. As shown

in Fig. 6(c), the traditional image processing pipeline re-

sults in color shift, where red and blue channels are boosted

by white balance. VBM4D [32] can remove the noise to

an extent, but cannot correct the color shift. As shown in

Fig. 6(f), KPN learns to remove the noise in the raw color
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(a) Camera JPEG output (b) Raw RGB with gain

(c) Traditional pipe on (b) (d) VBM4D on (b)

(e) Traditional pipe on (d) (f) KPN denoising on (b)

(g) Traditional pipe on (f) (h) SID

(i) Ours (j) Ground truth

Figure 6. An example from a night-time sequence captured with

a Sony RX100 VI camera with aperture f/4, ISO 2000, and 1/30

second exposure. This is a static DRV sequence, so ground truth

is available for reference. Zoom in for details.

space. However, as shown in Fig. 6(g), when the traditional

pipeline converts the raw color to sRGB and increases im-

age contrast, it significantly amplifies the residual errors.

This suggests that independent denoising followed by a tra-

ditional pipeline is sub-optimal. The denoising stage leaves

some residual noise that can be boosted by later processing.

Our method is trained end-to-end to avoid such error accu-

mulation. In comparison with our results (Fig. 6(i)), SID [9]

has strong artifacts in the sky and on the wall (Fig. 6(h)).

Since SID is the strongest baseline, we further compare

with it in Fig. 8. While SID has strong denoising ability,

it sometimes exhibits discoloration artifacts. For example,

the letters in “Voice” and “Daily Post” in Fig. 8(a) (top)

shift to a yellow tint. In Fig. 8(a) (bottom), the green box

and orange book lose their color in the center. Such artifacts

happen less frequently on the SID dataset [9], captured by

a more expensive camera with longer exposure (up to 1/10

seconds), but occur more prominently in the DRV dataset.

Although both SID and our method use the same input, our

results have consistently higher quality.

5.3. Video quality evaluation

We further evaluate the video quality of SID and our

method. Adopting the methodology of [24], we measure

temporal error on every pair of consecutive frames using

PSNR, SSIM, and mean absolute error (MAE) on the static

test videos. We use the terms temporal PSNR (TPSNR),

temporal SSIM (TSSIM), and temporal MAE (TMAE) to

distinguish the temporal variants from single-image met-

rics. The results are shown in Table 2, where the images

are scaled to [0, 1] for TMAE calculation. The table demon-

strates that our method has much lower temporal errors than

SID. We found that larger λ leads to smaller temporal er-

rors, but at the cost of lower spatial accuracy, as illustrated

in Fig. 7. λ = 0.05 was used as default for our results.

Table 2. Temporal errors on the static video test set for SID and

our method.

TPSNR TSSIM TMAE

(dB) (×102)

SID [9] w/o VBM4D 33.72 0.939 1.56

SID [9] 37.05 0.961 1.05

Ours 38.31 0.974 0.89

Ours w/o siamese 37.76 0.969 0.98

Ours w/o VBM4D 34.64 0.953 1.38

Ours w/o both 34.55 0.952 1.40

27.5 28 28.5
PSNR

38

38.5

39

39.5

TP
SN

R

=0.5

=0.2

=0.01

=0.05

Figure 7. The parameter λ trades off spatial and temporal accuracy.
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(a) SID (b) Ours (c) Ground truth

Figure 8. Image quality comparison with SID [9] on two examples. Note the discoloration artifacts in the demarcated regions.

0
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0.2

0.3

0.4

0.5

(a) SID frame t (b) SID frame t+1 (c) SID error map

0

0.1

0.2

0.3

0.4

0.5

(d) Our frame t (e) Our frame t+1 (f) Our error map

Figure 9. The visual results of two consecutive frames on a static video. The error maps show per-pixel error, measured by Euclidean

distance in [0,1] sRGB space. Brighter means larger errors.

Although the input frames are static, they contains strong

flickering artifacts due to random noise. We further visual-

ize the temporal errors in Fig. 9, which shows two consecu-

tive frames from a static DRV sequence, processed by SID

and by our method. The SID results exhibit temporal in-

stability in the form of discoloration. Our method is much

more stable.

5.4. Perceptual evaluation

We conduct a perceptual experiment that compares the

results of SID and our approach on dynamic videos. In blind

randomized A/B tests, we display corresponding video pairs

and ask workers to indicate which of the two videos has

better quality. Order is randomized both within and across

pairs. 34 workers participated in the experiment, ranking

results on 10 dynamic video sequences. Fig. 10 shows the
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Figure 10. Perceptual experiment. Results of blind randomized

A/B tests on 10 dynamic videos. The figure shows preferred per-

centage for each video.

results. Overall, the workers rate videos produced by our

method as superior in quality in 84.12% of the comparisons.

The result is statistically significant with p < 10−3.

5.5. Extreme imaging

Finally, we demonstrate our method qualitatively in

Fig. 11. Videos from an iPhone X and the Sony RX100

VI camera video mode are used for reference. In this mock

birthday party video, illumination was provided by a single

candle. This is a sub-lux setting. The iPhone video was

captured using the auto mode. For the Sony video, we fixed

the exposure time to 1/30 seconds while keeping the maxi-

mum aperture and ISO. The raw image sequences for SID

and our method were captured with ISO 2000 in continuous

shooting mode.

Light intensity is inversely proportional to the square of

the distance from the source. We thus see in Fig. 11(a,b)

that in the iPhone and Sony sequences only the birthday

lady can be (dimly) made out in the image. Both SID and

our method reveal the entire scene. However, the SID re-

sult suffers from both spatial and temporal artifacts, while

our result is cleaner and more stable. This is video #10 in

the perceptual experiment (Fig. 10), for which 94.1% of the

comparisons are in favor of our result. Readers are encour-

aged to watch the supplementary video.

6. Conclusion

We presented a new dataset and a new method for learn-

ing extreme low-light video processing. We proposed a

siamese network that preserves color while significantly

suppressing spatial and temporal artifacts. The model was

trained on static videos only but was shown to general-

ize to dynamic videos. Quantitative and qualitative results

demonstrate that our method achieves superior performance

over a range of baselines, particularly in the more extreme

low-light scenarios. While the improvement is significant,

certain failure modes remain. For example, our method

(as well as the baselines) completely failed on moon-light

videos (approximately 0.01-0.03 lux) using the same cam-

(a) iPhone X video frame

(b) Sony camera video frame

(c) SID result

(d) Our result

Figure 11. Video of a dynamic scene lit with a single candle. The

illuminance is 0.73 lux at the birthday lady’s ear.

era. Furthermore, we did not preserve high dynamic range

due to the preprocessing to match the ground truth. The

area around the candles in Fig. 11 is over-exposed. Exciting

work remains in further pushing the boundaries in compu-

tational low-light imaging.
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