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Abstract

Although various image-based domain adaptation (DA)

techniques have been proposed in recent years, domain

shift in videos is still not well-explored. Most previous

works only evaluate performance on small-scale datasets

which are saturated. Therefore, we first propose two large-

scale video DA datasets with much larger domain discrep-

ancy: UCF-HMDBfull and Kinetics-Gameplay. Second,

we investigate different DA integration methods for videos,

and show that simultaneously aligning and learning tem-

poral dynamics achieves effective alignment even without

sophisticated DA methods. Finally, we propose Temporal

Attentive Adversarial Adaptation Network (TA3N), which

explicitly attends to the temporal dynamics using domain

discrepancy for more effective domain alignment, achiev-

ing state-of-the-art performance on four video DA datasets

(e.g. 7.9% accuracy gain over “Source only” from 73.9%

to 81.8% on “HMDB → UCF”, and 10.3% gain on “Ki-

netics → Gameplay”). The code and data are released at

http://github.com/cmhungsteve/TA3N .

1. Introduction

Domain adaptation (DA) [29] has been studied exten-

sively in recent years [4] to address the domain shift prob-

lem [32, 30], which means the models trained on source

labeled dataset do not generalize well to target datasets and

tasks. DA is categorized in terms of the availability of anno-

tations in the target domain. In this paper, we focus on the

harder unsupervised DA problem, which requires training

models that can generalize to target samples without ac-

cess to any target labels. While many unsupervised DA

approaches are able to diminish the distribution gap be-

tween source and target domains while learning discrimina-

tive deep features [22, 24, 9, 10, 21, 20, 34], most methods

have been developed only for images and not videos.

Furthermore, unlike image-based DA work, there do not

exist well-organized datasets to evaluate and benchmark the

performance of DA algorithms for videos. The most com-

mon datasets are UCF-Olympic and UCF-HMDBsmall [39,
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Figure 1: An overview of proposed TA3N for video DA.

In addition to spatial discrepancy between frame images,

videos also suffer from temporal discrepancy between sets

of time-ordered frames that contain multiple local tempo-

ral dynamics with different contributions to the overall do-

main shift, as indicated by the thickness of green dashed

arrows. Therefore, we propose to focus on aligning the tem-

poral dynamics which have higher domain discrepancy us-

ing a learned attention mechanism to effectively align the

temporal-embedded feature space for videos. Here we use

the action basketball as the example.

46, 15], which have only a few overlapping categories be-

tween source and target domains. This introduces lim-

ited domain discrepancy so that a deep CNN architecture

can achieve nearly perfect performance even without any

DA method (details in Section 5.2 and Table 2). There-

fore, we propose two larger-scale datasets to investigate

video DA: 1) UCF-HMDBfull: We collect 12 overlap-

ping categories between UCF101 [38] and HMDB51 [18],

which is around three times larger than both UCF-Olympic

and UCF-HMDBsmall, and contains larger domain dis-

crepancy (details in Section 5.2 and Tables 3 and 4).

2) Kinetics-Gameplay: We collect from several currently
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popular video games with 30 overlapping categories with

Kinetics-600 [17, 2]. This dataset is much more challeng-

ing than UCF-HMDBfull due to the significant domain shift

between the distributions of virtual and real data.

Videos can suffer from domain discrepancy along both

the spatial and temporal directions, bringing the need of

alignment for embedded feature spaces along both direc-

tions, as shown in Figure 1. However, most DA approaches

have not explicitly addressed the domain shift problem in

the temporal direction. Therefore, we first investigate dif-

ferent DA integration methods for video classification and

show that: 1) aligning the features that encode temporal dy-

namics outperforms aligning only spatial features. 2) to ef-

fectively align domains spatio-temporally, which features to

align is more important than what DA approaches to use.

To support our claims, we then propose Temporal Adver-

sarial Adaptation Network (TA2N), which simultaneously

aligns and learns temporal dynamics, outperforming other

approaches which naively apply more sophisticated image-

based DA methods for videos.

The temporal dynamics in videos can be represented as

a combination of multiple local temporal features corre-

sponding to different motion characteristics. Not all of the

local temporal features equally contribute to the overall do-

main shift. We want to focus more on aligning those which

have high contribution to the overall domain shift, such as

the local temporal features connected by thicker green ar-

rows shown in Figure 1. Therefore, we propose Tempo-

ral Attentive Adversarial Adaptation Network (TA3N)

to explicitly attend to the temporal dynamics by taking into

account the domain distribution discrepancy. In this way,

the temporal dynamics which contribute more to the overall

domain shift will be focused on, leading to more effective

temporal alignment. TA3N achieves state-of-the-art perfor-

mance on all four investigated video DA datasets.

In summary, our contributions are three-fold:

1. Video DA Dataset Collection: We collect two

large-scale video DA datasets, UCF-HMDBfull and

Kinetics-Gameplay, to investigate the domain dis-

crepancy problem across videos, which is an under-

explored research problem. To our knowledge, they

are by far the largest datasets for video DA problems.

2. Feature Alignment Exploration for Video DA: We

investigate different DA integration approaches for

videos and provide a strategy to effectively align do-

mains spatio-temporally for videos by aligning tempo-

ral relation features. We propose this simple but effec-

tive approach, TA2N, to demonstrate the importance of

determining what to align over the DA method to use.

3. Temporal Attentive Adversarial Adaptation Net-

work (TA3N): We propose TA3N, which simultane-

ously aligns domains, encodes temporal dynamics into

video representations, and attends to representations

with domain distribution discrepancy. TA3N achieves

state-of-the-art performance on both small- and large-

scale cross-domain video datasets.

2. Related Works

Video Classification. With the rise of deep convolu-

tional neural networks (CNNs), recent work for video clas-

sification mainly aims to learn compact spatio-temporal

representations by leveraging CNNs for spatial information

and designing various architectures to exploit temporal dy-

namics [16]. In addition to separating spatial and tempo-

ral learning, some works propose different architectures to

encode spatio-temporal representations with consideration

of the trade-off between performance and computational

cost [41, 3, 31, 42]. Another branch of work utilizes optical

flow to compensate for the lack of temporal information in

raw RGB frames [37, 7, 44, 3, 26]. Moreover, some works

extract temporal dependencies between frames for video

tasks by utilizing recurrent neural networks (RNNs) [5], at-

tention [25, 27] and relation modules [51]. Note that we

focus on attending to the temporal dynamics to effectively

align domains and we consider other modalities, e.g. optical

flow, to be complementary to our method.

Domain Adaptation. Most recent DA approaches are

based on deep learning architectures designed for address-

ing the domain shift problems given the fact that the deep

CNN features without any DA method outperform tradi-

tional DA methods using hand-crafted features [6]. Most

DA approaches follow the two-branch (source and target)

architecture, and aim to find a common feature space be-

tween the source and target domains. The models are there-

fore optimized with a combination of classification and do-

main losses [4].

One of the main classes of methods used is Discrepancy-

based DA, whose metrics are designed to measure the

distance between source and target feature distribu-

tions, including variations of maximum mean discrepancy

(MMD) [22, 23, 48, 47, 24] and the CORAL function [40].

By diminishing the distance of distributions, discrepancy-

based DA methods reduce the gap across domains. Another

common method, Adversarial-based DA, adopts a similar

concept as GANs [11] by integrating domain discrimina-

tors into the architectures. Through the adversarial objec-

tives, the discriminators are optimized to classify differ-

ent domains, while the feature extractors are optimized in

the opposite direction. ADDA [43] uses an inverted label

GAN loss to split the optimization into two parts: one for

the discriminator and the other for the generator. In con-

trast, the gradient reversal layer (GRL) is used in some

work [9, 10, 49] to invert the gradients so that the discrim-

inator and generator are optimized simultaneously. Addi-

tionally, Normalization-based DA [21, 20] adapts batch nor-
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malization [14] to DA problems by calculating two sepa-

rate statistics, representing source and target, for normal-

ization. Furthermore, Ensemble-based DA [8, 33, 34, 19]

builds a target branch ensemble by incorporating multiple

target branches. Recently, TADA [45] adopts the attention

mechanism to adapt the transferable regions. We extend

these concepts to spatio-temporal domains, aiming to attend

to the important parts of temporal dynamics for alignment.

Video Domain Adaptation. Unlike image-based DA,

video-based DA is still an under-explored area. Only a few

works focus on small-scale video DA with only a few over-

lapping categories [39, 46, 15]. [39] improves the domain

generalizability by decreasing the effect of the background.

[46] maps source and target features to a common feature

space using shallow neural networks. AMLS [15] adapts

pre-extracted C3D [41] features on a Grassmann manifold

obtained using PCA. However, the datasets used in the

above works are too small to have enough domain shift

to evaluate DA performance. Therefore, we propose two

larger cross-domain datasets UCF-HMDBfull and Kinetics-

Gameplay, and provide benchmarks with different baseline

approaches. Recently, TSRNet [50] transfers knowledge for

action localization using MMD, but only aligns the video-

level features. Instead, our TA3N simultaneously attends,

aligns, and encodes temporal dynamics into video features.

3. Technical Approach

We first introduce our baseline model which simply ex-

tends image-base DA for videos using the temporal pooling

mechanism (Section 3.1). And then we investigate better

ways to incorporate temporal dynamics for video DA (Sec-

tion 3.2), and describe our final proposed method with the

domain attention mechanism (Section 3.3).

3.1. Baseline Model

Given the recent success of large-scale video classifica-

tion using CNNs [16], we build our baseline on such archi-

tectures, as shown in the lower part of Figure 2.
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Figure 2: Baseline architecture (TemPooling) with the ad-

versarial discriminators Ĝsd and Ĝtd. Ly is the class pre-

diction loss, and Lsd and Ltd are the domain losses. See the

detailed architecture in the supplementary material.

We first feed the input video Xi = {x1
i , x

2
i , ..., x

K
i }

extracted from ResNet [12] pre-trained on ImageNet into

our model, where x
j
i is the jth frame-level feature rep-

resentation of the ith video. The model can be divided

into two parts: 1) Spatial module Gsf (.; θsf ), which con-

sists of multilayer perceptrons (MLP) that aims to convert

the general-purpose feature vectors into task-driven feature

vectors, where the task is video classification in this paper;

2) Temporal module Gtf (.; θtf ) aggregates the frame-level

feature vectors to form a single video-level feature vec-

tor for each video. In our baseline architecture, we con-

duct mean-pooling along the temporal direction to generate

video-level feature vectors, and note it as TemPooling. Fi-

nally, another fully-connected layer Gy(.; θy) converts the

video-level features into the final predictions, which are

used to calculate the class prediction loss Ly .

Similar to image-based DA problems, the baseline ap-

proach is not able to generalize to data from different

domains due to domain shift. Therefore, we integrate

TemPooling with the unsupervised DA method inspired

by one of the most popular adversarial-based approaches,

DANN [9, 10]. The main idea is to add additional domain

classifiers Gd(.; θd), to discriminate whether the data is

from the source or target domain. Before back-propagating

the gradients to the main model, a gradient reversal layer

(GRL) is inserted between Gd and the main model to invert

the gradient, as shown in Figure 2. During adversarial train-

ing, the parameters θsf are learned by maximizing the do-

main discrimination loss Ld, and parameters θd are learned

by minimizing Ld with the domain label d. Therefore, the

feature generator Gf will be optimized to gradually align

the feature distributions between the two domains.

In this paper, we note the Adversarial Discriminator Ĝd

as the combination of a gradient reversal layer (GRL) and

a domain classifier, and insert Ĝd into TemPooling in two

ways: 1) Ĝsd: show how directly applying image-based DA

approaches can benefit video DA; 2) Ĝtd: indicate how DA

on temporal-dynamics-encoded features benefits video DA.

The prediction loss Ly , spatial domain loss Lsd and tem-

poral domain loss Ltd can be expressed as follows (ignoring

all the parameter symbols through the paper to save space):

L
i
y = Ly(Gy(Gtf (Gsf (Xi))), yi) (1)

L
i
sd =

1

K

KX

j=1

Ld(Gsd(Gsf (x
j
i )), di) (2)

L
i
td = Ld(Gtd(Gtf (Gsf (Xi))), di) (3)

where K is the number of frames sampled from each video.

L is the cross entropy loss function.

The overall loss can be expressed as follows:

L =
1

NS

NSX

i=1

L
i
y −

1

NS∪T

NS∪TX

i=1

(λsL
i
sd + λtL

i
td) (4)

where NS equals the number of source data, and NS∪T

equals the number of all data. λs and λt is the trade-off

weighting for spatial and temporal domain loss.
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3.2. Integration of Temporal Dynamics with DA

One main drawback of directly integrating image-based

DA approaches into our baseline architecture is that the fea-

ture representations learned in the model are mainly from

the spatial features. Although we implicitly encode the

temporal information by the temporal pooling mechanism,

the relation between frames is still missing. Therefore, we

would like to address two questions: 1) Does the video DA

problem benefit from encoding temporal dynamics into fea-

tures? 2) Instead of only modifying feature encoding meth-

ods, how can DA be further integrated while encoding tem-

poral dynamics into features?

To answer the first question, given the fact that humans

can recognize actions by reasoning the observations across

time, we propose the TemRelation architecture by replacing

the temporal pooling mechanism with the Temporal Rela-

tion module, which is modified from [36, 51], as shown in

Figure 4.

The n-frame temporal relation is defined by the function:

Rn(Vi) =
X

m

gφ(n)((V
n
i )m) (5)

where (V n
i )m = {vai , v

b
i , ...}m is the mth set of frame-level

representations from n temporal-ordered sampled frames.

a and b are the frame indices. We fuse the feature vectors

that are time-ordered with the function gφ(n) , which is an

MLP with parameters φ(n). To capture temporal relations

at multiple time scales, we sum up all the n-frame relation

features into the final video representation. In this way, the

temporal dynamics are explicitly encoded into features. We

then insert Ĝd into TemRelation as we did for TemPooling.

Although aligning temporal-dynamic-encoded features

benefits video DA, feature encoding and DA are still

two separate processes, leading to sub-optimal DA per-

formance. Therefore, we address the second question by

proposing Temporal Adversarial Adaptation Network

(TA2N), which explicitly integrates Ĝd inside the Tempo-

ral module to align the model across domains while learn-

ing temporal dynamics. Specifically, we integrate each n-

frame relation with a corresponding relation discriminator

Ĝn
rd because different n-frame relations represent different

temporal characteristics, which correspond to different parts

of actions. The relation domain loss Lrd can be expressed

as follows:

L
i
rd =

1

K − 1

KX

n=2

Ld(G
n
rd(Rn(Gsf (Xi))), di) (6)

The experimental results show that our integration strategy

can effectively align domains spatio-temporally for videos,

and outperform those which are extended from sophisti-

cated DA approaches although TA2N is adopted from a sim-

pler DA method (DANN) (see details in Tables 3 to 5).
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video 
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final 
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feature…
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Figure 3: The domain attention mechanism in TA3N.

Thicker arrows correspond to larger attention weights.

3.3. Temporal Attentive Alignment for Videos

The final video representation of TA2N is generated by

aggregating multiple local temporal features. Although

aligning temporal features across domains benefits video

DA, not all the features are equally important to align. In or-

der to effectively align overall temporal dynamics, we want

to focus more on aligning the local temporal features which

have larger domain discrepancy. Therefore, we represent

the final video representation as a combination of local tem-

poral features with different attention weighting, as shown

in Figure 3, and aim to attend to features of interest that are

domain discriminative so that the DA mechanism can fo-

cus on aligning those features. The main question becomes:

How to incorporate domain discrepancy for attention?

To address this, we propose Temporal Attentive Adver-

sarial Adaptation Network (TA3N), as shown in Figure 4,

by introducing the domain attention mechanism, which uti-

lize the entropy criterion to generate the domain attention

value for each n-frame relation feature as below:

w
n
i = 1−H(d̂ni ) (7)

where d̂ni is the output of Gn
rd for the ith video. H(p) =

−

P
k pk · log(pk) is the entropy function to measure uncer-

tainty. wn
i increases when H(d̂ni ) decreases, which means

the domains can be distinguished well. We also add a resid-

ual connection for more stable optimization. Therefore,

the final video feature representation hi generated from at-

tended local temporal features, which are learned by local

temporal modules G
(n)
tf , can be expressed as:

hi =

KX

n=2

(wn
i + 1) ·G

(n)
tf (Gsf (Xi)) (8)

Finally, we add the minimum entropy regularization to

refine the classifier adaptation. However, we only want to

minimize the entropy for the videos that are similar across

domains. Therefore, we attend to the videos which have

low domain discrepancy, so that we can focus more on min-

imizing the entropy for these videos. The attentive entropy
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Figure 4: The overall architecture of the proposed Temporal Attentive Adversarial Adaptation Network (TA3N). In the

temporal relation module, time-ordered frames are used to generate K-1 relation feature representations R = {R2, ..., RK},

where Rn corresponds to the n-frame relation (the numbers in this figure are examples of time indices). After attending with

the domain predictions from relation discriminators Gn
rd, the relation features are summed up to the final video representation.

The attentive entropy loss Lae, which is calculated by domain entropy H(d̂) and class entropy H(ŷ), aims to enhance the

certainty of those videos that are more similar across domains. See the detailed architecture in the supplementary material.

loss Lae can be expressed as follows:

L
i
ae = (1 +H(d̂i)) ·H(ŷi) (9)

where d̂i and ŷi is the output of Gtd and Gy , respectively.

We also adopt the residual connection for stability.

By combining Equations (1) to (3), (6) and (9), and re-

placing Gsf and Gtf with hi by Equation (8), the overall

loss of TA3N can be expressed as follows:

L =
1

NS

NSX

i=1

L
i
y +

1

NS∪T

NS∪TX

i=1

γL
i
ae

−
1

NS∪T

NS∪TX

i=1

(λs
L

i
sd + λ

r
L

i
rd + λ

t
L

i
td)

(10)

where λs, λr and λt is the trade-off weighting for each do-

main loss. γ is the weighting for the attentive entropy loss.

All the weightings are chosen via grid search.

Our proposed TA3N and TADA [45] both utilize en-

tropy functions for attention but with different perspectives.

TADA aims to focus on the foreground objects for image

DA, while TA3N aims to find important and discriminative

parts of temporal dynamics to align for video DA.

4. Datasets

There are very few benchmark datasets for video DA,

and only small-scale datasets have been widely used [39,

46, 15]. Therefore, we specifically create two cross-domain

datasets to evaluate the proposed approaches for the video

DA problem, as shown in Table 1. For more details about

the datasets, please refer to the supplementary material.

4.1. UCF-HMDBfull

We extend UCF-HMDBsmall [39], which only selects 5

visually highly similar categories, by collecting all of the

relevant and overlapping categories between UCF101 [38]

and HMDB51 [18], which results in 12 categories. We fol-

low the official split method to separate training and vali-

dation sets. This dataset, UCF-HMDBfull, includes more

than 3000 video clips, which is around 3 times larger than

UCF-HMDBsmall and UCF-Olympic.

4.2. Kinetics-Gameplay

In addition to real-world videos, we are also interested

in virtual-world videos for DA. While there are more than

ten real-world video datasets, there is a limited number of

virtual-world datasets for video classification. It is mainly

because rendering realistic human actions using game en-

gines requires gaming graphics expertise which is time-

consuming. Therefore, we create the Gameplay dataset by

collecting gameplay videos from currently popular video

games, Detroit: Become Human and Fortnite, to build our

own video dataset for the virtual domain. For the real

domain, we use one of the largest public video datasets

Kinetics-600 [17, 2]. We follow the closed-set DA set-

ting [30] to select 30 overlapping categories between the
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UCF-HMDBsmall UCF-Olympic UCF-HMDBfull Kinetics-Gameplay

length (sec.) 1 - 21 1 - 39 1 - 33 1 - 10

class # 5 6 12 30

video # 1171 1145 3209 49998

Table 1: The comparison of the cross-domain video datasets.

Kinetics-600 and Gameplay datasets to build the Kinetics-

Gameplay dataset with both domains, including around

50K video clips. See the supplementary material for the

complete statistics and example snapshots.

5. Experiments

We therefore evaluate DA approaches on four datasets:

UCF-Olympic, UCF-HMDBsmall, UCF-HMDBfull and

Kinetics-Gameplay.

5.1. Experimental Setup

UCF-Olympic and UCF-HMDBsmall. First, we

evaluate our approaches on UCF-Olympic and UCF-

HMDBsmall, and compare with all other works that also

evaluate on these two datasets [39, 46, 15]. We follow

the default settings, but the method to split the UCF video

clips into training and validations sets is not specified in

these papers, so we follow the official split method from

UCF101 [38].

UCF-HMDBfull and Kinetics-Gameplay. For the

self-collected datasets, we follow the common experimen-

tal protocol of unsupervised DA [30]: the training data con-

sists of labeled data from the source domain and unlabeled

data from the target domain, and the validation data is all

from the target domain. However, unlike most of the im-

age DA settings, our training and validation data in both

domains are separate to avoid potentially overfitting while

aligning different domains. To compare with image-based

DA approaches, we extend several state-of-the-art meth-

ods [10, 24, 20, 34] for video DA with our TemPooling and

TemRelation architectures, as shown in Tables 3 to 5. The

difference between the “Target only” and “Source only” set-

tings is the domain used for training. The “Target only”

setting can be regarded as the upper bound without domain

shift while the “Source only” setting shows the lower bound

which directly applies the model trained with source data to

the target domain without modification. See supplementary

materials for full implementation details.

5.2. Experimental Results

UCF-Olympic and UCF-HMDBsmall. In these two

datasets, our approach outperforms all the previous methods

by at least 6.5% absolute difference (98.15% - 91.60%) on

the “U → O” setting, and 9% difference (99.33% - 90.25%)

on the “U → H” setting, as shown in Table 2.

Source → Target U → O O → U U → H H → U

W. Sultani et al. [39] 33.33 47.91 68.70 68.67

T. Xu et al. [46] 87.00 75.00 82.00 82.00

AMLS (GFK) [15]† 84.65 86.44 89.53 95.36

AMLS (SA) [15]† 83.92 86.07 90.25 94.40

DAAA [15]†‡ 91.60 89.96 - -

TemPooling 96.30 87.08 98.67 97.35

TemPooling + DANN [10] 98.15 90.00 99.33 98.41

Ours (TA2N) 98.15 91.67 99.33 99.47

Ours (TA3N) 98.15 92.92 99.33 99.47

Table 2: The accuracy (%) for the state-of-the-art work

on UCF-Olympic and UCF-HMDBsmall (U: UCF, O:

Olympic, H: HMDB). †We only show their results which

are fine-tuned with source data for fair comparison. Please

refer to the supplementary material for more details. ‡[15]

did not test DAAA on UCF-HMDBsmall.

These results also show that the performance on these

datasets is saturated. With a strong CNN as the backbone

architecture, even our baseline architecture TemPooling can

achieve high accuracy without any DA method (e.g. 96.3%

for “U → O”). This suggests that these two datasets are not

enough to evaluate more sophisticated DA approaches, so

larger-scale datasets for video DA are needed.

UCF-HMDBfull. We then evaluate our approaches

and compare with other image-based DA approaches on

the UCF-HMDBfull dataset, as shown in Tables 3 and 4.

The accuracy difference between “Target only” and “Source

only” indicates the domain gap. The gaps for the HMDB

dataset are 11.11% for TemRelation and 10.28% for Tem-

Pooling (see Table 3), and the gaps for the UCF dataset

are 21.01% for TemRelation and 17.16% for TemPool-

ing (see Table 4). It is worth noting that the “Source

only” accuracy of our baseline architecture (TemPooling)

on UCF-HMDBfull is much lower than UCF-HMDBsmall

(e.g. 28.39 lower for “U → H”), which implies that UCF-

HMDBfull contains much larger domain discrepancy than

UCF-HMDBsmall. The value “Gain” is the difference from

the “Source only” accuracy, which directly indicates the ef-

fectiveness of the DA approaches. We now answer the two

questions for video DA in Section 3.2 (see Tables 3 and 4):

1. Does the video DA problem benefit from encoding tem-

poral dynamics into features?

From Tables 3 and 4, we see that for the same

DA method, TemRelation outperforms TemPooling in
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Temporal Module TemPooling TemRelation

Acc. Gain Acc. Gain

Target only 80.56 - 82.78 -

Source only 70.28 - 71.67 -

DANN [10] 71.11 0.83 75.28 3.61

JAN [24] 71.39 1.11 74.72 3.05

AdaBN [20] 75.56 5.28 72.22 0.55

MCD [34] 71.67 1.39 73.89 2.22

Ours (TA2N) N/A - 77.22 5.55

Ours (TA3N) N/A - 78.33 6.66

Table 3: The comparison of accuracy (%) with other ap-

proaches on UCF-HMDBfull (U → H). Gain represents the

absolute difference from the “Source only” accuracy. TA2N

and TA3N are based on the TemRelation architecture, so

they are not applicable to TemPooling.

most cases, especially for the gain value. For example,

“TemPooling+DANN” reaches 0.83% absolute accu-

racy gain on the “U → H” setting and 0.17% gain

on the “H → U” setting while “TemRelation+DANN”

reaches 3.61% gain on “U → H” and 2.45% gain on

“H → U”. This means that applying DA approaches to

the video representations which encode the temporal

dynamics improves the overall performance for cross-

domain video classification.

2. How to further integrate DA while encoding temporal

dynamics into features?

Although integrating TemRelation with image-based

DA approaches generally has better alignment perfor-

mance than the baseline (TemPooling), feature encod-

ing and DA are still two separate processes. The align-

ment happens only before and after the temporal dy-

namics are encoded in features. In order to explic-

itly force alignment of the temporal dynamics across

domains, we propose TA2N, which reaches 77.22%

(5.55% gain) on “U → H” and 80.56% (6.66% gain)

on “H → U”. Tables 3 and 4 show that although

TA2N is adopted from a simple DA method (DANN),

it still outperforms other approaches which are ex-

tended from more sophisticated DA methods but do

not follow our strategy.

Finally, with the domain attention mechanism, our pro-

posed TA3N reaches 78.33% (6.66% gain) on “U → H” and

81.79% (7.88% gain) on “H → U”, achieving state-of-the-

art performance on UCF-HMDBfull in terms of accuracy

and gain, as shown in Tables 3 and 4.

Kinetics-Gameplay. Kinetics-Gameplay is much more

challenging than UCF-HMDBfull because the data is from

real and virtual domains, which have more severe domain

shifts. Here we only utilize TemRelation as our backbone

architecture since it is proved to outperform TemPooling on

Temporal Module TemPooling TemRelation

Acc. Gain Acc. Gain

Target only 92.12 - 94.92 -

Source only 74.96 - 73.91 -

DANN [10] 75.13 0.17 76.36 2.45

JAN [24] 80.04 5.08 79.69 5.79

AdaBN [20] 76.36 1.40 77.41 3.51

MCD [34] 76.18 1.23 79.34 5.44

Ours (TA2N) N/A - 80.56 6.66

Ours (TA3N) N/A - 81.79 7.88

Table 4: The comparison of accuracy (%) with other ap-

proaches on UCF-HMDBfull (H → U).

Acc. Gain

Target only 64.49 -

Source only 17.22 -

DANN [10] 20.56 3.34

JAN [24] 18.16 0.94

AdaBN [20] 20.29 3.07

MCD [34] 19.76 2.54

Ours (TA2N) 24.30 7.08

Ours (TA3N) 27.50 10.28

Table 5: The comparison of accuracy (%) with other ap-

proaches on Kinetics-Gameplay.

UCF-HMDBfull. Table 5 shows that the accuracy gap be-

tween “Source only” and “Target only” is 47.27%, which

is more than twice the number in UCF-HMDBfull. In this

dataset, TA3N also outperforms all the other DA approaches

by increasing the “Source only ” accuracy from 17.22% to

27.50%.

5.3. Ablation Study and Analysis

Integration of Ĝd. We use UCF-HMDBfull to inves-

tigate the performance for integrating Ĝd in different po-

sitions. There are three ways to insert the adversarial dis-

criminator into our architectures, where each corresponds

to different feature representations, leading to three types of

discriminators Ĝsd, Ĝtd and Ĝrd, which are shown in Fig-

ure 4 and the full experimental results are shown in Table 6.

For the TemRelation architecture, the accuracy of utilizing

Ĝtd shows better performance than utilizing Ĝsd (averagely

0.58% absolute gain improvement across two tasks), while

the accuracies are the same for TemPooling. This means

that the temporal relation module can encode temporal dy-

namics that help the video DA problem, but temporal pool-

ing cannot. Utilizing the relation discriminator Ĝrd can fur-

ther improve the performance (0.92% improvement) since

we simultaneously align and learn the temporal dynamics

across domains. Finally, by combining all three discrimina-

tors, TA2N improves even more (4.20% improvement).
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S → T UCF → HMDB HMDB → UCF

Temporal
TemPooling TemRelation TemPooling TemRelation

Module

Target only 80.56 (-) 82.78 (-) 92.12 (-) 94.92 (-)

Source only 70.28 (-) 71.67 (-) 74.96 (-) 73.91 (-)

Ĝsd 71.11 (0.83) 74.44 (2.77) 75.13 (0.17) 74.44 (1.05)

Ĝtd 71.11 (0.83) 74.72 (3.05) 75.13 (0.17) 75.83 (1.93)

Ĝrd - (-) 76.11 (4.44) - (-) 75.13 (1.23)

All Ĝd 71.11 (0.83) 77.22 (5.55) 75.13 (0.17) 80.56 (6.66)

Table 6: The full evaluation of accuracy (%) for integrating

Ĝd in different positions without the attention mechanism.

Gain values are in ().

S → T UCF → HMDB HMDB → UCF

Temporal
TemPooling TemRelation TemPooling TemRelation

Module

Target only 80.56 (-) 82.78 (-) 92.12 (-) 94.92 (-)

Source only 70.28 (-) 71.67 (-) 74.96 (-) 73.91 (-)

All Ĝd 71.11 (0.83) 77.22 (5.55) 75.13 (0.17) 80.56 (6.66)

All Ĝd 73.06 (2.78) 78.33 (6.66) 78.46 (3.50) 81.79 (7.88)
+Domain Attn.

Table 7: The affect of the domain attention mechanism.

S → T UCF → HMDB HMDB → UCF

Target only 82.78 (-) 94.92 (-)

Source only 71.67 (-) 73.91 (-)

No Attention 77.22 (5.55) 80.56 (6.66)

General Attention 77.22 (5.55) 80.91 (7.00)

Domain Attention 78.33 (6.66) 81.79 (7.88)

Table 8: The comparison of different attention methods.

Attention mechanism. In addition to TemRelation, we

also apply the domain attention mechanism to TemPooling

by attending to the raw frame features instead of relation

features, and improve the performance as well, as shown

in Table 7. This implies that video DA can benefit from

the domain attention even if the backbone architecture does

not encode temporal dynamics. We also compare the do-

main attention module with the general attention module,

which calculates the attention weights via the FC-Tanh-FC-

Softmax architecture. However, it performs worse since the

weights are computed within one domain, lacking of the

consideration of domain discrepancy, as shown in Table 8.

Visualization of distribution. To investigate how our

approaches bridge the gap between source and target do-

mains, we visualize the distribution of both domains using

t-SNE [28]. Figure 5 shows that TA3N can group source

data (blue dots) into denser clusters and generalize the dis-

tribution into the target domains (orange dots) as well.

Domain discrepancy measure. To measure the align-

ment between different domains, we use Maximum Mean

Discrepancy (MMD) and domain loss, which are calculated

using the final video representations. Lower MMD values

and higher domain loss both imply smaller domain gap.

TA3N reaches lower discrepancy loss (0.0842) compared to

(a) TemPooling + DANN [10] (b) TA3N

Figure 5: The comparison of t-SNE visualization. The blue

dots represent source data while the orange dots represent

target data. See the supplementary for more comparison.

Discrepancy Domain Validation

loss loss accuracy

TemPooling 0.1840 1.1163 70.28

TemPooling + DANN [10] 0.1604 1.2023 71.11

TemRelation 0.2626 1.7588 71.67

TA3N 0.0842 1.9286 78.33

Table 9: The discrepancy loss (MMD), domain loss and val-

idation accuracy of our baselines and proposed approaches.

the TemPooling baseline (0.184), and shows great improve-

ment in terms of the domain loss (from 1.116 to 1.9286), as

shown in Table 9.

6. Conclusion and Future Work

In this paper, we present two large-scale datasets for

video domain adaptation, UCF-HMDBfull and Kinetics-

Gameplay, including both real and virtual domains. We

use these datasets to investigate the domain shift problem

across videos, and show that simultaneously aligning and

learning temporal dynamics achieves effective alignment

without the need for sophisticated DA methods. Finally,

we propose Temporal Attentive Adversarial Adaptation

Network (TA3N) to simultaneously attend, align and learn

temporal dynamics across domains, achieving state-of-the-

art performance on all of the cross-domain video datasets

investigated. The code and data are released here.

The ultimate goal of our research is to solve real-world

problems. Therefore, in addition to integrating more DA

approaches into our video DA pipelines, there are two main

directions we would like to pursue for future work: 1) ap-

ply TA3N to different cross-domain video tasks, includ-

ing video captioning, segmentation, and detection; 2) we

would like to extend these methods to the open-set set-

ting [1, 35, 30, 13], which has different categories between

source and target domains. The open-set setting is much

more challenging but closer to real-world scenarios.
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Thomas Natschläger, and Susanne Saminger-Platz. Central

moment discrepancy (cmd) for domain-invariant representa-

tion learning. In International Conference on Learning Rep-

resentations (ICLR), 2017. 2

[49] Weichen Zhang, Wanli Ouyang, Wen Li, and Dong Xu. Col-

laborative and adversarial network for unsupervised domain

adaptation. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2018. 2

[50] Xiao-Yu Zhang, Haichao Shi, Changsheng Li, Kai Zheng,

Xiaobin Zhu, and Lixin Duan. Learning transferable self-

attentive representations for action recognition in untrimmed

videos with weak supervision. In AAAI Conference on Arti-

ficial Intelligence (AAAI), 2019. 3

[51] Bolei Zhou, Alex Andonian, Aude Oliva, and Antonio Tor-

ralba. Temporal relational reasoning in videos. In European

Conference on Computer Vision (ECCV), 2018. 2, 4

6330


