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Abstract

Sliding-window object detectors that generate bounding-

box object predictions over a dense, regular grid have ad-

vanced rapidly and proven popular. In contrast, modern

instance segmentation approaches are dominated by meth-

ods that first detect object bounding boxes, and then crop

and segment these regions, as popularized by Mask R-CNN.

In this work, we investigate the paradigm of dense sliding-

window instance segmentation, which is surprisingly under-

explored. Our core observation is that this task is funda-

mentally different than other dense prediction tasks such

as semantic segmentation or bounding-box object detection,

as the output at every spatial location is itself a geometric

structure with its own spatial dimensions. To formalize this,

we treat dense instance segmentation as a prediction task

over 4D tensors and present a general framework called

TensorMask that explicitly captures this geometry and en-

ables novel operators on 4D tensors. We demonstrate that

the tensor view leads to large gains over baselines that ig-

nore this structure, and leads to results comparable to Mask

R-CNN. These promising results suggest that TensorMask

can serve as a foundation for novel advances in dense mask

prediction and a more complete understanding of the task.

Code will be made available.

1. Introduction

The sliding-window paradigm—finding objects by look-

ing in each window placed over a dense set of image loca-

tions—is one of the earliest and most successful concepts in

computer vision [36, 38, 9, 10] and is naturally connected to

convolutional networks [20]. However, while today’s top-

performing object detectors rely on sliding window predic-

tion to generate initial candidate regions, a refinement stage

is applied to these candidate regions to obtain more accu-

rate predictions, as pioneered by Faster R-CNN [34] and

Mask R-CNN [17] for bounding-box object detection and

instance segmentation, respectively. This class of methods

has dominated the COCO detection challenges [24].

Recently, bounding-box object detectors which eschew

the refinement step and focus on direct sliding-window pre-
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Figure 1. Selected output of TensorMask, our proposed framework

for performing dense sliding-window instance segmentation. We

treat dense instance segmentation as a prediction task over struc-

tured 4D tensors. In addition to obtaining competitive quantitative

results, TensorMask achieves results that are qualitatively reason-

able. Observe that both small and large objects are well delineated

and more critically overlapping objects are properly handled.

diction, as exemplified by SSD [27] and RetinaNet [23],

have witnessed a resurgence and shown promising results.

In contrast, the field has not witnessed equivalent progress

in dense sliding-window instance segmentation; there are

no direct, dense approaches analogous to SSD / RetinaNet

for mask prediction. Why is the dense approach thriving

for box detection, yet entirely missing for instance segmen-

tation? This is a question of fundamental scientific interest.

The goal of this work is to bridge this gap and provide a

foundation for exploring dense instance segmentation.

Our main insight is that the core concepts for defining

dense mask representations, as well as effective realizations

of these concepts in neural networks, are both lacking. Un-

like bounding boxes, which have a fixed, low-dimensional

representation regardless of scale, segmentation masks can

benefit from richer, more structured representations. For

example, each mask is itself a 2D spatial map, and masks

for larger objects can benefit from the use of larger spatial

maps. Developing effective representations for dense masks

is a key step toward enabling dense instance segmentation.

To address this, we define a set of core concepts for rep-

resenting masks with high-dimensional tensors that allows

for the exploration of novel network architectures for dense

mask prediction. We present and experiment with several

such networks in order to demonstrate the merits of the pro-
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Figure 2. Example results of TensorMask and Mask R-CNN [17] with a ResNet-101-FPN backbone (on the same images as used in Fig. 6

of Mask R-CNN [17]). The results are quantitatively and qualitatively similar, demonstrating that the dense sliding window paradigm can

indeed be effective for the instance segmentation task. We challenge the reader to identify which results were generated by TensorMask.1

posed representations. Our framework, called TensorMask,

establishes the first dense sliding-window instance segmen-

tation system that achieves results near to Mask R-CNN.

The central idea of the TensorMask representation is to

use structured 4D tensors to represent masks over a spatial

domain. This perspective stands in contrast to prior work

on the related task of segmenting class-agnostic object pro-

posals such as DeepMask [31] and InstanceFCN [7] that

used unstructured 3D tensors, in which the mask is packed

into the third ‘channel’ axis. The channel axis, unlike the

axes representing object position, does not have a clear ge-

ometric meaning and is therefore difficult to manipulate. By

using a basic channel representation, one misses an oppor-

tunity to benefit from using structural arrays to represent

masks as 2D entities—analogous to the difference between

MLPs and ConvNets [20] for representing 2D images.

Unlike these channel-oriented approaches, we propose

to leverage 4D tensors of shape (V,U,H,W ), in which

both (H,W )—representing object position—and (V,U)—
representing relative mask position—are geometric sub-

tensors, i.e., they have axes with well-defined units and ge-

ometric meaning w.r.t. the image. This shift in perspective

from encoding masks in an unstructured channel axis to us-

ing structured geometric sub-tensors enables the definition

of novel operations and network architectures. These net-

works can operate directly on the (V,U) sub-tensor in geo-

metrically meaningful ways, including coordinate transfor-

mation, up-/downscaling, and use of scale pyramids.

Enabled by the TensorMask framework, we develop a

pyramid structure over a scale-indexed list of 4D tensors,

which we call a tensor bipyramid. Analogous to a fea-

ture pyramid, which is a list of feature maps at multiple

scales, a tensor bipyramid contains a list of 4D tensors with

shapes (2kV, 2kU, 1

2k
H, 1

2k
W ), where k ≥ 0 indexes scale.

This structure has a pyramidal shape in both (H,W ) and

(V,U) geometric sub-tensors, but growing in opposite di-

rections. This natural design captures the desirable property

that large objects have high-resolution masks with coarse

1In Fig. 2, Mask R-CNN results on top; TensorMask results on bottom.

spatial localization (large k) and small objects have low-

resolution masks with fine spatial localization (small k).

We combine these components into a network backbone

and training procedure closely following RetinaNet [23]

in which our dense mask predictor extends the original

dense bounding box predictor. With detailed ablation ex-

periments, we evaluate the effectiveness of the TensorMask

framework and show the importance of explicitly captur-

ing the geometric structure of this task. Finally, we show

TensorMask yields similar results to its Mask R-CNN coun-

terpart (see Figs. 1 and 2). These promising results suggest

the proposed framework can help pave the way for future

research on dense sliding-window instance segmentation.

2. Related Work

Classify mask proposals. The modern instance segmenta-

tion task was introduced by Hariharan et al. [15] (before be-

ing popularized by COCO [24]). In their work, the method

proposed for this task involved first generating object mask

proposals [37, 1], then classifying these proposals [15]. In

earlier work, the classify-mask-proposals methodology was

used for other tasks. For example, Selective Search [37]

and the original R-CNN [12] classified mask proposals to

obtain box detections and semantic segmentation results;

these methods could easily be applied to instance segmen-

tation. These early methods relied on bottom-up mask pro-

posals computed by pre-deep-learning era methods [37, 1];

our work is more closely related to dense sliding-window

methods for mask object proposals as pioneered by Deep-

Mask [31]. We discuss this connection shortly.

Detect then segment. The now dominant paradigm for in-

stance segmentation involves first detecting objects with a

box and then segmenting each object using the box as a

guide [8, 39, 21, 17]. Perhaps the most successful instan-

tiation of the detect-then-segment methodology is Mask R-

CNN [17], which extended the Faster R-CNN [34] detec-

tor with a simple mask predictor. Approaches that build

on Mask R-CNN [26, 30, 4] have dominated leaderboards

of recent challenges [24, 29, 6]. Unlike in bounding-box
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detection, where sliding-window [27, 33, 23] and region-

based [11, 34] methods have both thrived, in the area of

instance segmentation, research on dense sliding-window

methods has been missing. Our work aims to close this gap.

Label pixels then cluster. A third class of approaches to

instance segmentation (e.g., [3, 19, 2, 25]) builds on mod-

els developed for semantic segmentation [28, 5]. These ap-

proaches label each image pixel with a category and some

auxiliary information that a clustering algorithm can use to

group pixels into object instances. These approaches benefit

from improvements on semantic segmentation and natively

predict higher-resolution masks for larger objects. Com-

pared to detect-then-segment methods, label-pixels-then-

cluster methods lag behind in accuracy on popular bench-

marks [24, 29, 6]. Instead of employing fully convolutional

models for dense pixel labeling, TensorMask explores the

framework of building fully convolutional (i.e., dense slid-

ing window) models for dense mask prediction, where the

output at each spatial location is itself a 2D spatial map.

Dense sliding window methods. To the best of our knowl-

edge, no prior methods exist for dense sliding-window in-

stance segmentation. The proposed TensorMask frame-

work is the first such approach. The closest methods are

for the related task of class-agnostic mask proposal genera-

tion, specifically models such as DeepMask [31, 32] and In-

stanceFCN [7] which apply convolutional neural networks

to generate mask proposals in a dense sliding-window man-

ner. Like these approaches, TensorMask is a dense sliding-

window model, but it spans a more expressive design space.

DeepMask and InstanceFCN can be expressed naturally

as class-agnostic TensorMask models, but TensorMask en-

ables novel architectures that perform better. Also, unlike

these class-agnostic methods, TensorMask performs multi-

class classification in parallel to mask prediction, and thus

can be applied to the task of instance segmentation.

3. Tensor Representations for Masks

The central idea of the TensorMask framework is to

use structured high-dimensional tensors to represent image

content (e.g., masks) in a set of densely sliding windows.

Consider a V×U window sliding on a feature map of

width W and height H . It is possible to represent all

masks in all sliding window locations by a tensor of a shape

(C,H,W ), where each mask is parameterized by C=V ·U
pixels. This is the representation used in DeepMask [31].

The underlying spirit of this representation, however,

is in fact a higher dimensional (4D) tensor with shape

(V,U,H,W ). The sub-tensor (V,U) represents a mask as

a 2D spatial entity. Instead of viewing the channel dimen-

sion C as a black box into which a V×U mask is arranged,

the tensor perspective enables several important concepts

for representing dense masks, discussed next.

3.1. Unit of Length

The unit of length (or simply unit) of each spatial axis

is a necessary concept for understanding 4D tensors in our

framework. Intuitively, the unit of an axis defines the length

of one pixel along it. Different axes can have different units.

The unit of the H and W axes, denoted as σHW, can be

set as the stride w.r.t. the input image (e.g., res4 of ResNet-

50 [18] has σHW=16 image pixels). Analogously, the V and

U axes define another 2D spatial domain and have their own

unit, denoted as σVU. Shifting one pixel along the V or U
axis corresponds to shifting σVU pixels on the input image.

The unit σVU need not be equal to the unit σHW, a property

that our models will benefit from.

Defining units is necessary because the interpretation of

the tensor shape (V,U,H,W ) is ambiguous if units are not

specified. For example, (V,U) represents a V×U window

in image pixels if σVU=1 image pixel, but a 2V×2U win-

dow in image pixels if σVU=2 image pixels. The units

and how they change due to up/down-scaling operations are

central to multi-scale representations (more in §3.6).

3.2. Natural Representation

With the definition of units, we can formally describe the

representational meaning of a (V,U,H,W ) tensor. In our

simplest definition, this tensor represents the windows slid-

ing over (H,W ). We call this the natural representation.

Denoting α=σVU/σHW as the ratio of units, formally we have:

Natural Representation: For a 4D tensor of shape (V, U,H,W ),
its value at coordinates (v, u, y, x) represents the mask value at

(y + αv, x+ αu) in the αV×αU window centered at (y, x).2

Here (v, u, y, x) ∈ [−V

2
, V

2
)×[−U

2
, U

2
)×[0, H)×[0,W ),

where ‘×’ denotes cartesian product. Conceptually, the

tensor can be thought of as a continuous function in this do-

main. For implementation, we must instead rasterize the 4D

tensor as a discrete function defined on sampled locations.

We assume a sampling rate of one sample per unit, with

samples located at integer coordinates (e.g., if U=3, then

u∈{−1, 0, 1}). This assumption allows the same value U to

represent both the length of the axis in terms of units (e.g.,

3σVU) and also the number of discrete samples stored for the

axis. This is convenient for working with tensors produced

by neural networks that are discrete and have lengths.

Fig. 3 (left) illustrates an example when V=U=3 and α
is 1. The natural representation is intuitive and easy to parse

as the output of a network, but it is not the only possible

representation in a deep network, as discussed next.

2Derivation: on the input image pixels, the center of a sliding window

is (y·σHW, x·σHW), and a pixel located w.r.t. this window is at (y·σHW +
v·σVU, x·σHW+u·σVU). Projecting to the HW domain (i.e., normalizing

by the unit σHW) gives us (y, x) and (y + αv, x+ αu).
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Ĥ
Ŵ
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Figure 3. Left: Natural representation. The (V, U) sub-tensor at

a pixel represents a window centered at this pixel. Right: Aligned

representation. The (V̂ , Û) sub-tensor at a pixel represents the

values at this pixel in each of the windows overlapping it.

3.3. Aligned Representation

In the natural representation, a sub-tensor (V,U) located

at (y, x) represents values at offset pixels (y+αv, x+αu)
instead of directly at (y, x). When using convolutions to

compute features, preserving pixel-to-pixel alignment be-

tween input pixels and predicted output pixels can lead

to improvements (this is similar to the motivation for

RoIAlign [17]). Next we describe a pixel-aligned represen-

tation for dense masks under the tensor perspective.

Formally, we define the aligned representation as:

Aligned Representation: For a 4D tensor (V̂ , Û , Ĥ, Ŵ ), its

value at coordinates (v̂, û, ŷ, x̂) represents the mask value at

(ŷ, x̂) in the α̂V̂×α̂Û window centered at (ŷ − α̂v̂, x̂− α̂û).

α̂=σ̂VU/σ̂HW is the ratio of units in the aligned representation.

Here, the sub-tensor (V̂ , Û) at pixel (ŷ, x̂) always de-

scribes the values taken at this pixel, i.e. it is aligned. The

subspace (V̂ , Û) does not represent a single mask, but in-

stead enumerates mask values in all V̂ ·Û windows that

overlap pixel (ŷ, x̂). Fig. 3 (right) illustrates an example

when V̂=Û=3 (nine overlapping windows) and α̂ is 1.

Note that we denote tensors in the aligned representation

as (V̂ , Û , Ĥ, Ŵ ) (and likewise for coordinates/units). This

is in the spirit of ‘named tensors’ [35] and proves useful.

Our aligned representation is related to the instance-

sensitive score maps proposed in InstanceFCN [7]. We

prove (in §A.2) that those score maps behave like our

aligned representation but with nearest-neighbor interpola-

tion on (V̂ , Û), which makes them unaligned. We test this

experimentally and show it degrades results severely.

3.4. Coordinate Transformation

We introduce a coordinate transformation between nat-

ural and aligned representations, so they can be used inter-

changeably in a single network. This gives us additional

flexibility in the design of novel network architectures.

For simplicity, we assume units in both representations

are the same: i.e., σHW=σ̂HW and σVU=σ̂VU, and thus

α=α̂ (for the more general case see §A.1). Comparing

the definitions of natural vs. aligned representations, we

have the following two relations for x, u: x+αu=x̂ and

x=x̂−α̂û. With α=α̂, solving this equation for x̂ and û
gives: x̂=x+αu and û=u. A similar results hold for y, v.

So the transformation from the aligned representation (F̂)

to the natural representation (F) is:

F(v, u, y, x) = F̂(v, u, y + αv, x+ αu). (1)

We call this transform align2nat. Likewise, solving this

set of two relations for x and u gives the reverse transform

of nat2align: F̂(v̂, û, ŷ, x̂)=F(v̂, û, ŷ−αv̂, x̂−αû).
While all the models presented in this work only use

align2nat, we present both cases for completeness.

Without restrictions on α, these transformations may in-

volve indexing a tensor at a non-integer coordinate, e.g. if

x+αu is not an integer. Since we only permit integer co-

ordinates in our implementation, we adopt a simple strat-

egy: when the op align2nat is called, we ensure that α
is a positive integer. We can satisfy this constraint on α by

changing units with up/down-scaling ops, as described next.

3.5. Upscaling Transformation

The aligned representation enables the use of a coarse

(V̂ , Û) sub-tensors to create finer (V,U) sub-tensors, which

proves quite useful. Fig. 4 illustrates this transformation,

which we call up align2nat and describe next.

The up align2nat op accepts a (V̂ , Û , Ĥ, Ŵ ) tensor

as input. The (V̂ , Û) sub-tensor is λ× coarser than the de-

sired output (so its unit is λ× bigger). It performs bilinear

upsampling, up bilinear, in the (V̂ , Û) domain by λ,

reducing the underlying unit by λ×. Next, the align2nat

op converts the output into the natural representation. The

full up align2nat op is shown in Fig. 4.

As our experiments demonstrate, the up align2nat

op is effective for generating high-resolution masks without

inflating channel counts in preceding feature maps. This in

turn enables novel architectures, as described next.

3.6. Tensor Bipyramid

In multi-scale box detection it is common practice to use

a lower-resolution feature map to extract larger-scale ob-

jects [10, 22]—this is because a sliding window of a fixed

size on a lower-resolution map corresponds to a larger re-

gion in the input image. This also holds for multi-scale

mask detection. However, unlike a box that is always rep-

resented by four numbers regardless of its scale, a mask’s

pixel size must scale with object size in order to maintain

constant resolution density. Thus, instead of always using

V×U units to present masks of different scales, we propose

to adapt the number of mask pixels based on the scale.
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up_bilinear align2nat

λV̂ , λÛ , Ĥ, Ŵ λV, λU,H,WV̂ , Û , Ĥ, Ŵ

σ̂V U=λs σ̂HW=s σ̂HW=s σHW=sσ̂V U=s σV U=s

Figure 4. The up align2nat op is defined as a sequence of two

ops. It takes an input tensor that has a coarse, λ× lower reso-

lution on V̂ Û (so the unit σ̂VU is λ× larger). The op performs

upsampling on V̂ Û by λ followed by align2nat, resulting in

an output where σVU=σHW=s (where s is the stride).

Consider the natural representation (V,U,H,W ) on a

feature map of the finest level. Here, the (H,W ) domain

has the highest resolution (smallest unit). We expect this

level to handle the smallest objects, so the (V,U) domain

should have the lowest resolution. With reference to this,

we build a pyramid that gradually reduces (H,W ) and in-

creases (V,U). Formally, we define a tensor bipyramid as:

Tensor bipyramid: A tensor bipyramid is a list of tensors
of shapes: (2kV, 2kU, 1

2k
H, 1

2k
W ), for k=0, 1, 2, . . ., with

units σk+1

VU = σk
VU and σk+1

HW = 2σk
HW, ∀k.

Because the units σk

VU are the same across all levels, a

2kV×2kU mask has 4k× more pixels in the input image. In

the (H,W ) domain, because the units σk

HW increase with k,

the number of predicted masks decreases for larger masks,

as desired. Note that the total size of each level is the same

(it is V ·U ·H·W ). A tensor bipyramid can be constructed

using the swap align2nat operation, described next.

This swap align2nat op is composed of two steps:

first, an input tensor with fine (Ĥ, Ŵ ) and coarse (V̂ , Û)
is upscaled to (2kV, 2kU,H,W ) using up align2nat.

Then (H,W ) is subsampled to obtain the final shape. The

combination of up align2nat and subsample, shown

in Fig. 5, is called swap align2nat: the units be-

fore and after this op are swapped. For efficiency, it is

not necessary to compute the intermediate tensor of shape

(2kV, 2kU,H,W ) from up align2nat, which would be

prohibitive. This is because only a small subset of values in

this intermediate tensor appear in the final output after sub-

sampling. So although Fig. 5 shows the conceptual compu-

tation, in practice we implement swap align2nat as a

single op that only performs the necessary computation and

has complexity O(V ·U ·H·W ) regardless of k.

4. TensorMask Architecture

We now present models enabled by TensorMask rep-

resentations. These models have a mask prediction head

that generates masks in sliding windows and a classifica-

tion head to predict object categories, analogous to the box

regression and classification heads in sliding-window ob-

ject detectors [27, 23]. Box prediction is not necessary for

TensorMask models, but can easily be included.

λV, λU,
1

λ
H,

1

λ
WλV, λU,H,W

up_align2nat subsample

V̂ , Û , Ĥ, Ŵ

σ̂V U=λs σ̂HW=s σHW=s σHW=λsσV U=s σV U=s

Figure 5. The swap align2nat op is defined by two ops. It

upscales the input by up align2nat (Fig. 4), then performs

subsample on the HW domain. Note how the op swaps the

units between the V U and HW domains. In practice, we imple-

ment this op in place so the complexity is independent of λ.

C,H,W V, U,H,W

conv+reshape

simple

natural
(a)

V, U,H,WC,H,W V̂ , Û , Ĥ, Ŵ

align2natconv+reshape

simple

aligned
(b)

C,H,W

conv+reshape

1

λ
V,

1

λ
U,H,W V, U,H,W

up_bilinear

upscale

natural
(c)

C,H,W

conv+reshape

1

λ
V̂ ,

1

λ
Û, Ĥ, Ŵ V, U,H,W

up_align2nat

upscale

aligned
(d)

Figure 6. Baseline mask prediction heads: Each of the four

heads shown starts from a feature map (e.g., from a level of an

FPN [22]) with an arbitrary channel number C. Then a 1×1 conv

layer projects the features into an appropriate number of channels,

which form the specified 4D tensor by reshape. The output units

of these four heads are the same, and σVU=σHW.

4.1. Mask Prediction Heads

Our mask prediction branch attaches to a convolutional

backbone. We use FPN [22], which generates a pyramid of

feature maps with sizes (C, 1

2k
H, 1

2k
W ) with a fixed num-

ber of channels C per level k. These maps are used as input

for each prediction head: mask, class, and box. Weights for

the heads are shared across levels, but not between tasks.

Output representation. We always use the natural repre-

sentation (§3.2) as the output format of the network. Any

representation (natural, aligned, etc.) can be used in the in-

termediate layers, but it will be transformed into the natural

representation for the output. This standardization decou-

ples the loss definition from network design, making use

of different representations simpler. Also, our mask output

is class-agnostic, i.e., the window always predicts a single

mask regardless of class; the class of the mask is predicted

by the classification head. Class-agnostic mask prediction

avoids multiplying the output size by the number of classes.

Baseline heads. We consider a set of four baseline heads,

illustrated in Fig. 6. Each head accepts an input feature

map of shape (C,H,W ) for any (H,W ). It then applies

a 1×1 convolutional layer (with ReLU) with the appropri-

ate number of output channels such that reshaping it into

a 4D tensor produces the desired shape for the next layer,

denoted as ‘conv+reshape’. Fig. 6a and 6b are sim-

ple heads that use natural and aligned representations, re-
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swap_align2nat head
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(b) tensor bipyramid
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1
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(a) feature pyramid

σHW = 2s

σV U = 2s

σHW = 4s

σV U = 4s

σV U = s

σHW = s

σV U = s

σHW = s

σHW = 4s

σV U = s

σHW = 2s

σV U = s

Figure 7. Conceptual comparison between: (a) a feature pyramid

with any one of the baseline heads (Fig. 6) attached, and (b) a

tensor bipyramid that uses swap align2nat (Fig. 5). A base-

line head on the feature pyramid has σVU=σHW for each level,

which implies that masks for large objects and small objects are

predicted using the same number of pixels. On the other hand, the

swap align2nat head can keep the mask resolution high (i.e.,

σVU is the same across levels) despite the HW resolution changes.

spectively. In both cases, we use V ·U output channels for

the 1×1 conv, followed by align2nat in the latter case.

Fig. 6c and 6d are upscaling heads that use the natural and

aligned representations, respectively. Their 1×1 conv has

λ2× fewer output channels than in the simple heads.

In a baseline TensorMask model, one of these four heads

is selected and attached to all FPN levels. The output forms

a pyramid of (V,U, 1

2k
H, 1

2k
W ), see Fig. 7a. For each head,

the output sliding window always has the same unit as the

feature map on which it slides: σVU=σHW for all levels.

Tensor bipyramid head. Unlike the baseline heads, the

tensor bipyramid head (§3.6) accepts a feature map of

fine resolution (H,W ) at all levels. Fig. 8 shows a mi-

nor modification of FPN to obtain these maps. For each

of the resulting levels, now all (C,H,W ), we first use

conv+reshape to produce the appropriate 4D tensor,

then run a mask prediction head with swap align2nat,

see Fig. 7b. The tensor bipyramid model is the most effec-

tive TensorMask variant explored in this work.

4.2. Training

Label assignment. We use a version of the DeepMask as-

signment rule [31] to label each window. A window satisfy-

ing three conditions w.r.t. a ground-truth mask m is positive:

(i) Containment: the window fully contains m and the

longer side of m, in image pixels, is at least 1/2 of the longer

+

C, H, WC,
1

4
H,

1

4
W

C,
1

2
H,

1

2
W

C, H, W

+

4×up

2×up

conv

conv

conv

V, U, H, W

2V, 2U,
1

2
H,

1

2
W

4V, 4U,
1

4
H,

1

4
W

C, H, W

C, H, W

Figure 8. Conversion of FPN feature maps from (C, 1

2k
H, 1

2k
W )

to (C,H,W ) for use with tensor bipyramid (see Fig. 7b). For

an FPN level (C, 1

2k
H, 1

2k
W ), we apply bilinear interpolation to

upsample the feature map by a factor of 2k. As the upscaling can

be large, we add the finest level feature map to all levels (including

the finest level itself), followed by one 3×3 conv with ReLU.

side of the window, that is, max(U ·σVU, V ·σVU).
3

(ii) Centrality: the center of m’s bounding box is within

one unit (σVU) of the window center in ℓ2 distance.

(iii) Uniqueness: there is no other mask m′ 6=m that sat-

isfies the other two conditions.

If m satisfies these three conditions, then the window

is labeled as a positive example whose ground-truth mask,

object category, and box are given by m. Otherwise, the

window is labeled as a negative example.

In contrast to the IoU-based assignment rules for boxes

in sliding-window detectors (e.g., RPN [34], SSD [27],

RetinaNet [23]), our rules are mask-driven. Experiments

show that our rules work well even when using only 1 or 2
window sizes with a single aspect ratio of 1:1, versus, e.g.,

RetinaNet’s 9 anchors of multiple scales and aspect ratios.

Loss. For the mask prediction head, we adopt a per-pixel

binary classification loss. In our setting, the ground-truth

mask inside a sliding window often has a wide margin, re-

sulting in an imbalance between foreground vs. background

pixels. To address this imbalance, we set the weights for

foreground pixels to 1.5 in the binary cross-entropy loss.

The mask loss of a window is averaged over all pixels in the

window (note that in a tensor bipyramid the window size

varies across levels), and the total mask loss is averaged

over all positive windows (negative windows do not con-

tribute to the mask loss).

For the classification head, we again adopt FL∗ with γ=3
and α=0.3. For box regression, we use a parameter-free ℓ1
loss. The total loss is a weighted sum of all task losses.

Implementation details. Our FPN implementation closely

follows [23]; each FPN level is output by four 3×3 conv
layers of C channels with ReLU (instead of one conv in the

original FPN [22]). As with the heads, weights are shared

across levels, but not between tasks. In addition, we found

that averaging (instead of summing [22]) the top-down and

lateral connections in FPN improved training stability. We

3A fallback is used to increase small object recall: masks smaller than

the minimum assignable size are assigned to windows of the smallest size.
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Figure 9. Baseline upscaling heads (λ=5). Top: the natural up-

scaling head (a) produces coarse masks, and is ineffective for large

λ. Left: for simple scenes, the unaligned head (b) and aligned

head (c) (which use nearest-neighbor and bilinear interpolation,

respectively), behave similarly. Right: for overlapping objects the

difference is striking: the unaligned head creates severe artifacts.

use FPN levels 2 through 7 (k=0, . . . , 5) with C=128 chan-

nels for the four conv layers in the mask and box branches,

and C=256 (the same as RetinaNet [23]) for the classifica-

tion branch. Unless noted, we use ResNet-50 [18].

For training, all models are initialized from ImageNet

pre-trained weights. We use scale jitter where the shorter

image side is randomly sampled from [640, 800] pixels [16].

Following SSD [27] and YOLO [33], which train models

longer (∼65 and 160 epochs) than [23, 17], we adopt the

‘6×’ schedule [16] (∼72 epochs), which improves results.

The minibatch size is 16 images in 8 GPUs. The base learn-

ing rate is 0.02, with linear warm-up [14] of 1k iterations.

Other hyper-parameters are kept the same as [13].

4.3. Inference

Inference is similar to dense sliding-window object de-

tectors. We use a single scale of 800 pixels for the shorter

image side. Our model outputs a mask prediction, a class

score, and a predicted box for each sliding window. Non-

maximum suppression (NMS) is applied to the top-scoring

predictions using box IoU on the regressed boxes, follow-

ing the settings in [22]. To convert predicted soft masks to

binary masks at the original image resolution, we use the

same method and hyper-parameters as Mask R-CNN [17].

5. Experiments

We report results on COCO instance segmentation [24].

All models are trained on the ∼118k train2017 images

head AP AP50 AP75 APS APM APL

natural 28.5 52.2 28.6 14.4 30.2 40.1

aligned 28.9 52.5 29.3 14.6 30.8 40.7

Table 1. Simple heads: natural vs. aligned (Fig. 6a vs. 6b) with

V×U=15×15 perform comparably if upscaling is not used.

and tested on the 5k val2017 images. Final results are on

test-dev. We use COCO mask average precision (de-

noted by AP). When reporting box AP, we denote it as APbb.

5.1. TensorMask Representations

First we explore various tensor representations for masks

using V=U=15 and a ResNet-50-FPN backbone. We re-

port quantitative results in Tab. 2 and show qualitative com-

parisons in Figs. 2 and 9.

Simple heads. Tab. 1 compares natural vs. aligned repre-

sentations with simple heads (Fig. 6a vs. 6b). Both repre-

sentations perform similarly, with a marginal gap of 0.4 AP.

The simple natural head can be thought of as a class-specific

variant of DeepMask [31] with an FPN backbone [22] and

focal loss [23]. As we aim to use lower-resolution interme-

diate representations, we explore upscaling heads next.

Upscaling heads. Tab. 2a compares natural vs. aligned rep-

resentations with upscaling heads (Fig. 6c vs. 6d). The out-

put size is fixed at V×U=15×15. Given an upscaling factor

λ, the conv in Fig. 6 has 1

λ2V U channels, e.g., 9 channels

with λ=5 (vs. 225 channels if no upscaling). The difference

in accuracy is big for large λ: the aligned variant improves

AP +9.2 over the natural head (48% relative) when λ=5.

The visual difference is clear in Fig. 9a (natural) vs. 9c

(aligned). The upscale aligned head still produces sharp

masks with large λ. This is critical for the tensor bipyramid,

where we have an output of 2kV×2kU , which is achieved

with a large upscaling factor of λ=2k (e.g., 32); see Fig. 5.

Interpolation. The tensor view reveals the (V̂ , Û) sub-

tensor as a 2D spatial entity that can be manipulated.

Tab. 2b compares the upscale aligned head with bilinear

(default) vs. nearest-neighbor interpolation on (V̂ , Û). We

refer to this latter variant as unaligned since quantization

breaks pixel-to-pixel alignment. The unaligned variant is

related to InstanceFCN [7] (see §A.2).

We observe in Tab. 2b that bilinear interpolation yields

solid improvements over nearest-neighbor interpolation, es-

pecially if λ is large (∆AP=3.1). These interpolation meth-

ods lead to striking visual differences when objects overlap:

see Fig. 9b (unaligned) vs. 9c (aligned).

Tensor bipyramid. Replacing the best feature pyramid

model with a tensor bipyramid yields a large 5.1 AP im-

provement (Tab. 2c). Here, the mask size is V×U=15×15
on level k=0, and is 32V×32U=480×480 for k=5; see

Fig. 7b. The higher resolution masks predicted for large

objects (e.g., at k=5) have clear benefit: APL jumps by
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head λ AP AP50 AP75 ∆ aligned - natural

natural
1.5

28.0 51.7 27.8
+0.9 +0.7 +1.5

aligned 28.9 52.4 29.3

natural
3

24.7 48.4 22.7
+4.1 +3.9 +6.4

aligned 28.8 52.3 29.1

natural
5

19.2 42.1 15.6
+9.2 +9.7 +13.0

aligned 28.4 51.8 28.6

(a) Upscaling heads: natural vs. aligned heads (Fig. 6c vs. 6d). The

V×U=15×15 output is upscaled by λ×: conv+reshape uses 1

λ2
V U

output channels as input. The aligned representation has a large gain over

its natural counterpart when λ is large.

head λ AP AP50 AP75 ∆ bilinear - nearest

nearest
1.5

28.6 52.1 29.0
+0.3 +0.3 +0.3

bilinear 28.9 52.4 29.3

nearest
3

27.8 51.0 28.0
+1.0 +1.3 +1.1

bilinear 28.8 52.3 29.1

nearest
5

25.3 47.6 25.0
+3.1 +4.2 +3.6

bilinear 28.4 51.8 28.6

(b) Upscaling: bilinear vs. nearest-neighbor interpolation for the aligned

head (Fig. 6d). The output has V×U=15×15. With nearest-neighbor

interpolation, the aligned upscaling head is similar to the InstanceFCN [7]

head. Bilinear interpolation shows a large gain when λ is large.

head AP AP50 AP75 APS APM APL

feature pyramid, best 28.9 52.5 29.3 14.6 30.8 40.7

tensor bipyramid 34.0 55.2 35.8 15.3 36.3 48.4

∆ +5.1 +2.7 +6.5 +0.7 +5.5 +7.7

(c) The tensor bipyramid substantially improves results compared to the

best baseline head (Tab. 2a, row 2) on a feature pyramid (Fig. 7a).

V×U AP AP50 AP75 APS APM APL

15×15 34.0 55.2 35.8 15.3 36.3 48.4

15×15, 11×11 35.2 56.4 37.0 17.4 37.4 49.7

∆ +1.2 +1.2 +1.2 +2.1 +1.1 +1.3

(d) Window sizes: extending from one V×U window size (per level) to

two increases all AP metrics. Both rows use the tensor bipyramid.

Table 2. Ablations on TensorMask representations on COCO val2017. All variants use ResNet-50-FPN and a 72 epoch schedule.

method backbone aug epochs AP AP50 AP75 APS APM APL

Mask R-CNN [13] R-50-FPN 24 34.9 57.2 36.9 15.4 36.6 50.8

Mask R-CNN, ours R-50-FPN 24 34.9 56.8 36.8 15.1 36.7 50.6

Mask R-CNN, ours R-50-FPN X 72 36.8 59.2 39.3 17.1 38.7 52.1

TensorMask R-50-FPN X 72 35.4 57.2 37.3 16.3 36.8 49.3

Mask R-CNN, ours R-101-FPN X 72 38.3 61.2 40.8 18.2 40.6 54.1

TensorMask R-101-FPN X 72 37.1 59.3 39.4 17.4 39.1 51.6

Table 3. Comparison with Mask R-CNN for instance segmentation on COCO test-dev.

7.7 points. This improvement does not come at the cost of

denser windows as the k=5 output is at (H
32
, W

32
) resolution.

Again, we note that it is intractable to have, e.g., a 4802-

channel conv. The upscaling aligned head with bilinear

interpolation is key to making tensor bipyramid possible.

Multiple window sizes. Thus far we have used a sin-

gle window size (per-level) for all models, that is,

V×U=15×15. Analogous to the concept of anchors in

RPN [34] that are also used in current detectors [33, 27, 23],

we extend our method to multiple window sizes. We set

V×U∈{15×15, 11×11}, leading to two heads per level.

Tab. 2d shows the benefit of having two window sizes: it

increases AP by 1.2 points. More window sizes and aspect

ratios are possible, suggesting room for improvement.

5.2. Comparison with Mask R­CNN

Tab. 3 summarizes the best TensorMask model on

test-dev and compares it to the current dominant

approach for COCO instance segmentation: Mask R-

CNN [17]. We use the Detectron [13] code to reflect

improvements since [17] was published. We modify it

to match our implementation details (FPN average fusion,

1k warm-up, and ℓ1 box loss). Tab. 3 row 1 & 2 ver-

ify that these subtleties have a negligible effect. Then we

use training-time scale augmentation and a longer sched-

ule [16], which yields an ∼2 AP increase (Tab. 3 row 3) and

establishes a fair and solid baseline for comparison.

The best TensorMask in Tab. 2d achieves 35.4 mask AP

on test-dev (Tab. 3 row 4), close to Mask R-CNN coun-

terpart’s 36.8. With ResNet-101, TensorMask achieves 37.1

mask AP with a 1.2 AP gap behind Mask R-CNN. These

results demonstrate that dense sliding-window methods can

close the gap to ‘detect-then-segment’ systems (§2). Quali-

tative results are shown in Figs. 2, 10, and 11.

We report box AP of TensorMask in §A.3. More-

over, compared to Mask R-CNN, one intriguing property

of TensorMask is that masks are independent from boxes.

In fact, we find joint training of box and mask only gives

marginal gain over mask-only training, see §A.4.

Speed-wise, the best R-101-FPN TensorMask runs at

0.38s/im on a V100 GPU (all post-processing included), vs.

Mask R-CNN’s 0.09s/im. Predicting masks in dense slid-

ing windows (>100k) results in a computation overhead, vs.

Mask R-CNN’s sparse prediction on ≤100 final boxes. Ac-

celerations are possible but outside the scope of this work.

Conclusion. TensorMask is a dense sliding-window in-

stance segmentation framework that, for the first time,

achieves results close to the well-developed Mask R-CNN

framework—both qualitatively and quantitatively. It estab-

lishes a conceptually complementary direction for instance

segmentation research. We hope our work will create new

opportunities and make both directions thrive.
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[1] Pablo Arbeláez, Jordi Pont-Tuset, Jonathan T Barron, Fer-

ran Marques, and Jitendra Malik. Multiscale combinatorial

grouping. In CVPR, 2014. 2

[2] Anurag Arnab and Philip HS Torr. Pixelwise instance

segmentation with a dynamically instantiated network. In

CVPR, 2017. 3

[3] Min Bai and Raquel Urtasun. Deep watershed transform for

instance segmentation. In CVPR, 2017. 3

[4] Kai Chen, Jiangmiao Pang, Jiaqi Wang, Yu Xiong, Xiaox-

iao Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jianping Shi,

Wanli Ouyang, et al. Hybrid task cascade for instance seg-

mentation. arXiv:1901.07518, 2019. 2

[5] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L Yuille. Semantic image segmen-

tation with deep convolutional nets and fully connected crfs.

In ICLR, 2015. 3

[6] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In CVPR,

2016. 2, 3

[7] Jifeng Dai, Kaiming He, Yi Li, Shaoqing Ren, and Jian Sun.

Instance-sensitive fully convolutional networks. In ECCV,

2016. 2, 3, 4, 7, 8, 9

[8] Jifeng Dai, Kaiming He, and Jian Sun. Instance-aware se-

mantic segmentation via multi-task network cascades. In

CVPR, 2016. 2

[9] Piotr Dollár, Zhuowen Tu, Pietro Perona, and Serge Be-

longie. Integral channel features. In BMVC, 2009. 1

[10] Pedro F Felzenszwalb, Ross B Girshick, David McAllester,

and Deva Ramanan. Object detection with discriminatively

trained part-based models. PAMI, 2010. 1, 4

[11] Ross Girshick. Fast R-CNN. In ICCV, 2015. 3

[12] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detection

and semantic segmentation. In CVPR, 2014. 2

[13] Ross Girshick, Ilija Radosavovic, Georgia Gkioxari, Piotr

Dollár, and Kaiming He. Detectron. https://github.

com/facebookresearch/detectron, 2018. 7, 8

[14] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-

huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,

Yangqing Jia, and Kaiming He. Accurate, large minibatch

SGD: Training ImageNet in 1 hour. arXiv:1706.02677, 2017.

7

[15] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Ji-
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