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Abstract

Style transfer is a task of rendering images in the styles

of other images. In the past few years, neural style transfer

has achieved a great success in this task, yet suffers from

either the inability to generalize to unseen style images or

fast style transfer. Recently, an universal style transfer tech-

nique that applies zero-phase component analysis (ZCA) for

whitening and coloring image features realizes fast and ar-

bitrary style transfer. However, using ZCA for style transfer

is empirical and does not have any theoretical support. In

addition, other whitening and coloring transforms (WCT)

than ZCA have not been investigated. In this report, we

generalize ZCA to the general form of WCT, provide an an-

alytical performance analysis from the angle of neural style

transfer, and show why ZCA is a good choice for style trans-

fer among different WCTs and why some WCTs are not well

applicable for style transfer.

1. Introduction

Style transfer is a task of synthesizing an image whose

content comes from a target content image and style comes

from another texture image. At the early stage, one success-

ful method for style transfer is image quilting [4], which

considers spatial maps of certain quantities (such as image

intensity and local image orientation) over both the texture

image and the content image. Another method [8] makes

style transfer possible by making analogy between images

and their artistically filtered version. Though these methods

produce good results, they suffer from only using low level

image features.

Later a seminal work of neural style transfer [5] lever-

ages the power of convolutional neural network to extract

features of an image that decouple and well represent vi-

sual styles and contents. Style transfer [6] is then achieved

by jointly minimizing the feature loss [17] and the style

loss formulated as the difference of Gram matrices. This

optimization is solved by iteration [6, 12, 16, 18]. Thus,

while having remarkable results, it suffers from computa-

tional inefficiency. To overcome this issue, a few methods

[10, 13, 20] that use pre-computed neural networks to ac-

celerate the style transfer were proposed. However, these

methods are limited by only one transferrable style and can-

not generalize to other unseen styles. StyleBank [1] ad-

dresses this limit by controlling the transferred style with

style filters. Whenever a new style is needed, it can be

learned into filters while holding the neural network fixed.

Another method [3] proposes to train a conditional style

transfer network that uses conditional instance normaliza-

tion for multiple styles. Besides these two, more methods

[2, 7, 21] to achieve arbitrary style transfer are proposed.

However, they partly solve the problem and are still not able

to generalize to every unseen style.

More recently, several methods exploring the second-

order statistics of content image features and style image

features came up for universal style transfer. AdaIN [9]

tries to match up the variances of the stylized image fea-

ture and the style image feature. A method [14] that uses

zero-phase component analysis (ZCA), a special kind of

whitening and coloring transform (WCT), for feature trans-

formation further focuses on covariances of image features.

While AdaIN enjoys more computational efficiency and

ZCA method synthesizes images visually closer to a consid-

ered style, Avatar-Net [19] aims to find a balance between

them.

Even though the ZCA method for feature transformation

produces good stylized images, it still remains an empirical

method and lacks any theoretical analyses. Also, the report

[14] does not mention the performance of other WCT meth-

ods. Here we generalize ZCA to the general form of WCT

for style transfer. Furthermore, we incorporate the idea of

neural style transfer to analytically discuss the performance

of WCT on style transfer. From the analysis, we explain

why ZCA is good for style transfer among different WCTs

and show that not every WCT is well applicable to style

transfer. In experiments, we study five natural WCT meth-

ods [11] associated with ZCA, principal component anal-

ysis (PCA), Cholesky decomposition, standardized ZCA,
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and standardized PCA. The experiments show that PCA and

standardized PCA give bad results while others lead to per-

ceptually meaningful images, which is consistent with our

theory.

2. Background

Since this report mainly inherits the ideas of neural style

transfer and universal style transfer with ZCA, here we

briefly introduce them in the following.

2.1. Neural style transfer

The paper by Gatys et al.[6] first introduced an effective

method for style transfer using neural networks. The key

finding of this work is that by processing images using con-

volutional neural network the style representation and the

content representation of an image can be decoupled. This

means that the style or the content of an image can be al-

tered independently to generate another perceptually mean-

ingful image.

The capability of separating content from style was ob-

served from the VGG-19 network, a convolutional neural

network targeting object recognition. VGG is composed of

a series of convolutional layers followed by three fully con-

nected layers. At the output of each convolutional layer is

a feature map for the input image. For two images with

similar contents, their feature maps extracted from a higher

convolutional layer should be closer than the feature maps

extracted from a lower convolutional layer, so that the final

fully connected layer can classify them into the same cete-

gory based on their similar features from the highest con-

volutional layer. This implies that the feature map from a

higher convolutional layer can be used as a content repre-

sentation of an image. Suppose φj(I) is the feature map of

an input image I at the j-th convolutional layer of the VGG-

19 network. A feasible content representation of I could

be extracted, for example, from the layers j = relu4 1 or

relu4 2 .

On the other hand, the computation of a style representa-

tion is an inspiration from the primary visual system where

correlations between neurons are computed. Let φj(I) be

the feature map of an image I at j-th convolutional layers

of shape hj(I) × wj(I) × kj , where hj(I), wj(I), and kj
are the height, width, and channel length of the feature map.

For each layer, say j-th layer for example, we can define the

Gram matrix Gj(I) of shape kj×kj , where the (α, β) com-

ponent is the correlation between the channels α and β and

is given by

Gj(I)α,β =

hj(I)∑

h=1

wj(I)∑

w=1

φj(I)h,w,αφj(I)h,w,β . (1)

By reshaping φj(I) into a matrix Fj(I) of shape kj ×
hj(I)wj(I), the Gram matrix can be written in a concise

form FjF
T
j . In fact, such a Gram matrix can serve as a

style representation for an image I . Furthermore, the Gram

matrix from a higher convolutional layer captures a coarser

style representation of I , while the one from a lower layer

captures a finer style representation. For convenience, when

we mention a feature map later, it refers to the reshaped fea-

ture matrix F instead of the original feature tensor φ.

To synthesize an image Io with the content from the im-

age Ic and the style from the image Is, one has to find an

optimal Io to minimize the content loss and the style loss:

arg min
Io

1

nl

||Fl(Io)− Fl(Ic)||
2
F

+
∑

j∈Ω

λj ||
1

nj

Gj(Io)−
1

mj

Gj(Is)||
2
F ,

(2)

where F indicates the Frobenius norm, l denotes some high

l-th convolutional layer of VGG-19 network for evaluating

content loss, Ω is a predefined set of convolutional layers

for evaluating style loss, λj’s are scaling factors, and nj =
hj(Ic)wj(Ic) and mj = hj(Is)wj(Is).

2.2. Universal style transfer with ZCA

Unlike neural style transfer where learning from content

images and style images is necessary to optimize Eq. 2,

[14] proposes a learning-free scheme and formulates style

transfer as an image reconstruction process. In particu-

lar, four autoencoders for general image reconstruction are

built. Each encoder is a part of pre-trained VGG-19 net-

work that encompasses the input layer to the reluN 1 layer

(N = 1, 2, 3 or 4) and is kept fixed during training process,

while the corresponding decoder is structurally symmetrical

to the encoder network. The autoencoder network is trained

by minimizing the reconstruction loss ||Ir − Ii||
2
F , where

Ii and Ir are an input image and the reconstruction image.

After training, each autoencoder can be used for single-level

style transfer, and the four autoencoders can be cascaded to

perform multi-level style transfer to achieve better synthetic

images.

The inner-workings of an autoencoder for single-level

style transfer is illustrated as follows. The encoder of the

autoencoder is used to extract a feature map for an input

image. For style transfer, a special kind of whitening and

coloring transform (WCT) that uses zero-phase component

analysis (ZCA) is applied for feature transformation. The

transformed feature is then converted back to a perceptu-

ally meaningful image by the decoder. Specifically, given

a content image Ic and a style image Is, the extracted fea-

tures by the encoder are Fc of shape k× n and Fs of shape

k ×m, respectively. Fc and Fs are first subtracted by their

means such that the centralized features F̄c and F̄s have a

zero mean. Then eigen-decomposition is applied to their

covariance matrices and derive 1
n
F̄cF̄

T
c = EcΛcE

T
c and
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1
m
F̄sF̄

T
s = EsΛsE

T
s . The whitening step transforms F̄c

to an uncorrelated feature F̃c ( 1
n
F̃cF̃

T
c = I) according to

Eq. 3:

F̃c = EcΛ
−

1

2

c E
T
c F̄c. (3)

The coloring step transforms F̃c to F̄zca such that
1
n
F̄zcaF̄

T
zca = 1

m
F̄sF̄

T
s according to Eq. 4:

F̄zca = EsΛ
1

2

s E
T
s F̃c. (4)

F̄zca is finally re-centered to Fzca by adding the mean of

Fs, which finishes the whole WCT. After feature transfor-

mation, the decoder converts the transformed feature Fzca

to an image with the content from Ic and the style from Is.

Moreover, better results can be achieved by multi-level

style transfer: the autoencoder associated with the relu4 1

layer takes Ic and Is as inputs and produces a synthetic im-

age I4. Then I4 as a content image and Is are passed to the

autoencoder associated with the relu3 1 to generate a syn-

thetic image I3. Repeating this procedure until a synthetic

image I1 is generated from the autoencoder associated with

the relu1 1 . We will explain why multi-level style transfer

works better later in Sec 3.4.

3. Methods

In [14], it uses ZCA, a special case of WCT, to realize

style transfer. However, it mentions little about whether

other WCT methods can work well for style transfer nor

does it analytically discusses the performance of WCT.

Here we consider the generalized WCT scheme for style

transfer, providing a theory from the perspective of neural

style transfer to explain why ZCA is a good way for this

task and why some other WCTs might not.

3.1. Whitening transform

Suppose x = (x1, . . . , xd)
T is a random vector to be

whitened, and µ = E[x] is the mass center of x. While x is

not necessary to be centralized by subtracting µ from x for

a whitening purpose, we follow the results of [14] where the

whitening transform is done on centered signals. Therefore,

in the following x is assumed to be centered with µ = 0.

A whitening transform is a linear operation that brings

a random vector x with covariance matrix Cov(x) = Σ to

another random vector z = (z1, . . . , zd)
T with an identity

covariance matrix Cov(z) = I. Specifically, the linear op-

eration is defined by a d × d matrix W that converts x to

z = Wx that satisfies

E[zzT] = W E[xxT]WT = WΣW
T = I. (5)

It follows that WΣW
T
W = W and thus

W
T
W = Σ

−1. (6)

Accordingly,

W = U1Σ
−

1

2 = U1EΛ
−

1

2E
T, (7)

where the eigen-decomposition of Σ is Σ = EΛE
T, and

U1 is an orthogonal matrix. Different choices of U1 define

different whitening transforms.

Besides, in certain situations it is more convenient to

work with the standardized random vector y = V
−

1

2x

with V being the diagonal variance matrix diag(Σ). Sim-

ilar to Eq. 7, the whitening matrix Wy for y is written as

Wy = U2P
−

1

2 , where U2 is an orthogonal matrix and P is

the covariance matrix of y and also the correlation matrix of

x, i.e., P = E[yyT] = V
−

1

2 E[xxT]V−
1

2 = V
−

1

2ΣV
−

1

2 .

Since the whitened vector Wyy = U2P
−

1

2V
−

1

2x, we

can alternatively express the whitening matrix W for x as

W = U2P
−

1

2V
−

1

2 . (8)

In this report we study five natural whitening transforma-

tions which are succinctly representable in the form defined

in either Eq. 7 or Eq. 8. First recall [14] that uses ZCA

whitening transformation for style transfer. ZCA whitening

matrix W
zca is given by

W
zca = Σ

−
1

2 = EΛ
−

1

2E
T, (9)

which corresponds to U1 = I in Eq. 7. Closely related to

ZCA whitening, PCA whitening matrix W
pca is defined as

W
pca = E

T
Σ

−
1

2 = Λ
−

1

2E
T. (10)

The major difference between W
zca and W

pca is that ZCA

finally rotates back to the original coordinate by E after the

rotation by E
T followed by the scaling Λ

−
1

2 .

If ZCA transform or PCA transform is applied to stan-

dardized vectors, we can have the standardized version

of ZCA transform matrix W
zca
std or PCA transform matrix

W
pca
std :

W
zca
std = P

−
1

2V
−

1

2 = EpΛ
−

1

2

p E
T
pV

−
1

2 , (11)

W
pca
std = E

T
pP

−
1

2V
−

1

2 = Λ
−

1

2

p E
T
pV

−
1

2 , (12)

where the eigen-decomposition P = EpΛpE
T
p is used.

Note that W
zca
std and W

pca
std correspond to U2 = I and

U2 = E
T
p in Eq. 8, respectively.

The last natural whitening is Cholesky whitening, whose

name comes from the Cholesky decomposition of Σ
−1:

Σ
−1 = LL

T. Comparing it to Eq. 6, we can derive the

Cholesky whitening matrix W
chol to be

W
chol = L

T. (13)

Note that Wchol corresponds to U1 = L
T
Σ

1

2 in Eq. 7.

In addition, it can be verified that the standardized version

W
chol
std is also L

T.
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3.2. Coloring transform

A coloring transform is a reversed procedure of the cor-

responding whitening transform. Specifically in single-

level style transfer, a content feature Fc = [f c
1 , . . . , f

c
n]k×n

and a style feature Fs = [fs
1 , . . . , f

s
m]k×m are extracted by

an encoder composed of a part of VGG-19 network. Fc and

Fs are then centralized to F̄c = [f c
1 − f̄ c, . . . , f c

n − f̄ c] and

F̄s = [fs
1 − f̄s, . . . , fs

m − f̄s] by subtraction of their means

f̄ c = 1
n

∑n

i=1 f
c
i and f̄s = 1

m

∑n

i=1 f
s
i , respectively. Af-

ter the computation of the covariances Σc = 1
n
F̄cF̄

T
c and

Σs = 1
m
F̄sF̄

T
s , for each of them we can derive a whiten-

ing transform matrix Wc or Ws according to the methods

introduced in Sec. 3.1. The whitened and colored feature

Fwct to be decoded is then derived by

Fwct = W
−1
s WcF̄c + [f̄s, . . . , f̄s]k×n, (14)

where Wc is the whitening transform, W−1
s is the coloring

transform, and the addition of the k×n matrix [f̄s, . . . , f̄s]
is the re-centering step.

To comply with the formulation in Sec. 3.1, we define

f c as the random vector representing the n examples f c
i ,

i = 1, . . . , n, and fs as the random vector representing the

m examples fs
i , i = 1, . . . ,m. Whitening matrices Wc

and Ws then can be derived from the covariances Σc =
E[(f c− f̄ c)(f c− f̄ c)T] and Σs = E[(fs− f̄s)(fs− f̄s)T],
where f̄ c = E[f c] and f̄s = E[fs]. Therefore, the random

vector fwct that represents the columns of Fwct is given by

fwct = W
−1
s Wc(f

c − f̄ c) + f̄s. (15)

Equipped with Eq. 15, we can analyze the performance of

WCTs for style transfer.

3.3. Analysis of WCTs for single-level style transfer

From the point of view of neural style transfer, a single-

level style transfer in [14] can actually be regarded as a way

that uses ZCA to provide a fast and approximate solution to

minF l(F;Fc,Fs) with l(F;Fc,Fs) defined as

l(F;Fc,Fs) =
1

n
||F− Fc||

2
F

︸ ︷︷ ︸

content loss

+λ ||
1

n
FF

T −
1

m
FsF

T
s ||

2
F

︸ ︷︷ ︸

style loss

,

(16)

where Fc of shape k × n and Fs of shape k × m are ex-

tracted at the output of either relu4 1 , relu3 1 , relu2 1 ,

or relu1 1 layer of VGG network, and k is the number of

channels at that layer. Furthermore, it can be proved that if a

WCT is used to approximate the solution, the loss function

l(F;Fc,Fs) of the approximated solution Fwct is bounded.

Theorem 3.1. Given a single-level style transfer that is for-

mulated as the minimization of l(F;Fc,Fs). If F = Fwct

which is computed according to Eq. 14, then the style loss

is zero and the content loss is bounded by the means and

covariances of Fc and Fs.

Proof. First recall that a whitening matrix should sat-

isfy Eq. 6. Therefore, we have Σ = (WT
W)−1 =

W
−1(WT)−1. Thus

Σc = E[(f c − f̄ c)(f c − f̄ c)T] = W
−1
c (WT

c )
−1, (17a)

Σs = E[(fs − f̄s)(fs − f̄s)T] = W
−1
s (WT

s )
−1. (17b)

Let’s begin with the second term of l(Fwct):

1

n
FwctF

T
wct −

1

m
FsF

T
s

=
1

n

n∑

i=1

fwct
i (fwct

i )T −
1

m

m∑

i=1

fs
i (f

s
i )

T

=E[fwct(fwct)T]− E[fs(fs)T],

(18)

where E[fwct(fwct)T] equals to

W
−1
s Wc E[(f c − f̄ c)(f c − f̄ c)T]WT

c (W
−1
s )T

+W
−1
s Wc(E[f

c]− f̄ c)(f̄s)T

+f̄s(E[f c]− f̄ c)TWT
c (W

−1
s )T + f̄s(f̄s)T,

(19)

which can be reduced to

W
−1
s (W−1

s )T + 0 + 0 + f̄s(f̄s)T = E[fs(fs)T], (20)

where the identities (W−1
s )T = (WT

s )
−1 and E[(fs −

f̄s)(fs − f̄s)T] = E[fs(fs)T]− f̄s(f̄s)T are used. Hence

the second term of l(Fwct) is E[fs(fs)T]−E[fs(fs)T] = 0.

This proves that the style loss is zero if Fwct is used.

Next we focus on the first term:

1

n
||Fwct − Fc||

2
F = tr[

1

n
(Fwct − Fc)(Fwct − Fc)

T]

=tr[
1

n

n∑

i=1

(fwct
i − f c

i )(f
wct
i − f c

i )
T]

=tr[E[(fwct − f c)(fwct − f c)T]]
(21)

With f c−c̄ , f c − f̄ c and f c−s̄ , f c − f̄s, Eq. 21 can be

expanded as

tr[W−1
s Wc E[f c−c̄f c−c̄T]WT

c (W
−1
s )T]

−tr[W−1
s Wc E[f c−c̄f c−s̄T]]

−tr[E[f c−s̄f c−c̄T]WT
c (W

−1
s )T]

+tr[E[f c−s̄f c−s̄T]].

(22)

The first trace is equal to tr[W−1
s (W−1

s )T] = tr[Σs]. The

second and third trace terms are equivalent, since tr[A] =
tr[AT] for any arbitrary matrix A. Since E[f c−c̄f c−s̄T]
equals to

E[f cf cT]− E[f c]f̄sT − f̄ c
E[f c]T + f̄ cf̄sT

=E[f cf cT]− f̄ cf̄ cT = Σc = W
−1
c (W−1

c )T,
(23)
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the second and third trace terms become tr[W−1
s (W−1

c )T].
For the fourth trace, we observe that E[f c−s̄f c−s̄T] can be

further written as

E[f cf cT]− E[f c]f̄sT − f̄s
E[f c]T + f̄sf̄sT

=W
−1
c (W−1

c )T + f̄ cf̄ cT − f̄ cf̄sT − f̄sf̄ cT + f̄sf̄sT

=W
−1
c (W−1

c )T + (f̄ c − f̄s)(f̄ c − f̄s)T,
(24)

taking trace of which, the fourth trace term turns to be

tr[W−1
c (W−1

c )T] + ||f̄ c − f̄s||22. Putting everything above

together, we have the loss l(Fwct;Fc,Fs) to be

l(Fwct;Fc,Fs) = ||f̄ c − f̄s||22+

tr[W−1
s (W−1

s )T − 2W−1
s (W−1

c )T +W
−1
c (W−1

c )T].
(25)

Moreover, by exploiting Cauchy-Schwarz inequality

tr[W−1
s (W−1

c )T] ≥ −

√

tr[W−1
s W

−1
s

T]

√

tr[W−1
c W

−1
c

T]
(26)

and the identities Σc = W
−1
c W

−1
c

T and Σs =
W

−1
s W

−1
s

T, we can derive the inequality

l(Fwct) ≤ ||f̄ c − f̄s||22 + (
√

tr(Σs) +
√

tr(Σc))
2, (27)

where the upper bound is associated with the means and

covariances of Fc and Fs. �

Theorem 3.1 says that whichever WCT is used for

single-level style transfer, there is always no style loss and

the upper bound for content loss only depends on the con-

tent feature and the style feature but is irrespective of the

WCT used. The bounded content loss implies that WCT can

capture the general appearance of a content image. How-

ever, whether the details of a content can hold still depends

on the WCT used. To evaluate the performance of different

WCTs on style transfer, we have to come up with a simple

and yet indicative quantitative metric. To this end, follow-

ing Theorem. 3.1 we have a corollary as follows.

Corollary 3.1.1. tr[W−1
s (W−1

c )T] can be used as a score

function to evaluate style transfer results using WCT: the

higher value of tr[W−1
s (W−1

c )T], the better the perfor-

mance of the WCT used for style transfer.

Proof. Recall Eq. 25 where f̄ c, f̄s, Σc = W
−1
c W

−1
c

T,

and Σs = W
−1
s W

−1
s

T all depend only on the content and

the style images and are irrelevant to the WCT used. There-

fore, a WCT that minimizes the loss function l(Fwct) more

corresponds to a higher value of tr[W−1
s (W−1

c )T]. �

With Corollary 3.1.1, we can have a sense for why ZCA

is a good choice for style transfer. If ZCA (refer to Eq. 9) is

used, the score is

tr[Σ
1

2

s Σ
1

2

c ] = tr[EsΛ
1

2

s E
T
s EcΛ

1

2

c E
T
c ]

=tr[

n∑

i=1

σs
i e

s
i (e

s
i )

T
n∑

j=1

σc
je

c
j(e

c
j)

T]

=
∑

i,j

σs
i σ

c
j(e

s
i )

Tecj × tr[esi (e
c
j)

T]

=
∑

i,j

σs
i σ

c
j [(e

s
i )

Tecj ]
2,

(28)

where σs
i ’s (σc

j ’s) and esi ’s (ecj’s) are the singular values and

the corresponding eigenvectors of Σ
1

2

s (Σ
1

2

c ), respectively.

On the other hand, since generally Ws and Wc can

be written as Ws = UsΣ
−

1

2

s and Wc = UcΣ
−

1

2

c with

certain orthogonal matrices Us and Uc (refer to Eq. 7),

tr[W−1
s (W−1

c )T] equals to tr[Σ
1

2

s U
T
s UcΣ

1

2

c ]. According

to von Neumann’s trace inequality, it can be bounded as

follows:

|tr[Σ
1

2

s U
T
s UcΣ

1

2

c ]| ≤

n∑

i=1

σs
i σ

c
i =

∑

i,j

σs
i σ

c
i [(e

s
i )

Tecj ]
2,

(29)

where we use the identity
∑

j [(e
s
i )

Tecj ]
2 = ||esi ||

2
2 = 1, ∀i.

By replacing the factor σc
i of

∑

i,j σ
s
i σ

c
i [(e

s
i )

Tecj ]
2 with σc

j ,

it becomes the score of ZCA in Eq. 28. This implies that the

score of ZCA is a good approximation of the upper bound

and thus ZCA is a good choice for style transfer.

In contrast, when bad choices of Us and Uc are used, it

could result in negative scores and bad style transfer results,

and PCA is one of such cases. If PCA (refer to Eq. 10) is

used, the score is

tr[EsΛ
1

2

s Λ
1

2

c E
T
c ]

=

n∑

i=1

σs
i σ

c
i tr[e

s
i (e

c
i )

T] =

n∑

i=1

σs
i σ

c
i (e

s
i )

Teci .
(30)

Eq. 30 could be a small or a negative value since (esi )
Teci

could be negative. This implies that PCA is not a good op-

tion for style transfer.

Moreover, if the standardized version of ZCA (refer to

Eq. 11) is used, the score is tr[V
1

2

s P
1

2

s P
1

2

c V
1

2

c ], where Vs

(Vc) and Ps (Pc) are the diagonal variance matrix and the

correlation matrix of Fs (Fc), respectively. Since a covari-

ance matrix Σ connects to the corresponding correlation

matrix P in a relation Σ = V
1

2PV
1

2 , Σ
1

2 = V
1

2P
1

2U with

U being some orthogonal matrix. It can be shown that U is

very close to the identity matrix, and thus we have Σ
1

2 ≈

V
1

2P
1

2 . This implies that the score tr[V
1

2

s P
1

2

s P
1

2

c V
1

2

c ] is

close to tr[Σ
1

2

s Σ
1

2

c ], which is the score of ZCA. Hence, the
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performance of standardized ZCA and ZCA on style trans-

fer is similar. Besides, similar to the case of PCA, the stan-

dardized PCA could lead to a negative score and is not good

for style transfer.

3.4. Multi-level style transfer

[14] empirically shows that multiple autoencoders for

single-level style transfer can be cascaded to achieve better

style transfer results. Here we propose an explanation from

the perspective of neural style transfer: suppose we want

to find a synthetic image I that minimizes the loss function

below:

1

n4
||F4−F4,c||

2
F+

4∑

N=1

λN ||
1

nN

FNF
T
N−

1

mN

FN,sF
T
N,s||

2
F ,

(31)

where FN = FN (I) is the feature of I extracted at the

reluN 1 layer of VGG-19 network, FN,c’s and FN,s’s are

the features of the content image and the style image at dif-

ferent layers, respectively. We approach this optimization

problem by first solving I4 from the relu4 1 part:

||F4(I4)− F4,c||
2
F

n4
+ λ4||

F4(I4)F4(I4)
T

n4
−

F4,sF
T
4,s

m4
||2F ,

(32)

which is the single-level style transfer associated with the

relu4 1 layer and the solution is approximated using WCT.

Next we want to find another image I3 on top of I4
such that I3 is close to I4 and also optimizes the loss

λ3||
1
n3

F3F
T
3 − 1

m3

F3,sF
T
3,s||

2
F . If I3 is close to I4, then

I3 is still suboptimal to Eq. 32. To account for this, instead

of having a direct loss ||I4−I3||
2
F , we require the features of

I4 and I3 extracted at the relu3 1 layer to be close. Overall,

I3 optimizes the following loss:

||F3(I3)− F3(I4)||
2
F

n3
+λ3||

F3(I3)F3(I3)
T

n3
−
F3,sF

T
3,s

m3
||2F ,

(33)

which exactly corresponds to single-level style transfer as-

sociated with the relu3 1 layer that takes I4 as the content

image and whose solution can be approximated by WCT.

We can repeat the procedure for I2 on top of I3 and I1 on

top of I2, and I1 will be a suboptimal solution to Eq. 31. Ef-

fectively, we are approximating a solution to Eq. 31 by cas-

cading four single-level style transfer autoencoders where

each autoencoder takes the output image of the previous au-

toencoder as a content image .

This standpoint also explains why synthetic results are

worse if the autoencoders are cascaded in a reverse order:

first I1 is generated from Ic and Is using the autoencoder as-

sociated with the relu1 1 layer, then I1 and Is are fed into

the autoencoder associated with the relu2 1 layer to gener-

ate I2, and repeat the procedure until I4 is generated by the

autoencoder associated with the relu4 1 layer. Compared

to the original order where the content feature comes from

the relu4 1 layer (the 1
n4

||F4−F4,c||
2
F term in Eq. 31), the

reverse order actually finds a suboptimal solution to the loss

below:

1

n1
||F1−F1,c||

2
F+

4∑

N=1

λN ||
1

nN

FNF
T
N−

1

mN

FN,sF
T
N,s||

2
F ,

(34)

where the content information comes from relu1 1 layer.

As mentioned in Sec. 2.1, since a feature map from a higher

convolutional layer better represents the content informa-

tion of an image, the original order of cascade gives better

synthetic results.

4. Experiments

4.1. Training details

We train the autoencoders on the MS-COCO dataset.

MS-COCO dataset consists of 11.8K training images. Each

image from the dataset is resized to 512×512 and randomly

cropped to 256 × 256 as an input in a batch. For relu4 1

and relu3 1 cases, the autoencoders are trained with a batch

size of 16 for 10 epochs, while for relu2 1 and relu1 1

cases, the autoencoders are trained for 5 epochs. We use

Adam optimizer with learning rate 1 × 10−4 and without

weight decay.

In the report [14], a decoder is structurally symmetric

to the corresponding encoder in a way that a max-pooling

layer in the encoder corresponds to an up-sampling layer

in the decoder. However, a max-pooling operation in the

encoder loses spatial information in feature maps, and the

corresponding up-sampling operation in the decoder can-

not recover the lost structures very well. Therefore, the de-

coded image will contain structural artifacts and distortion

at boundaries [15]. To fix this, we use transposed convolu-

tional layers as the symmetric part of max-pooling layers.

Compared to up-sampling layers, transposed convolutional

layers have adjustable parameters to flexibly learn to recon-

struct images and avoid distortions.

4.2. Discussions

In Fig. 1 we demonstrate eight examples of style trans-

fer based on five natural WCTs, which are associated with

ZCA, PCA, standardized version of ZCA and PCA, and

Cholesky decomposition, respectively. In the Table. 4.1 are

the corresponding values of the score tr(W−1
s (W−1

c )T) at

different single levels of style transfer. Note that compar-

ing the values in different examples are meaningless, since

a value depends on many factors, such as the sizes of the

content image and the style image and the distribution of

pixel values.

Let us focus on the results from PCA and PCA-std first.

If we look at them closely, we can notice that there are
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Figure 1. Examples of style transfer using five natural WCTs. The results from PCA and PCA-std are not good but still capture the general

appearance of content images and the styles from style images, which can be explained by the bounded content loss and zero style loss in

single-level style transfer. In contrast, the results from ZCA, ZCA-std, and Cholesky are much better, since the values of tr(W−1

s
(W−1

c
)T)

for them are much higher as shown in Table 4.1.
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Example ZCA PCA ZCA-std PCA-std Cholesky

1 70177.1 / 2244.9 -8200.9 / -28.7 69862.4 / 2246.2 -7389.0 / -98.9 62073.5 / 2063.2

464.0 / 8.5 -15.3 / 5.2 466.4 / 8.4 -22.6 / -3.7 442.8 / 8.2

2 83055.0 / 3349.3 359.5 / 140.3 83012.9 / 3358.8 5748.9 / 255.5 71536.8 / 2940.6

688.4 / 9.6 -3.4 / -3.3 691.5 / 9.7 6.1 / -0.9 642.1 / 8.8

3 38127.9 / 1861.5 2267.4 / 144.3 37572.1 / 1852.1 6400.9 / -228.4 32533.6 / 1695.7

404.6 / 3.9 79.8 / 2.7 402.9 / 3.8 -48.1 / -0.5 375.4 / 3.5

4 60312.3 / 2513.3 2079.1 / -20.2 60144.6 / 2533.0 6482.2 / -549.6 52955.3 / 2269.4

616.0 / 7.6 43.9 / -0.3 620.8 / 7.7 0.8 / 2.9 587.6 / 6.9

5 92117.1 / 4942.3 -9806.4 / -386.3 91384.9 / 4969.0 4170.3 / 624.5 79736.5 / 4623.4

1146.7 / 13.4 27.1 / 3.5 1151.0 / 13.5 39.0 / 1.5 1115.4 / 12.7

6 147059.6 / 5585.0 -15089.9 / 33.0 146909.1 / 5592.4 -6802.0 / -88.6 135144.2 / 5232.4

1175.9 / 16.4 79.8 / -6.9 1183.1 / 16.5 162.9 / 7.0 1138.3 / 15.6

7 59170.7 / 2247.0 7361.8 / -8.3 59147.1 / 2264.9 12447.2 / -276.2 53560.3 / 2096.3

647.1 / 6.3 -34.7 / -1.3 650.4 / 6.3 98.5 / -4.3 620.0 / 5.9

8 44762.8 / 1174.6 -6245.8 / -76.0 44515.5 / 1173.1 -10660.4 / -104.7 39738.1 / 1067.6

255.8 / 4.5 -31.8 / 2. 255.3 / 4.5 15.1 / 2.5 241.2 / 4.3

Table 1. Values of tr(W−1

s
(W−1

c
)T) for the eight examples in Fig. 1. Each cell contains four values separated by slashes, and they

correspond to the values from the single levels associated with the reluN 1 layer, N = 4, 3, 2, 1, respectively.

some points that are consistent with our previous analy-

sis. Apparently, the results from PCA and PCA-std are not

good, but we can observe that the styles from the style im-

ages are transferred to the synthetic images to a certain ex-

tent. This is because from the perspective of neural style

transfer, WCT does not cause any style information loss in

single-level style transfer as shown in the proof for the The-

orem 3.1. Moreover, we can observe that the synthetic im-

ages by PCA and PCA-std still capture the general appear-

ance of the content images. This can be explained by the

bounded content loss as proved in the Theorem 3.1. How-

ever, as explained in Eq. 30, since style transfer by PCA or

PCA-std results in worse content losses, the details of con-

tent information are ruined in the synthetic images. This is

justified in Table. 4.1, where in each example the values of

tr(W−1
s (W−1

c )T) for PCA and PCA-std are much smaller

than the values for other WCT methods and could even be

negative.

Furthermore, Table. 4.1 shows that in each example the

values of tr(W−1
s (W−1

c )T) for ZCA and ZCA-std are very

close, which is consistent with the previous discussion.

That is why the synthetic images by ZCA and ZCA-std look

almost the same. Besides, we can notice that in each exam-

ple the values of tr(W−1
s (W−1

c )T) for Cholesky decompo-

sition method are slightly smaller than the values for ZCA

and ZCA-std, implying that the results by Cholesky method

could have been slightly worse than the ones by ZCA and

ZCA-std. However, the visualization in Fig. 1 shows only

little difference between them; one small but noticeable dif-

ference is in the third example of pencil sketch, where the

left part in the Cholesky result is brighter.

In summary, even though there are many choices of

WCT, such as standardized ZCA or Cholesky decomposi-

tion, for style transfer, from the angle of neural style trans-

fer ZCA can always be the first good choice. In contrast,

PCA, one of the most widely used whitening method, is not

well applicable in style transfer.

5. Conclusion

In this report we study the general form of WCT for style
transfer. We analyze the performance of WCT from the per-
spective of neural style transfer. From the analysis we show
why some WCTs, especially ZCA, are good choices for
style transfer among different WCTs and why some other
WCTs might not be well applicable to style transfer. In ex-
periments we study five natural WCTs and show that ZCA,
standardized ZCA, and Cholesky decomposition for feature
transformation can achieve good style transfer results while
PCA and standardized PCA are not well applicable to style
transfer.
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