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Abstract

Single-image super-resolution aims to generate a high-

resolution version of a low-resolution image, which serves

as an essential component in many computer vision ap-

plications. This paper investigates the robustness of deep

learning-based super-resolution methods against adversar-

ial attacks, which can significantly deteriorate the super-

resolved images without noticeable distortion in the at-

tacked low-resolution images. It is demonstrated that state-

of-the-art deep super-resolution methods are highly vulner-

able to adversarial attacks. Different levels of robustness of

different methods are analyzed theoretically and experimen-

tally. We also present analysis on transferability of attacks,

and feasibility of targeted attacks and universal attacks.

1. Introduction

Single-image super-resolution, which is to generate a

high-resolution version of a low-resolution image, is one

of the popular research areas in recent years. While sim-

ple interpolation methods such as bilinear and bicubic up-

scaling have been used popularly, the development of deep

learning-based approaches, which is triggered by a sim-

ple convolutional network model named super-resolution

convolutional neural network (SRCNN) [7], offers much

better quality of the upscaled images. The improvement

of the super-resolution technique extends its applications

to broader areas, including video streaming, surveillance,

medical diagnosis, and satellite photography [23].

While many deep learning-based super-resolution meth-

ods have been introduced, their robustness against intended

attacks has not been thoroughly studied. The vulnerabil-

ity of deep networks has been an important issue in recent

years, since various investigations report that the attack can

fool the deep classification models and can cause severe se-

curity issues [9, 17]. The similar issues can be raised for the

super-resolution applications, since the deteriorated outputs

can directly affect the reliability and stability of the systems

employing super-resolution as their key components.

In this paper, we investigate the robustness of deep

learning-based super-resolution against adversarial attacks,

which is the first work to the best of our knowledge. Our at-

tacks generate perturbations in the input images, which are

not visually noticeable but can largely deteriorate the qual-

ity of the outputs. The main contributions of this paper can

be summarized as follows.

• We propose three adversarial attack methods for

super-resolution, which slightly perturb a given low-

resolution image but result in significantly deteriorated

output images, including basic, universal, and partial

attacks. The methods are based on the methods widely

used in the image classification tasks, and we optimize

them for the super-resolution tasks.

• We present thorough analysis of the robustness of the

super-resolution methods, by providing experimen-

tal results using the adversarial attack methods. We

employ various state-of-the-art deep learning-based

super-resolution methods having variable characteris-

tics in terms of model structure, training objective, and

model size.

• We further investigate the relation of robustness to the

model properties and measure the transferability. In

addition, we provide three advanced topics, including

targeted attack, attack-agnostic robustness measure-

ment, and simple defense methods of the attack.

2. Related Work

Super-resolution. Recently, the trend of super-resolution

researches has been shifted to the deep learning-based
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methods. One of the notable methods that achieve much im-

proved performance is the enhanced deep super-resolution

(EDSR) model [12]. Later, Zhang et al. [25] propose a more

advanced network model named residual channel attention

network (RCAN), which applies an attention mechanism to

exploit image features effectively.

While the aforementioned methods focus on achiev-

ing high performance in terms of peak signal-to-noise ra-

tio (PSNR), some researchers argue that considering only

such a distortion measure does not necessarily enhance

perceptual image quality [5]. To deal with this, percep-

tually optimized super-resolution methods are proposed,

which employ generative adversarial networks (GANs) [8].

One of the state-of-the-art methods is the enhanced super-

resolution generative adversarial network (ESRGAN) [19],

which generates more visually appealing outputs than other

conventional methods, even though the PSNR values are

lower. Choi et al. [6] develop the four-pass perceptual

enhanced upscaling super-resolution (4PP-EUSR) method,

which considers both the quantitative and perceptual quality

to obtain more natural upscaled images.

Since super-resolution is also a useful component in

mobile applications, some studies focus on economizing

the computational resource while reasonable performance

is maintained. For instance, Ahn et al. [3] propose the

cascading residual network (CARN) and its mobile version

(CARN-M), which employ cascading residual blocks with

shared model parameters.

Adversarial attack. Recent studies show that deep im-

age classifiers are vulnerable to various adversarial attacks.

Szegedy et al. [18] propose an optimization-based attack

method that aims to minimize the amount of perturbation

with changing the classification result of a classifier. Good-

fellow et al. [9] develop the fast gradient sign method

(FGSM), which uses the sign of the gradients that are ob-

tained from the classifier. Kurakin et al. [11] extend it to an

iterative approach (I-FGSM), which shows higher success

rate of the attack than FGSM. These attacks are known as

strong attack methods that can fool almost every state-of-

the-art image classifier with high success rate [17].

Some studies provide in-depth analysis of the robust-

ness of deep learning models. Liu et al. [13] measure

transferability of the adversarial images, which is to find

out whether the perturbations found for a classifier also

work for another classifier. Moosavi-Dezfooli et al. [15]

investigate a universal perturbation that can be applied to

all images in a given dataset. Weng et al. [20] proposed a

theoretical robustness measure, which does not depend on

a specific attack method.

Adversarial attack on super-resolution. Recently, com-

bining the super-resolution tasks with adversarial attacks

has emerged. Mustafa et al. [16] presents a method em-

ploying super-resolution to defense deep image classifiers

against adversarial attacks. Yin et al. [22] employ the ad-

versarial attack on super-resolution to fool the subsequent

computer vision tasks. However, these studies investigate

the effectiveness of the adversarial attack for other tasks

rather than the super-resolution task itself, including image

classification, style transfer, and image captioning, where

the super-resolution is used as a pre-processing step be-

fore the main tasks. Therefore, the robustness of super-

resolution itself against adversarial attacks, which is inves-

tigated in this paper, has not been addressed previously.

3. Attacks on Super-Resolution

3.1. Basic attack

The goal of the adversarial attack on super-resolution

models is to inject a small amount of perturbation in the

given input image so that the perturbation is not visually

perceivable but results in significant deterioration in the

super-resolved output. To do this, we develop an algorithm

based on the idea of I-FGSM [11], which is one of the most

widely used strong attacks for classification models.

Let X0 denote the original low-resolution input image

and X denote the attacked version of X0. From these im-

ages, we obtain the super-resolved high-resolution images

f(X0) and f(X), respectively, via a given super-resolution

model f(·). Our objective is to maximize the amount of

deterioration in the super-resolved output, which can be de-

fined as:

L(X,X0) = ||f(X)− f(X0)||2. (1)

To find an X to minimize (1) with bounded ℓ∞-norm con-

straint (‖X − X0‖∞ ≤ α), we adopt the I-FGSM update

rule that iteratively updates X by:

X̃n+1 = clip0,1

(
Xn +

α

T
sgn

(
∇L(Xn,X0)

))
(2)

Xn+1 = clip
−α,α(X̃n+1 −X0) +X0 (3)

where T is the number of iterations, sgn
(
∇L(Xn,X0)

)
is

the sign of the gradient of (1), and

clipa,b(X) = min
(
max(X, a), b

)
. (4)

The term α not only controls the amount of contribution

that the calculated gradient provides at each iteration, but

also limits the maximum amount of perturbation to prevent

noticeable changes of the attacked input image. The final

adversarial example is obtained by X = XT .

3.2. Universal attack

Although an adversarial image can be found for each im-

age as in Section 3.1, it is also possible to find an image-

agnostic adversarial perturbation, which can affect any in-

put image for a certain super-resolution method [15]. We
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Method # parameters # layers GAN-based

EDSR [12] 43.1M 69 -

EDSR-baseline [12] 1.5M 37 -

RCAN [25] 15.6M 815 -

4PP-EUSR [6] 6.3M 95 X

ESRGAN [19] 16.7M 351 X

RRDB [19] 16.7M 351 -

CARN [3] 1.1M 34 -

CARN-M [3] 0.3M 43 -

Table 1. Properties of the super-resolution methods.

apply this concept in our study by altering the formulation

of our basic attack as follows.

Assume that there are K images in the dataset, where the

k-th image is denoted as Xk
0 . With a universal perturbation

∆, we can obtain the adversarial images as:

X
k = clip0,1(X

k
0 +∆). (5)

Then, we compute the average amount of deterioration as:

F(∆) =
1

K

K∑

k=1

L(Xk,Xk
0). (6)

Starting from ∆0 = 0, the universal perturbation is updated

iteratively as:

∆n+1 = clip
−α,α

(
∆n +

α

T
sgn

(
∇F(∆n)

))
. (7)

The final universal perturbation is obtained by ∆ = ∆T .

3.3. Partial attack

The basic attack in Section 3.1 finds a perturbation cov-

ering the whole region of the given image. We further in-

vestigate the robustness of the super-resolution methods by

attacking only some part of the image, but measuring the

amount of deterioration in the region that is not being at-

tacked. With this experiment, we can examine how much

the perturbation permeates into the adjacent regions during

super-resolution.

Let M denote a binary mask of the perturbation ∆,

where only the region to be attacked is set to 1. The masked

perturbation is ∆ ◦ M, where ◦ denotes the element-wise

multiplication. Then, (2) can be modified as:

X̃n+1 = clip0,1

(
Xn+

α

T
sgn

(
∇LM(Xn,X0)

)
◦M

)
(8)

where

LM(X,X0) =
∣∣∣∣(f(X)− f(X0)

)
◦ (1−MH)

∣∣∣∣
2
. (9)

In (9), MH is a high-resolution counterpart of M. The term

(1−MH) ensures that the amount of deterioration is calcu-

lated only on the unperturbed regions. The final adversarial

example is obtained by X = XT .

4. Experimental Results

Datasets. We employ three image datasets that are widely

used for benchmarking super-resolution methods: Set5 [4],

Set14 [24], and BSD100 [14]. Each dataset consists of 5,

14, and 100 images, respectively.

Super-resolution methods. We consider eight state-

of-the-art deep learning-based super-resolution methods

having various model sizes and properties, including EDSR

[12], EDSR-baseline [12], RCAN [25], 4PP-EUSR [6],

ESRGAN [19], RRDB [19], CARN [3], and CARN-M [3].

Table 1 shows their characteristics in terms of the number

of model parameters, the number of convolutional layers,

and whether to employ GANs for training. EDSR-baseline

is a smaller version of EDSR, RRDB is an alternative ver-

sion of ESRGAN trained without the GAN, and CARN-M

is a lightweight version of CARN in terms of the number

of model parameters. In addition, we also consider the

bicubic interpolation to compare its robustness against the

adversarial attacks with that of the deep learning-based

methods. We consider a scaling factor of 4 for all the

super-resolution methods. In addition, we employ the

pre-trained models provided by the original authors.

Implementation details. Our adversarial attack meth-

ods are implemented on the TensorFlow framework

[2]. For all the attack methods, we set α ∈
{1/255, 2/255, 4/255, 8/255, 16/255, 32/255} and T =
50. For the universal attack, a perturbation ∆ with a fixed

spatial resolution is required in order to apply it to all im-

ages in a dataset. Therefore, we crop the center region of

each input image with a fixed resolution. For the partial at-

tack, we set the mask M so as to attack the central part of

the input image, i.e.,

M(x,y) =

{
1 if w

4 ≤ x < 3w
4 , h

4 ≤ y < 3h
4

0 otherwise
(10)

where M(x,y) is the value of M at (x, y), and w and h are

the width and height of the input image, respectively.

Performance measurement. We measure the robustness

of the super-resolution methods against our adversarial at-

tack methods in terms of PSNR. For low-resolution (LR)

images, we calculate the PSNR values between the original

and attacked images, i.e., X0 and X. For super-resolved

(SR) images, PSNR is measured between the output images

obtained from the original and attacked input images, i.e.,

f(X0) and f(X). We report the averaged PSNR values for

each dataset. For the partial attack, we calculate the PSNR

values only for the outer region of the output image that

corresponds to the masked region during the attack.

4.1. Basic attack

Figure 1 compares the performance of the super-

resolution methods in terms of PSNR for the I-FGSM attack
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Figure 1. Comparison of the PSNR values of low-resolution (LR) and super-resolved (SR) images with respect to different α values for the

basic attack on the Set5 [4], Set14 [24], and BSD100 [14] datasets.

Ground-truth EDSR EDSR-baseline RCAN 4PP-EUSR

ESRGAN RRDB CARN CARN-M Bicubic

Figure 2. Visual comparison of the super-resolved outputs for the inputs attacked with α = 8/255. In each case, (top-left) is the original

input in Set5 [4], (top-right) is the adversarial input, and (bottom) is the output obtained from the adversarial input. The input images are

enlarged two times for better visualization.

explained in Section 3.1. As α increases, quality degrada-

tion becomes severe in both the LR and SR images. How-

ever, it is much more significant in the SR images than the

LR images (i.e., lower PSNR values) except for the bicubic

interpolation. For example, on the Set5 dataset, the PSNR

values of LR and SR images for the EDSR model are 41.37
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Figure 3. Comparison of the PSNR values of SR images for BSD100 [14] with respect to the model sizes in terms of (a) the number of

model parameters and (b) the number of convolutional layers (α = 8/255). Blue and red colors indicate the models trained with and

without GANs, respectively.

PSNR (dB)

Target model

EDSR
EDSR

-baseline
RCAN

4PP

-EUSR
ESRGAN RRDB CARN CARN-M

S
o

u
rc

e
 m

o
d

e
l

EDSR 16.14 32.88 25.82 23.86 16.26 23.57 32.80 37.74 

EDSR-baseline 24.44 19.19 23.65 21.23 15.15 22.29 26.82 33.62 

RCAN 30.57 35.49 15.89 26.60 18.94 29.74 35.57 40.46 

4PP-EUSR 27.25 32.76 26.83 15.02 16.16 24.71 32.87 37.97 

ESRGAN 28.64 33.11 28.59 24.28 9.57 24.46 33.30 36.56 

RRDB 25.55 33.09 25.31 23.77 15.86 14.59 32.91 38.11 

CARN 24.12 26.05 23.83 21.45 15.24 22.15 19.40 33.51

CARN-M 27.34 28.20 27.20 23.49 16.27 26.77 28.20 26.66 

Figure 4. Comparison of the transferability in terms of PSNR for

the BSD100 dataset [14] when α = 8/255. Red and blue colors

indicate the lowest and highest PSNR values (except the diagonal

cells) for each target model, respectively.

and 17.05 dB, respectively, when α = 8/255. Note that

two images having a PSNR value higher than 30 dB can be

regarded as visually identical images [10].

Figure 2 shows example LR and SR images for

α = 8/255. Overall, there is no obvious difference

between the original and perturbed input images for all

the super-resolution methods. However, significant quality

deterioration can be observed in the SR images for all

methods. ESRGAN shows the worst visual quality with

degradation in all parts of the SR image, which can also

be observed as the lowest PSNR values in Figures 1d, 1e,

and 1f. For the other super-resolution models, fingerprint-

like patterns are observed. This proves that all the deep

learning-based super-resolution methods are highly vul-

nerable against the adversarial attack. In comparison, the

bicubic method, although having lower super-resolution

quality on clean data, is much more robust compared with

the deep learning-based approaches.

Relation to model objectives. ESRGAN and 4PP-EUSR,

which employ GANs for considering perceptual quality

improvement, produce more significantly degraded outputs

than the other methods. Since ESRGAN has exactly the

same structure as RRDB but is trained with a different

objective (i.e., considering perceptual quality), the more

significant vulnerability of ESRGAN than RRDB implies

that differences of the training objectives affect the robust-

ness against the adversarial attacks. It is known that the

methods employing GANs tend to generate sharper textures

than the other methods to ensure naturally appealing qual-

ity of the upscaled images [5]. Therefore, these methods

amplify small perturbations significantly and produce

undesirable textures, which makes them more vulnerable to

the adversarial attacks than the methods without GANs.

Relation to model sizes. It is observed that the vulnerabil-

ity of the super-resolution models is related to their model

sizes. For example, EDSR-baseline, which is a smaller

version of EDSR, shows higher PSNR values for SR images

than EDSR, as shown in Figures 1d, 1e, and 1f. This is con-

firmed in Figure 3, where we compare the robustness with

respect to the model size. The figure explains that the PSNR

values of SR images tend to decrease when more model

parameters or more convolutional layers are employed.

Further analysis on this phenomenon is given in Section 4.3.

Transferability. In the classification tasks, the “transfer-

ability” means the possibility that a misclassified adversar-

ial example is also misclassified by another classifier [13].

We also examine the transferability of adversarial attacks

in super-resolution. In other words, an adversarial exam-

ple that is found for a “source” super-resolution model is

inputted to another “target” model, and the PSNR value of

the output image is measured.

Figure 4 summarizes the transferability for the deep

learning-based super-resolution models on the BSD100

dataset, where α = 8/255. The figure shows that the adver-

sarial examples are transferable between different models

to some extent, and the level of transferability differs de-

pending on the combination of the source and target mod-

els. The adversarial examples found for CARN and EDSR-
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Figure 5. Comparison of the PSNR values of LR and SR images with respect to different α values for the universal attack on the BSD100

dataset [14].

(a) (b) (c) (d) (e) (f)

Figure 6. Visual examples of the universal attack with α = 4/255 on the BSD100 dataset [14] for the RCAN model. (a) LR (original) (b)

Perturbation (c) LR (attacked) (d) SR (e–f) Other examples obtained from the images attacked with the same perturbation

baseline are highly transferable, while those for RCAN are

the least transferable. The result implies that RCAN has its

own specific characteristics in recovering the textures from

the input images, which makes the perturbations associated

with such characteristics less effective in the other super-

resolution methods.

4.2. Universal attack

Figure 5 compares the performance of the super-

resolution methods for the BSD100 dataset with respect to

different α values when the universal attack is applied. The

figure confirms that the super-resolution models are also

vulnerable to the image-agnostic universal attack, although

the universal attack requires larger perturbations of the in-

put images (i.e., slightly lower PSNR values in Figure 5a

than in Figure 1c) and is slightly less powerful than the

image-specific attack (i.e., slightly higher PSNR values in

Figure 5b than in Figure 1f). Compared to the results of the

basic attack (Figure 1), the same tendency is observed: both

ESRGAN and 4PP-EUSR are the most vulnerable and the

bicubic interpolation is the most robust.

Figure 6 shows visual examples of the universal attack

for RCAN, where α is 4/255. From all images of the

BSD100 dataset, our attack method finds a universal pertur-

bation (Figure 6b), which changes the input image shown

in Figure 6a to the one in Figure 6c. While the attacked

LR image has hardly noticeable differences from the origi-

nal image, its upscaled version contains significant artifacts

as shown in Figure 6d. Similar artifacts can be observed in

the other SR images attacked with the same perturbation,

as shown in Figures 6e and 6f. This demonstrates that the

state-of-the-art super-resolution methods using deep learn-

ing are also vulnerable to the universal perturbation.

4.3. Partial attack

Figure 7 shows the PSNR values of the SR images for

the partial attack with respect to different α values. The

rank of the super-resolution methods in terms of PSNR is

the same to that for the basic attack, except that the PSNR

values of the partial attack are much higher than those of

the basic attack, since the region where PSNR is measured

is not directly perturbed in the LR image. This shows that

the propagation of the perturbation to the neighboring pixels

during upscaling accounts for different levels of vulnerabil-

ity of different super-resolution models. For instance, all

the PSNR values of ESRGAN, except for α = 1 in Set5,

are lower than 30 dB due to the partial attack.

Figure 8 shows example SR images obtained from an

image in the Set14 dataset that are partially attacked with

α = 8/255. The degradation due to the attack propagates

outside of the attacked region, which are particularly no-

ticeable for ESRGAN and RRDB. This is because the ker-

nels of the convolutional layers operate on not only the pixel

of a target position but also its adjacent pixels. Moreover,

the propagation of the perturbation due to such operations

is further extended through multiple convolutional layers,
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Figure 7. Comparison of the PSNR values of SR images with respect to different α values for the partial attack.

Ground-truth EDSR EDSR-baseline RCAN 4PP-EUSR

ESRGAN RRDB CARN CARN-M Bicubic

Figure 8. Visual comparison of the SR images for the partial adversarial attack with α = 8/255 on an image of Set14 [24]. The regions

marked with yellow boxes correspond to the regions where the attack is applied in the LR images.

which accounts for the result shown in Figure 3b.

5. Advanced Topics

5.1. Targeted attack

In the case of the classification tasks, it is possible to

attack an image so that a classifier wrongly classifies the

image as a specific target class. We present a showcase

demonstrating that this concept can be also applied to the

super-resolution methods. In other words, instead of de-

grading quality of the output image, the targeted attack

makes a super-resolution method generate an image that is

more similar to a target image than the original ground-truth

one. For this, we modify (2) as:

X̃n+1 = clip0,1

(
Xn −

α

T
sgn

(
∇L(Xn,X

∗)
))

(11)

where X
∗ is the target image.

For demonstration, we use two adjacent frames of a

video named “foreman” [1]. Figure 9 shows the result for

4PP-EUSR, where α = 16/255 and T = 50. The figure

LR (original) LR (target) LR (attacked)

HR (original) HR (target) SR (attacked)

Figure 9. Result of the targeted attack with α = 16/255 using two

frames of a video “foreman” [1] for 4PP-EUSR [6].

shows that the targeted attack is successful: the perturba-

tion is generated so as to make the super-resolution method

produce the upscaled output (“SR (attacked)”), which looks
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[14] when α = 1/255. Each point corresponds to each image in

the dataset.

more similar to the target high-resolution (HR) image with

half-closed eyes (“HR (target)”) than the original ground-

truth image with open eyes (“HR (original)”), while the at-

tacked input image (“LR (attacked)”) still looks more sim-

ilar to the original image (“LR (original)”) than the low-

resolution version of the target image (“LR (target)”). In

addition, we conduct a subjective test with 20 human ob-

servers, and 10 of them recognized the attacked output

(“SR (attacked)”) as closed eyes. These results have serious

security implications: attacks on super-resolution can not

only compromise the fundamental goal of super-resolution

(i.e., image quality enhancement) but also jeopardize fur-

ther manual or automatic examination of the super-resolved

images (e.g., identifying persons or objects in surveillance

cameras, recognizing text in images, etc.).

5.2. Robustness measure

Recently, Weng et al. [20] propose an attack-agnostic

robustness measure of classification models, called cross

Lipschitz extreme value for network robustness (CLEVER),

which does not depend on specific attack methods. It esti-

mates the lower bound of robustness using the cross Lips-

chitz constant based on the extreme value theory. We apply

the core idea of this method to the super-resolution tasks

in order to theoretically validate the experimental results

shown in Section 4.

Let X0 denote the original input image. We first obtain

Ns random perturbations, which are within [−α, α] for each

pixel. Let ∆(i) denote the i-th random perturbation. Then,

we compute bi = ||∇L(X0 + ∆(i),X0)||1 for all pertur-

bations, where L is defined in (1). Finally, we regard the

maximum bi as the robustness index; a large robustness in-

dex indicates high vulnerability. We set Ns and α to 1024

and 1/255, respectively.

Figure 10 shows the PSNR values for SR images and

robustness indices of the eight deep learning-based super-

resolution methods for the BSD100 dataset, where the

PSNR values are obtained from the basic attack with the

same α value (Section 4.1). The result shows that the

robustness index is strongly correlated to PSNR. For in-

stance, ESRGAN has the largest robustness indices, which

shows the lowest PSNR values; the EDSR-baseline model

has the similar robustness as the CARN model in terms

of both PSNR and the robustness index. Furthermore, in

each method, the robustness index successfully explains rel-

ative vulnerability of different images. The applicability of

the CLEVER method for explaining the robustness of the

super-resolution methods implies that the underlying mech-

anisms of the adversarial attacks share similarity between

the classification and super-resolution tasks.

5.3. Defense

We show two simple defense methods against attacks.

First, we adopt a resizing method [21] by reducing the size

of the attacked input image by one pixel and then resizing

it back to the original resolution, which is then inputted to

the SR model. With this, PSNR for EDSR with α = 8/255
increases from 16.14 to 25.01 dB. Second, we employ the

geometric self-ensemble method used in the EDSR model

[12]. With this, PSNR for EDSR with α = 8/255 increases

from 16.14 to 23.47 dB. More advanced defense methods

can be investigated in the future work.

6. Conclusion

We have investigated the robustness of deep learning-

based super-resolution methods against adversarial attacks,

for which the attack methods for the classification tasks

are optimized for our objectives. Our results showed that

state-of-the-art deep learning-based super-resolution meth-

ods are highly vulnerable to adversarial attacks, which is

largely due to the perturbation propagation through the con-

volutional operation. It was possible to measure different

levels of robustness of different methods using the attack-

agnostic robustness measure. We also showed the feasi-

bility of generating universal attacks and transferring at-

tacks across super-resolution methods. Furthermore, it was

shown that the targeted attack can change the content of the

image during super-resolution.
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