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Abstract

The use of object detection algorithms is becoming in-

creasingly important in autonomous vehicles, and object

detection at high accuracy and a fast inference speed is es-

sential for safe autonomous driving. A false positive (FP)

from a false localization during autonomous driving can

lead to fatal accidents and hinder safe and efficient driv-

ing. Therefore, a detection algorithm that can cope with

mislocalizations is required in autonomous driving applica-

tions. This paper proposes a method for improving the de-

tection accuracy while supporting a real-time operation by

modeling the bounding box (bbox) of YOLOv3, which is the

most representative of one-stage detectors, with a Gaussian

parameter and redesigning the loss function. In addition,

this paper proposes a method for predicting the localization

uncertainty that indicates the reliability of bbox. By using

the predicted localization uncertainty during the detection

process, the proposed schemes can significantly reduce the

FP and increase the true positive (TP), thereby improving

the accuracy. Compared to a conventional YOLOv3, the

proposed algorithm, Gaussian YOLOv3, improves the mean

average precision (mAP) by 3.09 and 3.5 on the KITTI and

Berkeley deep drive (BDD) datasets, respectively. Never-

theless, the proposed algorithm is capable of real-time de-

tection at faster than 42 frames per second (fps) and shows

a higher accuracy than previous approaches with a similar

fps. Therefore, the proposed algorithm is the most suitable

for autonomous driving applications.

1. Introduction

In recent years, deep learning has been actively applied

in various fields including computer vision [9], autonomous

driving [5], and social network services [15]. The devel-

opment of sensors and GPU along with deep learning al-

gorithms has accelerated research into autonomous vehi-

cles based on artificial intelligence. An autonomous vehi-

cle with self-driving capability without a driver interven-

tion must accurately detect cars, pedestrians, traffic signs,

traffic lights, etc. in real time to ensure safe and correct

control decisions [25]. To detect such objects, various sen-

sors such as cameras, light detection and ranging (Lidar),

and radio detection and ranging (Radar) are generally used

in autonomous vehicles [27]. Among these various types

of sensors, a camera sensor can accurately identify the ob-

ject type based on texture and color features and is more

cost-effective [24] than other sensors. In particular, deep-

learning based object detection using camera sensors is be-

coming more important in autonomous vehicles because it

achieves a better level of accuracy than humans in terms of

object detection, and consequently it has become an essen-

tial method [11] in autonomous driving systems.

An object detection algorithm for autonomous vehicles

should satisfy the following two conditions. First, a high

detection accuracy of the road objects is required. Sec-

ond, a real-time detection speed is essential for a rapid re-

sponse of a vehicle controller and a reduced latency. Deep-

learning based object detection algorithms, which are indis-

pensable in autonomous vehicles, can be classified into two

categories: two-stage and one-stage detectors. Two-stage

detectors, e.g., Fast R-CNN [8], Faster R-CNN [22], and R-

FCN [4], conduct a first stage of region proposal generation,

followed by a second stage of object classification and bbox

regression. These methods generally show a high accu-

racy but have a disadvantage of a slow detection speed and

lower efficiency. One-stage detectors, e.g., SSD [17] and

YOLO [19], conduct object classification and bbox regres-

sion concurrently without a region proposal stage. These

methods generally have a fast detection speed and high ef-

ficiency but a low accuracy. In recent years, to take advan-

tage of both types of method and to compensate for their re-

spective disadvantages, object detectors combining various

schemes have been widely studied [1, 11, 29, 28, 16]. MS-

CNN [1], a two-stage detector, improves the detection speed

by conducting detection on various intermediate network

layers. SINet [11], also a two-stage detector, enables a fast

detection using a scale-insensitive network. CFENet [29], a

one-stage detector, uses a comprehensive feature enhance-
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ment module based on SSD to improve the detection accu-

racy. RefineDet [28], also a one-stage detector, improves

the detection accuracy by applying an anchor refinement

module and an object detection module. Another one-stage

detector, RFBNet [16], applies a receptive field block to im-

prove the accuracy. However, using an input resolution of

512 × 512 or higher, which is widely applied in object de-

tection algorithms for achieving a high accuracy, previous

studies [1, 11, 29, 28] have been unable to meet a real-time

detection speed of above 30 fps, which is a prerequisite for

self-driving applications. Even if real-time detection is pos-

sible in [16], it is difficult to apply to autonomous driving

due to a low accuracy. This indicates that these previous

schemes are incomplete in terms of a trade-off between ac-

curacy and detection speed, and consequently, have a limi-

tation in their application to self-driving systems.

In addition, one of the most critical problems of most

conventional deep-learning based object detection algo-

rithms is that, whereas the bbox coordinates (i.e., localiza-

tion) of the detected object are known, the uncertainty of

the bbox result is not. Thus, conventional object detectors

cannot prevent mislocalizations (i.e., FPs) because they out-

put the deterministic results of the bbox without information

regarding the uncertainty. In autonomous driving, an FP de-

notes an incorrect detection result of bbox on an object that

is not the ground-truth (GT), or an inaccurate detection re-

sult of bbox on the GT, whereas a TP denotes an accurate

detection result of bbox on the GT. An FP is extremely dan-

gerous under autonomous driving because it causes exces-

sive reactions such as unexpected braking, which can re-

duce the stability and efficiency of driving and lead to a

fatal accident [18, 23] as well as confusion in the deter-

mination of an accurate object detection. In other words,

it is extremely important to predict the uncertainty of the

detected bboxes and to consider this factor along with the

objectness score and class scores for reducing the FP and

preventing autonomous driving accidents. For this reason,

various studies have been conducted on predicting uncer-

tainty in deep learning. Kendall et al. [12] proposed a mod-

eling method for uncertainty prediction using a Bayesian

neural network in deep learning. Feng et al. [6] proposed a

method for predicting uncertainty by applying Kendall et al.

’s scheme [12] to 3D vehicle detection using a Lidar sensor.

However, the methods proposed by Kendall et al. [12] and

Feng et al. [6] only predict the level of uncertainty, and do

not utilize this factor in actual applications. Choi et al. [2]

proposed a method for predicting uncertainty in real time

using a Gaussian mixture model and applied the method to

an autonomous driving application. However, it was applied

to the steering angle, and not object detection, and a compli-

cated distribution is therefore modeled, increasing the com-

putational complexity. He et al. [10] proposed an approach

for predicting uncertainty and utilized it toward object de-

tection. However, because they focused on a two-stage de-

tector, their method cannot support a real-time operation,

and remaining a bbox overlap problem, so it is unsuitable

for self-driving applications.

To overcome the problems of previous object detec-

tion studies, this paper proposes a novel object detec-

tion algorithm suitable for autonomous driving based on

YOLOv3 [21]. YOLOv3 can detect multiple objects with

a single inference, and its detection speed is therefore ex-

tremely fast; in addition, by applying a multi-stage de-

tection method, it can complement the low accuracy of

YOLO [19] and YOLOv2 [20]. Based on these advantages,

YOLOv3 is suitable for autonomous driving applications,

but generally achieves a lower accuracy than a two-stage

method. It is therefore essential to improve the accuracy

while maintaining a real-time object detection capability.

To achieve this goal, the present paper proposes a method

for improving the detection accuracy by modeling the bbox

coordinates of YOLOv3, which only outputs deterministic

values, as the Gaussian parameters (i.e., the mean and vari-

ance), and redesigning the loss function of bbox. Through

this Gaussian modeling, a localization uncertainty for a

bbox regression task in YOLOv3 can be estimated. Further-

more, to further improve the detection accuracy, a method

for reducing the FP and increasing the TP by utilizing the

predicted localization uncertainty of bbox during the detec-

tion process is proposed. This study is therefore the first

attempt to model the localization uncertainty in YOLOv3

and to utilize this factor in a practical manner. As a result,

the proposed Gaussian YOLOv3 can cope with mislocaliza-

tions in autonomous driving applications. In addition, be-

cause the proposed method is modeled only in bbox of the

YOLOv3 detection layer (i.e., the output layer), the addi-

tional computation cost is negligible, and the proposed algo-

rithm consequently maintains the real-time detection speed

of over 42 fps with an input resolution of 512 × 512 despite

the significant improvements in performance. Compared to

the baseline algorithm (i.e., YOLOv3), the proposed Gaus-

sian YOLOv3 improves the mAP by 3.09 and 3.5 on the

KITTI [7] and BDD [26] datasets, respectively. In addi-

tion, the proposed algorithm reduces the FP by 41.40% and

40.62%, respectively, and increases the TP by 7.26% and

4.3%, respectively, on the KITTI and BDD datasets. As a

result, in terms of the trade-off between accuracy and de-

tection speed, the proposed algorithm is suitable for au-

tonomous driving because it significantly improves the de-

tection accuracy and addresses the mislocalization problem

while supporting a real-time operation.

2. Background

Instead of the region proposal method used in two-stage

detectors, YOLO [19] detects objects by dividing an image

into grid units. The feature map of the YOLO output layer is
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Figure 1: (a) Network architecture of YOLOv3 and (b) attributes of its prediction feature map.

designed to output bbox coordinates, the objectness score,

and the class scores, and thus YOLO enables the detec-

tion of multiple objects with a single inference. Therefore,

the detection speed is much faster than that of conventional

methods. However, owing to the processing of the grid unit,

localization errors are large and the detection accuracy is

low, and thus it is unsuitable for autonomous driving ap-

plications. To address these problems, YOLOv2 [20] has

been proposed. YOLOv2 improves the detection accuracy

compared to YOLO by using batch normalization for the

convolution layer, and applying an anchor box, multi-scale

training, and fine-grained features. However, the detection

accuracy is still low for small or dense objects. Therefore,

YOLOv2 is unsuitable for autonomous driving applications,

where a high accuracy is required for dense road objects and

small objects such as traffic signs and lights.

To overcome the disadvantages of YOLOv2,

YOLOv3 [21] has been proposed. YOLOv3 consists

of convolution layers, as shown in Figure 1a, and is

constructed of a deep network for an improved accuracy.

YOLOv3 applies a residual skip connection to solve the

vanishing gradient problem of deep networks and uses

an up-sampling and concatenation method that preserves

fine-grained features for small object detection. The

most prominent feature is the detection at three different

scales in a similar manner as used in a feature pyramid

network [13]. This allows YOLOv3 to detect objects

with various sizes. In more detail, when an image of

three channels of R, G, and B is input into the YOLOv3

network, as shown in Figure 1a, information on the object

detection (i.e., bbox coordinates, objectness score, and

class scores) is output from three detection layers. The

predicted results of the three detection layers are combined

and processed using non-maximum suppression. After

that, the final detection results are determined. Because

YOLOv3 is a fully convolutional network consisting only

of small-sized convolution filers of 1 × 1 and 3 × 3 like

YOLOv2 [20], the detection speed is as fast as YOLO [19]

and YOLOv2 [20]. Therefore, in terms of the trade-off

between accuracy and speed, YOLOv3 is suitable for

autonomous driving applications and is widely used in

autonomous driving research [3]. However, in general, it

still has a lower accuracy than a two-stage detector using

a region proposal stage. To compensate for this drawback,

as taking advantage of the smaller complexity of YOLOv3

than that of a two-stage detector, a more efficient detector

for an autonomous driving application can be designed by

applying the additional method for improving accuracy to

YOLOv3 [21]. The Gaussian modeling and loss function

reconstruction of YOLOv3 proposed in this paper can

improve the accuracy by reducing the influence of noisy

data during training and predict the localization uncertainty.

In addition, the detection accuracy can be further enhanced

by using this predicted localization uncertainty. A detailed

description of the above aspects is provided in Section 3.

3. Gaussian YOLOv3

3.1. Gaussian modeling

As shown in Figure 1b, the prediction feature map of

YOLOv3 [21] has three prediction boxes per grid, where

each prediction box consists of bbox coordinates (i.e., tx,

ty , tw, and th), the objectness score, and class scores.

YOLOv3 outputs the objectness (i.e., whether an object is

present or not in the bbox) and class (i.e., the category of

the object), as a score of between zero and one. An object

is then detected based on the product of these two values.

Unlike the objectness and class information, bbox coordi-

nates are output as deterministic coordinate values instead

of a score, and thus the confidence of the detected bbox is

unknown. Moreover, the objectness score does not reflect

the reliability of the bbox well. It therefore does not know
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how uncertain the result of bbox is. In contrast, the uncer-

tainty of bbox, which is predicted by the proposed method,

serves as the bbox score, and can thus be used as an indi-

cator of how uncertain the bbox is. The results for this are

described in Section 4.1.

In YOLOv3, bbox regression is to extract the bbox cen-

ter information (i.e., tx and ty) and bbox size information

(i.e., tw and th). Because there is only one correct answer

(i.e., the GT) for the bbox of an object, complex modeling

is not required for predicting the localization uncertainty. In

other words, the uncertainty of bbox can be modeled using

each single Gaussian model of tx, ty , tw, and th. A single

Gaussian model of output y for a given test input x whose

output consists of Gaussian parameters is as follows:

p(y|x) = N(y;µ(x),Σ(x)), (1)

where µ(x) and Σ(x) are the mean and variance functions,

respectively.

To predict the uncertainty of bbox, each of the bbox coor-

dinates in the prediction feature map is modeled as the mean

(µ) and variance (Σ), as shown in Figure 2. The outputs of

bbox are µ̂tx , Σ̂tx , µ̂ty , Σ̂ty , µ̂tw , Σ̂tw , µ̂th , and Σ̂th . Con-

sidering the structure of the detection layer in YOLOv3, the

Gaussian parameters for tx, ty , tw, and th are preprocessed

as follows:

µtx = σ(µ̂tx), µty = σ(µ̂ty ), µtw = µ̂tw , µth = µ̂th (2)

Σtx = σ(Σ̂tx), Σty = σ(Σ̂ty ),

Σtw = σ(Σ̂tw), Σth = σ(Σ̂th)
(3)

σ(x) =
1

(1 + exp(−x))
. (4)

The mean value of each coordinate in the detection layer

is the predicted coordinate of bbox, and each variance rep-

resents the uncertainty of each coordinate. µtx and µty in

(2) must represent the center coordinates of bbox inside the

grid, which are thus processed as values between zero and

one with the sigmoid function in (4). The variances of each

coordinate in (3) are also processed as values between zero

and one with a sigmoid function. In YOLOv3, the width

and height information of bbox are processed through tw,

th, bbox prior, and exponential functions [21]. In other

words, µtw and µth in (2), which indicate the tw and th of

YOLOv3, are not processed as sigmoid functions because

they can have both negative and positive values.

Single Gaussian modeling for predicting the uncer-

tainty of bbox only applies to the bbox coordinates of the

YOLOv3 detection layer shown in Figure 1a. Therefore,

the overall computational complexity of the algorithm does

not increase significantly. In a 512 × 512 input resolution

and ten classes, YOLOv3 requires 99 × 109 FLOPs; how-

ever, after a single Gaussian modeling for bbox, 99.04 ×

Gaussian parameter of bounding box 

coordinates
Class scores
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Σtyμty Σtwμtw Σthμth

μtx x

tx
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Figure 2: Components in the prediction box of proposed algo-

rithm.

109 FLOPs are required. Thus, the penalty for the detec-

tion speed is extremely low because the computation cost

increases only by 0.04% as compared with before the mod-

eling. The related results are shown in Section 4.

3.2. Reconstruction of loss function

For training, YOLOv3 [21] uses the sum of the squared

error loss for bbox, and the binary cross-entropy loss for the

objectness and class. Because the bbox coordinates are out-

put as Gaussian parameters through Gaussian modeling, the

loss function of bbox is redesigned as a negative log likeli-

hood (NLL) loss, whereas the loss function for objectness

and class is not changed. The loss function redesigned for

bbox is as follows:

Lx = −

W∑

i=1

H∑

j=1

K∑

k=1

γijklog(N(xG
ijk|µtx(xijk),

Σtx(xijk)) + ε),

(5)

where Lx is the NLL loss of tx coordinate and the others

(i.e., Ly , Lw, and Lh) are the same as Lx except for each

parameter. W and H are the number of grids of each width

and height, respectively, and K is the number of anchors.

Moreover, µtx(xijk) denotes the tx coordinates, which is

the output of the detection layer of the proposed algorithm,

at the k-th anchor in the (i, j) grid. In addition, Σtx(xijk) is

also the output of the detection layer, indicating the uncer-

tainty of tx coordinate, and xG
ijk is the GT of tx coordinate.

The GT of bbox is then computed as follows:

xG
ijk = xG ×W − i, yGijk = yG ×H − j (6)

wG
ijk = log(

wG × IW

Aw
k

), hG
ijk = log(

hG × IH

Ah
k

), (7)

where xG, yG, wG, and hG are the ratios of a GT bbox in an

image, IW and IH are the width and height of the resized

image, and Aw
k and Ah

k denote the width and height of the

k-th anchor box prior, respectively. In YOLOv3, centroid of
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bbox is calculated in grid units, and size of bbox is calcu-

lated based on an anchor box, and thus the GT is processed

accordingly for training.

γijk =
ωscale × δ

obj
ijk

2
(8)

ωscale = 2− wG × hG. (9)

ωscale in (8) is calculated based on the width and height

ratios of the GT bbox in an image, as shown in (9). It pro-

vides different weights according to the object size during

training. In addition, δ
obj
ijk in (8) is a parameter applied to

include in the loss only if there is an anchor that is most

suitable in the current object among the predefined anchors.

This parameter is assigned as a value of one when the inter-

section over union (IOU) of the GT and the k-th anchor box

in the (i, j) grid are the largest, and is assigned as a value of

zero if there is no appropriate GT. For a numerical stability

of the logarithmic function, ε is assigned a value of 10−9.

Because YOLOv3 uses the sum of the squared error loss

for bbox, it is unable to cope with noisy data during training.

However, the redesigned loss function of bbox can provide

a penalty to the loss through the uncertainty for inconsistent

data during training. That is, the model can be learned by

concentrating on consistent data. Therefore, the redesigned

loss function of bbox makes the model more robust to noisy

data [12]. Through this loss attenuation [12], it is possible

to improve the accuracy of the algorithm.

3.3. Utilization of localization uncertainty

The proposed Gaussian YOLOv3 can obtain the uncer-

tainty of bbox for every detection object in an image. Be-

cause it is not an uncertainty for the entire image, it is pos-

sible to apply uncertainty to each detection result. YOLOv3

considers only the objectness score and class scores during

object detection, and cannot consider the bbox score during

the detection process because the score information for the

bbox coordinates is unknown. However, Gaussian YOLOv3

can output the localization uncertainty, which is the score of

bbox. Therefore, localization uncertainty can be considered

along with the objectness score and class scores during the

detection process. The proposed algorithm applies localiza-

tion uncertainty to the detection criteria of YOLOv3 such

that bbox with high uncertainty among the predicted results

is filtered through the detection process. In this way, pre-

dictions with high confidence of objectness, class, and bbox

are finally selected. Thus, Gaussian YOLOv3 can reduce

the FP and increase the TP, which results in improving the

detection accuracy. The proposed detection criterion con-

sidering the localization uncertainty is as follows:

Cr. = σ(Object)× σ(Classi)× (1− Uncertaintyaver).
(10)

Cr. in (10) indicates the detection criterion for Gaus-

sian YOLOv3, σ(Object) is the objectness score, and

σ(Classi) is the score of the i-th class. In addition,

Uncertaintyaver, which is localization uncertainty, indi-

cates the average of the uncertainties of the predicted bbox

coordinates. Localization uncertainty has a value between

zero and one, such as the objectness score and class scores,

and the higher the localization uncertainty, the lower the

confidence of the predicted bbox. The results of the pro-

posed Gaussian YOLOv3 are described in Section 4.

4. Experimental Results

In the experiment, the KITTI dataset [7], which is com-

monly used in autonomous driving research, and the BDD

dataset [26], which is the latest published autonomous driv-

ing dataset, are used. The KITTI dataset consists of three

classes: car, cyclist, and pedestrian, and consists of 7,481

images for training and 7,518 images for testing. Because

there is no GT for testing, the training and validation sets

are made by randomly splitting the training set in half [25].

The BDD dataset consists of ten classes: bike, bus, car, mo-

tor, person, rider, traffic light, traffic sign, train, and truck.

The ratio of training, validation, and test set is 7:1:2. In

this paper, a test set is utilized for the performance eval-

uation. In general, the IOU threshold (TH) of the KITTI

dataset is set to 0.7 for cars and 0.5 for cyclists and pedestri-

ans [7], whereas the IOU TH of the BDD dataset is 0.75 for

all classes [26]. In both YOLOv3 and Gaussian YOLOv3

training, the batch size is 64 and the learning rate is 0.0001.

The anchor size is extracted using k-means clustering for

each training set of KITTI and BDD. The anchors used in

the training and evaluation are shown in Table 1. Other

studies are trained using the default settings in the official

code of each algorithm. The experiment is conducted on an

NVIDIA GTX 1080 Ti with CUDA 8.0 and cuDNN v7.

4.1. Validation in utilizing localization uncertainty

Figure 3 shows the relationship between the IOU and lo-

calization uncertainty of bbox for the KITTI and BDD val-

idation sets. These results are plotted for cars, which is the

dominant class for all data, and the localization uncertainty

is predicted using the proposed algorithm. To show a typi-

cal tendency, the IOU is divided increments of 0.1, and the

average value of the IOU and the average value of the local-

ization uncertainty are calculated for each range and used as

a representative value. As shown in Figure 3, the IOU value

tends to increase as the localization uncertainty decreases

in both datasets. A larger IOU indicates that the coordi-

nates of the predicted bbox are closer to those of the GT.

Based on these results, the localization uncertainty of the

proposed algorithm effectively represents the confidence of

the predicted bbox. It is therefore possible to cope with mis-

localizations and improve the accuracy by utilizing the lo-
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Anchor 0 Anchor 1 Anchor 2

KITTI training set

First detection layer (49,240) (82,170) (118,206)

Second detection layer (45,76) (27,172) (67,116)

Third detection layer (13,30) (23,53) (17,102)

BDD training set

First detection layer (73,175) (141,178) (144,291)

Second detection layer (32,97) (57,64) (92,109)

Third detection layer (7,10) (14,24) (27,43)

Table 1: Results of anchor boxes of training sets.

calization uncertainty predicted by the proposed algorithms.

4.2. Performance evaluation of Gaussian YOLOv3

To demonstrate the superiority of the proposed algo-

rithm, its performance (i.e., accuracy and detection speed)

is compared with that of other studies [1, 11, 17, 28, 29, 16,

21]. In the experiment on the KITTI validation set, the other

studies [1, 11, 17, 28, 16, 21] are trained and evaluated using

the official published code of each algorithm. In the case of

CFENet [29], the result of the KITTI object detection leader

board is used because the official code has not been pub-

lished. In the experiment on the BDD test data, the results

for the BDD test set of SSD [17], CFENet [29], and Re-

fineDet [28] are specified in CFENet [29], and thus the sim-

ulation results of these studies are from [29], whereas the re-

maining comparative studies [1, 11, 16, 21] are trained and

evaluated using the official published codes because these

studies have not been developed as targets for BDD datasets

and therefore have not been evaluated with BDD datasets in

previous studies. For a fair comparison of the one-stage de-

tectors, the input resolution is set as in CFENet [29]. The

two-stage detector uses the default resolution of each offi-

cial published code. The official evaluation method of each

dataset is used for an accuracy comparison, and IOU TH

is set to the value mentioned before. For a comparison of

the accuracy, mAP, which has been widely used in previous

studies on object detection, is selected.

Table 2 shows the performance of the proposed algo-

rithm and other methods using the KITTI validation set.

The mAP of the proposed algorithm, Gaussian YOLOv3,

improves by 3.09 compared to that of YOLOv3, and the

detection speed is 43.13 fps, which enables real-time de-

tection with a slight difference from YOLOv3. Gaussian

YOLOv3 is 3.93 fps faster than that of RFBNet [16], which

has the fastest operation speed among the previous studies

with the exception of YOLOv3, despite the mAP of Gaus-

sian YOLOv3 outperforming that of RFBNet [16] by more

than 10.17. In addition, although the mAP of Gaussian

YOLOv3 with a 512 × 512 resolution is 1.81 lower than

that of SINet [11], which has the highest accuracy among

the previous methods, it is noteworthy that the fps of the

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.06 0.1 0.14 0.18 0.22 0.26 0.3 0.34 0.38

IO
U

Localization Uncertainty

KITTI

BDD

Figure 3: IOU versus localization uncertainty on KITTI and BDD

validation sets.

proposed method is 1.8-times better than that of SINet [11].

Because there is a trade-off between the accuracy and detec-

tion speed, for a fair comparison, the input resolution of the

proposed algorithm is changed and evaluated considering

the fps of SINet [11]. The experimental results show that

the mAP of Gaussian YOLOv3 with a 704 × 704 resolution

shown in the last row of Table 2 is 86.79 at 24.91 fps, and

consequently, Gaussian YOLOv3 outperforms SINet [11]

in terms of the accuracy and detection speed.

Table 3 shows the performance of the proposed approach

and other methods for the BDD test set. Gaussian YOLOv3

improves the mAP by 3.5 compared with YOLOv3, and

the detection speed is 42.5 fps, which is almost the same

as YOLOv3. In addition, Gaussian YOLOv3 is 3.5 fps

faster than the RFBNet [16], which has the fastest opera-

tion speed among the previous studies except for YOLOv3,

despite the accuracy of Gaussian YOLOv3 outperforming

that of RFBNet [16] by 3.9 mAP. In addition, compared to

CFENet [29], which has the highest accuracy among the

previous methods, the performance of Gaussian YOLOv3

with a 736 × 736 input resolution in the last row of Table 3

shows a better mAP of 1.7 and faster operation speed of

1.5 fps, and consequently, Gaussian YOLOv3 outperforms

CFENet [29] in terms of the accuracy and detection speed.

Furthermore, on the COCO dataset [14], the AP of Gaus-

sian YOLOv3 is 36.1, which is 3.1 higher than YOLOv3.

In particular, the AP75 (i.e., strict metric) of Gaussian

YOLOv3 is 39.0, which is 4.6 higher than that of YOLOv3.

These results indicate that the proposed algorithm outper-

forms YOLOv3 in general dataset as well as KITTI and

BDD.

Based on these experimental results, because the pro-

posed algorithm can significantly improve the accuracy

with little penalty in speed compared to YOLOv3, Gaussian

YOLOv3 is superior to the previous methods.
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Detection algorithm

Average precision (%)

mAP (%) FPS Input sizeCar Pedestrian Cyclist

E M H E M H E M H

MS-CNN [1] 92.54 90.49 79.23 87.46 81.34 72.49 90.13 87.59 81.11 84.71 8.13 1920×576

SINet [11] 99.11 90.59 79.77 88.09 79.22 70.30 94.41 86.61 80.68 85.42 23.98 1920×576

SSD [17] 88.37 87.84 79.15 50.33 48.87 44.97 48.00 52.51 51.52 61.29 28.93 512×512

RefineDet [28] 98.96 90.44 88.82 84.40 77.44 73.52 86.33 80.22 79.15 84.36 27.81 512×512

CFENet [29] 90.33 90.22 84.85 - - - - - - - 0.25 -

RFBNet [16] 87.41 88.35 83.41 65.85 61.30 57.71 74.46 72.73 69.75 73.44 39.20 512×512

YOLOv3 [21] 85.68 76.89 75.89 83.51 78.37 75.16 88.94 80.64 79.62 80.52 43.57 512×512

Gaussian YOLOv3 90.61 90.20 81.19 87.84 79.57 72.30 89.31 81.30 80.20 83.61 43.13 512×512

Gaussian YOLOv3 98.74 90.48 89.47 87.85 79.96 76.81 90.08 86.59 81.09 86.79 24.91 704×704

Table 2: Performance comparison using KITTI validation set. E, M, and H refer to easy, moderate, and hard, respectively.

Detection algorithm mAP (%) FPS Input size

MS-CNN [1] 5.7 6.0 1920×576

SINet [11] 9.0 18.2 1920×576

SSD [17] 14.1 23.1 512×512

RefineDet [28] 17.4 22.3 512×512

CFENet [29] 19.1 21.0 512×512

RFBNet [16] 14.5 39.0 512×512

YOLOv3 [21] 14.9 42.9 512×512

Gaussian YOLOv3 18.4 42.5 512×512

Gaussian YOLOv3 20.8 22.5 736×736

Table 3: Performance comparison using BDD test set.

4.3. Visual and numerical evaluation of FP and TP

For a visual evaluation of Gaussian YOLOv3, Figures 4

and 5 show the detection examples of the baseline and

Gaussian YOLOv3 for the KITTI validation set and the

BDD test set, respectively. The detection TH is 0.5, which

is the default test TH of YOLOv3. The results in the first

row of Figure 4 and in the first column of Figure 5 show that

Gaussian YOLOv3 can detect objects that YOLOv3 cannot

find, thereby increasing its TP. These positive results are

obtained because the Gaussian modeling and loss function

reconstruction of YOLOv3 proposed in this paper can pro-

vide a loss attenuation effect in the learning process, so that

the learning accuracy for bbox can be improved, which en-

hances the performance of objectness. Next, the results in

the second row of Figure 4 and in the second column of

Figure 5 show that Gaussian YOLOv3 can complement in-

correct object detection results found by YOLOv3. In ad-

dition, the results in the third row of Figure 4 and in the

third column of Figure 5 show that Gaussian YOLOv3 can

accurately detect bbox of object inaccurately detected by

YOLOv3. Based on these results, Gaussian YOLOv3 can

significantly reduce the FP and increase the TP, and con-

sequently, the driving stability and efficiency are improved

and fatal accidents can be prevented.

For a numerical evaluation of the FP and TP of Gaus-

sian YOLOv3, Table 4 shows the numbers of FPs and TPs

YOLOv3
Gaussian

YOLOv3

Variation

rate (%)

KITTI validation set

# of FP 1,681 985 -41.40

# of TP 13,575 14,560 +7.26

# of GT 17,607 17,607 0

BDD validation set

# of FP 86,380 51,296 -40.62

# of TP 57,261 59,724 +4.30

# of GT 185,578 185,578 0

Table 4: Numerical evaluation of FP and TP.

for the baseline and Gaussian YOLOv3. The detection TH

is the same as the mentioned before. The KITTI and BDD

validation sets are used to calculate the FP and TP because

the GT is provided in the validation set. For more accurate

measurements, the FP and TP of the two datasets are cal-

culated using the official evaluation code of BDD because

the KITTI official evaluation method does not count the

FP when bbox is within a certain size. For the KITTI and

BDD validation sets, Gaussian YOLOv3 reduces the FP by

41.40% and 40.62%, respectively, compared to YOLOv3.

In addition, it increases the TP by 7.26% and 4.3%, re-

spectively. It should be noted that the reduction in the FP

prevents unnecessary unexpected braking, and the increase

in the TP prevents fatal accidents from object detection er-

rors. In conclusion, Gaussian YOLOv3 shows a better per-

formance than YOLOv3 for both the FP and TP related to

the safety of autonomous vehicles. Based on the results de-

scribed in Sections 4.1, 4.2, and 4.3, the proposed algorithm

outperforms previous studies and is most suitable for au-

tonomous driving applications.

5. Conclusion

A high accuracy and real-time detection speed of an ob-

ject detection algorithm are extremely important for the

safety and real-time control of autonomous vehicles. Var-

ious studies related to camera-based autonomous driving

have been conducted, but are unsatisfactory based on a
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Figure 4: Detection results of the baseline and proposed algorithms on the KITTI validation set. The first column shows the detection

results of YOLOv3, whereas the second column shows the detection results of Gaussian YOLOv3.

Figure 5: Detection results of the baseline and proposed algorithms on the BDD test set. The first and second rows show the detection

results of YOLOv3 and Gaussian YOLOv3, respectively, and each color is related to a particular object class.

trade-off between the accuracy and operation speed. For

this reason, this paper proposes an object detection algo-

rithm that achieves the best trade-off between accuracy and

speed for autonomous driving. Through Gaussian mod-

eling, loss function reconstruction, and the utilization of

localization uncertainty, the proposed algorithm improves

the accuracy, increases the TP, and significantly reduces

the FP, while maintaining the real-time capability. Com-

pared to the baseline, the proposed Gaussian YOLOv3 al-

gorithm improves the mAP by 3.09 and 3.5 for the KITTI

and BDD datasets, respectively. Furthermore, because the

proposed algorithm has a higher accuracy than the previ-

ous studies with a similar fps, the proposed algorithm is

excellent in terms of the trade-off between accuracy and de-

tection speed. As a result, the proposed algorithm can sig-

nificantly improve the camera-based object detection sys-

tem for autonomous driving, and is consequently expected

to contribute significantly to the wide use of autonomous

driving applications.
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