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Abstract

Inferring relational behavior between road users as well

as road users and their surrounding physical space is an

important step toward effective modeling and prediction

of navigation strategies adopted by participants in road

scenes. To this end, we propose a relation-aware framework

for future trajectory forecast. Our system aims to infer rela-

tional information from the interactions of road users with

each other and with the environment. The first module in-

volves visual encoding of spatio-temporal features, which

captures human-human and human-space interactions over

time. The following module explicitly constructs pair-wise

relations from spatio-temporal interactions and identifies

more descriptive relations that highly influence future mo-

tion of the target road user by considering its past trajec-

tory. The resulting relational features are used to forecast

future locations of the target, in the form of heatmaps with

an additional guidance of spatial dependencies and con-

sideration of the uncertainty. Extensive evaluations on the

public benchmark datasets demonstrate the robustness and

efficacy of the proposed framework as observed by perfor-

mances higher than the state-of-the-art methods.

1. Introduction

Forecasting future trajectories of moving participants in

indoor and outdoor environments has profound implications

for execution of safe and naturalistic navigation strategies

in partially and fully automated vehicles [3, 42, 41, 10] and

robotic systems [49, 19, 18, 4]. While autonomous naviga-

tion of robotic systems in dynamic indoor environments is

an increasingly important application that can benefit from

such research, the potential societal impact may be more

consequential in the transportation domain. This is partic-

ularly apparent considering the current race to deployment

of automated driving and advanced driving assistance sys-

tems on public roads. Such technologies require advanced

decision making and motion planning systems that rely on

estimates of the future position of road users in order to re-

alize safe and effective mitigation and navigation strategies.

Figure 1: Spatio-temporal features are visually encoded

from discretized grid to locally discover (i) human-human

( : woman↔man) and (ii) human-space interactions ( :

man↔ground, : cyclist↔cone) over time. Then, their

pair-wise relations (i.e., ↔ , ↔ , ↔ , ↔ , ↔ ,

...) with respect to the past motion of the target (→) are in-

vestigated from a global perspective for trajectory forecast.

Related research [46, 1, 36, 23, 37, 12, 13, 43, 45, 32, 33,

47] has attempted to predict future trajectories by focusing

on social conventions, environmental factors, or pose and

motion constraints. They have shown to be more effective

when the prediction model learns to extract these features

by considering human-human (i.e., between road agents) or

human-space (i.e., between a road agent and environment)

interactions. Recent approaches [20, 44] have incorporated

both interactions to understand behavior of agents toward

environments. However, they restrict human interactions to

nearby surroundings and overlook the influence of distant

obstacles in navigation, which is not feasible in real-world

scenarios. In this view, we present a framework where such

interactions are not limited to nearby road users nor sur-

rounding medium. The proposed relation-aware approach

fully discovers human-human and human-space interactions

from local scales and learns to infer relations from these in-

teractions from global scales for future trajectory forecast.

Inferring relations of interactive entities has been re-

searched for many years, but the focus is on the implications

of relations between the object pair as in [35, 22]. Recently,
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[34] introduced the relation network pipeline where ‘an ob-

ject’ is a visual encoding of spatial features computed using

a convolutional kernel within a receptive field. Our work

further expands [34] in the sense that the word ‘object’ in-

corporates spatial behavior of entities (road users, if they

exist) and environmental representations (road structures or

layouts) together with their temporal interactions over time,

which naturally corresponds to human-human and human-

space interactions (see Figure 1). On top of this, we con-

sider learning to infer relational behavior between objects

(i.e., spatio-temporal interactions) for trajectory prediction.

In practice, the relations between all object pairs do not

equally contribute to understanding the past and future mo-

tion of a specific road user. For example, a distant building

behind a car does not have meaningful relational informa-

tion with the ego-vehicle that is moving forward to forecast

its future trajectory. To address the different importance of

relations, the prediction model should incorporate a func-

tion to selectively weight pair-wise relations based on their

potential influence to the future path of the target. Thus, we

design an additional relation gate module (RGM) which is

inspired by an internal gating process of a long-short term

memory (LSTM) unit. Our RGM shares the same advan-

tages of control of information flow through multiple switch

gates. While producing relations from spatio-temporal in-

teractions, we enforce the module to identify more descrip-

tive relations that highly influence the future motion of the

target by further conditioning on its past trajectory.

An overview of the proposed approach is presented in

Figure 2. Our system visually encodes spatio-temporal fea-

tures (i.e., objects) through the spatial behavior encoder and

temporal interaction encoder using a sequence of past im-

ages (see Figure 3). The following RGM first infers rela-

tional behavior of all object pairs and then focuses on look-

ing at which pair-wise relations will be potentially meaning-

ful to forecast the future motion of the target agent under its

past behavior (see Figure 4). As a result, the gated rela-

tion encoder (GRE) produces more informative relational

features from a target perspective. The next stage of our

system is to forecast future trajectory of the target over the

next few seconds using the aggregated relational features.

Here, we predict future locations in the form of heatmaps to

generate a pixel-level probability map which can be (i) fur-

ther refined by considering spatial dependencies between

the predicted locations and (ii) easily extended to learn the

uncertainty of future forecast at test time.

The main contributions of this paper are as follows:

1. Encoding of spatio-temporal behavior of agents and

their interactions toward environments, corresponding

to human-human and human-space interactions.

2. Design of relation gating process conditioned on the

past motion of the target to capture more descriptive

relations with a high potential to affect its future.

3. Prediction of a pixel-level probability map that can be

penalized with the guidance of spatial dependencies

and extended to learn the uncertainty of the problem.

4. Improvement of model performance by 14−15% over

the best state-of-the-art method using the proposed

framework with aforementioned contributions.

2. Related Work

This section provides a review of deep learning based

trajectory prediction. We refer the readers to [11, 17] for a

review on recognition and prediction of human action, mo-

tion, and intention, and [26, 29] for a review on human

interaction, behavior understanding, and decision making.

Human-human interaction oriented approaches Discov-

ering social interactions between humans has been a main-

stream approach to predict future trajectories [31, 2, 48, 23,

43, 39]. Following the pioneering work [14] on modeling

human-human interactions, similar social models have been

presented for the data-driven methods. A social pooling

layer was proposed in [1] in between LSTMs to share inter-

mediate features of neighboring individuals across frames,

and its performance was efficiently improved in [12]. While

successful in many cases, they may fail to provide accept-

able future paths in a complex road environment without the

guidance of scene context.

Human-space interaction oriented approaches Modeling

scene context of humans interacting with environments has

been introduced as an additional modality to their social in-

teractions. [20] modeled human-space interactions using

deep learned scene features of agents’ neighborhood, as-

suming only local surroundings of the target affect its future

motion. However, such restriction of the interaction bound-

ary is not feasible in real-world scenarios and may cause

failures of the model toward far future predictions. More

recently, [44] expanded local scene context through addi-

tional global scale image features. However, their global

features rather implicitly provide information about road

layouts than explicitly model interactive behavior of hu-

mans against road structures and obstacles. In contrast,

our framework is designed to discover local human-human

and human-space interactions from global scales. We lo-

cally encode spatial behavior of road users and environmen-

tal representations together with their temporal interactions

over time. Then, our model infers relations from a global

perspective to understand past and future behavior of the

target against other agents and environments.

Human action oriented approaches These approaches

rely on action cues of individuals. To predict a future tra-

jectory of pedestrians from first-person videos, temporal

changes of orientation and body pose are encoded as one

of the features in [45]. In parallel, [13] uses head pose as

a proxy to build a better forecasting model. Both methods

find that gaze, inferred by the body or head orientation, and
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Figure 2: Given a sequence of images, the GRE visually analyzes spatial behavior of road users and their temporal interactions

with respect to environments. The subsequent RGM of GRE infers pair-wise relations from these interactions and determines

which relations are meaningful from a target agent’s perspective. The aggregated relational features are used to generate

initial heatmaps through the TPN. Then, the following SRN further refines these initial predictions with a guidance of their

spatial dependencies. We additionally embed the uncertainty of the problem into our system at test time.

the person’s destination are highly correlated. However, as

with human-human interaction oriented approaches, these

methods may not generalize well to unseen locations as the

model does not consider the road layout.

3. Relational Inference

We extend the definition of ‘object’ in [34] to a spatio-

temporal feature representation extracted from each region

of the discretized grid over time. It enables us to visu-

ally discover (i) human-human interactions where there

exist multiple road users interacting with each other over

time, (ii) human-space interactions from their interactive

behavior with environments, and (iii) environmental repre-

sentations by encoding structural information of the road.

The pair-wise relations between objects (i.e., local spatio-

temporal features) are inferred from a global perspective.

Moreover, we design a new operation function to control

information flow so that the network can extract descriptive

relational features by looking at relations that have a high

potential to influence the future motion of the target.

3.1. Spatio­Temporal Interactions

Given τ past images I = {It0−τ+1, It0−τ+2, ..., It0},

we visually extract spatial representations of the static

road structures, the road topology, and the appearance of

road users from individual frames using the spatial behav-

ior encoder with 2D convolutions. The concatenated fea-

tures along the time axis are spatial representations S ∈
R
τ x d x d x c. As a result, each entry si ∈ R

τ x 1 x 1 x c of

S = {s1, ..., sn} contains frame-wise knowledge of road

users and road structures in i-th region of the given en-

vironment. Therefore, we individually process each entry

si of S using the temporal interaction encoder with a 3D

convolution to model sequential changes of road users and

road structures with their temporal interactions as in Fig-

ure 3. We observed that the joint use of 2D convolutions for

spatial modeling and 3D convolution for temporal model-

j
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Figure 3: We model human-human and human-space inter-

actions by visually encoding spatio-temporal features from

each region of the discretized grid.

ing extracts more discriminative spatio-temporal features as

compared to alternative methods such as 3D convolutions

as a whole or 2D convolutions with an LSTM. Refer to

Section 5.2 for detailed description and empirical valida-

tion. The resulting spatio-temporal features O ∈ R
d x d x c

contains a visual interpretation of spatial behavior of road

users and their temporal interactions with each other and

with environments. We decompose O into a set of objects

{o1, ..., on}, where n = d2 and an object oi ∈ R
1 x 1 x c is

a c-dimensional feature vector.

3.2. Relation Gate Module

Observations from actual prediction scenarios in road

scenes suggest that humans focus on only few important

relations that may potentially constrain the intended path,
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Figure 4: The relation gate module controls information

flow through multiple switches and determines not only

whether the given object pair has meaningful relations from

a spatio-temporal perspective, but also how important their

relations are with respect to the motion context of the target.

instead of inferring every relational interactions of all road

users. In this view, we propose a module which is able to

address the benefits of discriminatory information process

with respect to their relational importance.

We focused on the internal gating process of an LSTM

unit that controls information flow through multiple switch

gates. Specifically, the LSTM employs a sigmoid function

with a tanh layer to determine not only which information

is useful, but also how much weight should be given. The

efficacy of their control process leads us to design a relation

gate module (RGM) which is essential to generate more de-

scriptive relational features from a target perspective. The

structure of the proposed RGM is displayed in Figure 4.

Let gθ(·) be a function which takes as input a pair of

two objects (oi, oj) and spatial context qk. Note that qk is

an m-dimensional feature representation extracted from the

past trajectory X k = {Xk
t0−τ+1, X

k
t0−τ+2, ..., X

k
t0
} of the

k-th road user observed in I. Then, the inferred relational

features Fk are described as follows:

Fk =
∑

i,j

gθ(oi, oj , q
k), (1)

where θ = {α, β, µ, λ} is the learnable parameters of g(·).
Through the function gθ(·), we first determine whether the

given object pair has meaningful relations from a spatio-

temporal perspective by computing rij = tanhα(oij) ⊙
σβ(oij),where oij = oi⊠oj is the concatenation of two ob-

jects. Note that we add α, β, µ, λ as a subscript of tanh and

sigmoid function to present that these functions come after a

fully connected layer. Then, we identify how their relations

can affect the future motion of the target k based on its past

motion context qk by fkij = tanhλ(rij ⊠ tanhµ(q
k)). This

step is essential in (i) determining whether the given rela-

tions rij would affect the target road user’s potential path

and (ii) reasoning about the best possible route, given the

motion history qk of the target. We subsequently collect all

relational information from every pair and perform element-

wise sum to produce relational features Fk ∈ R
1 x w. Note

that the resulting Fk is target-specific, and hence individ-

ual road users generate unique relational features using the

same set of objects O with a distinct motion context qk.

4. Future Trajectory Prediction

The proposed approach aims to predict δ number of fu-

ture locations Yk = {Y kt0+1, Y
k
t0+2, ..., Y

k
t0+δ

} for the target

road user k using Xk = {I,X k}. Rather than regressing

numerical coordinates of future locations, we generate a set

of likelihood heatmaps following the success of human pose

estimation in [38, 25, 5]. The following section details how

the proposed method learns future locations.

4.1. Trajectory Prediction Network

To effectively identify the pixel-level probability map,

we specifically design a trajectory prediction network aψ(·)
with a set of deconvolutional layers. Details of the network

architecture are described in the supplementary material.

We first reshape the relational features Fk extracted from

GRE to be the dimension 1 x 1 x w before running the pro-

posed trajectory prediction network (TPN). The reshaped

features are then incrementally upsampled using six decon-

volutional layers, each with a subsequent ReLU activation

function. As an output, the network aψ(·) predicts a set

of activations in the form of heatmaps Ĥk
A ∈ R

W x H x δ

through the learned parameters ψ. At training time, we

minimize the sum of squared error between the ground-

truth heatmaps Hk ∈ R
W x H x δ and the prediction Ĥk

A, all

over the 2D locations (u, v). The L2 loss LA is as follows:

LA =
∑
δ

∑
u,v

(
Hk

(δ)(u, v)− Ĥk
A(δ)(u, v)

)2

. Note that

Hk is generated using a Gaussian distribution with a stan-

dard deviation (1.8 in practice) on the ground-truth coordi-

nates Yk in a 2D image space. Throughout the experiments,

we use heatmaps withW = H = 128 which balances com-

putational time, quantization error, and prediction accuracy

from the proposed network structures.

4.2. Refinement with Spatial Dependencies

The TPN described in the previous section is designed to

output a set of heatmaps, where predicted heatmaps corre-

spond to the future locations over time. In practice, how-

ever, the output trajectory is sometimes unacceptable for

road users as shown in Figure 5. Our main insight for the

cause of this issue is a lack of spatial dependencies [28, 40]1

among heatmap predictions. Since the network indepen-

dently predicts δ number of pixel-level probability maps,

there is no constraint to enforce heatmaps to be spatially

aligned across predictions. In the literature, [28, 40] have

shown that inflating receptive fields enables the network to

1Although [28, 40] used the term for kinematic dependencies of human

body joints, we believe future locations have similar spatial dependencies

between adjacent locations as one follows the other.
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Figure 5: Visual analysis of spatial refinement. The first

row shows the predicted future locations from the vanilla

trajectory prediction network as presented in Section 4.1.

Heatmap predictions are ambiguous, and hence the trajec-

tory is unrealistic. The second row shows the refined loca-

tions by considering spatial dependencies as in Section 4.2.

learn implicit spatial dependencies in a feature space with-

out the use of hand designed priors or specific loss function.

Similarly, we design a spatial refinement network (SRN)

with large kernels, so the network can make use of rich con-

textual information between the predicted locations.

We first extract intermediate activations hD5 from the

TPN and let through a set of convolutional layers with stride

2 so that the output feature map hC17 to be the same size

as hD2 (earlier activation of TPN). Then, we upsample the

concatenated features hC17⊠hD2 using four deconvolutional

layers followed by a 7 x 7 and 1 x 1 convolution. By using

large receptive fields and increasing the number of layers,

the network is able to effectively capture dependencies [40],

which results in less confusion between heatmap locations.

In addition, the use of a 1 x 1 convolution enforces our re-

finement process to further achieve pixel-level correction in

the filter space. See the supplementary material for struc-

tural details. Consequently, the output heatmaps Ĥk
O with

spatial dependencies between heatmap locations show im-

provement in prediction accuracy as shown in Figure 5.

To train our SRN together with optimizing the rest

of the system, we define another L2 loss: LO =
∑
δ

∑
u,v

(
Hk

(δ)(u, v)− Ĥk
O(δ)(u, v)

)2

. Then the total

loss can be drawn as follows: Loptimize = ζLA + ηLO.

We observe that the loss weights ζ = η = 1 properly opti-

mize our SRN with respect to the learned TPN and GRE.

4.3. Uncertainty of Future Prediction

Forecasting future trajectory can be formulated as an un-

certainty problem since several plausible trajectories may

exist with the given information. Its uncertainty has been

often addressed in the literature [20, 12, 32] by gener-

ating multiple prediction hypotheses. Specifically, these

approaches mainly focus on building their system based

on deep generative models such as variational autoen-

coders [20] and generative adversarial networks [12, 32].

As the prediction models are trained to capture the future

trajectory distributions, they sample multiple trajectories

from the learned data distributions with noise variations,

addressing multi-modal predictions. Unlike these methods,

the proposed approach is inherently deterministic and gen-

erates a single trajectory prediction. Thus, our framework

technically embeds the uncertainty of future prediction by

adopting Monte Carlo (MC) dropout.

Bayesian neural networks (BNNs) [6, 24] are consid-

ered to tackle the uncertainty2 of the network’s weight pa-

rameters. However, the difficulties in performing infer-

ence in BNNs often led to perform approximations of the

parameters’ posterior distribution. Recently, [8, 9] found

that inference in BNNs can also be approximated by sam-

pling from the posterior distribution of the deterministic

network’s weight parameters using dropout. Given a dataset

X = {X1, ...,XN} and labels Y = {Y1, ...,YN}, the poste-

rior distribution about the network’s weight parameters ω is

as follows: p(ω | X,Y). Since it cannot be evaluated an-

alytically, a simple distribution q∗(ω) which is tractable is

instead used. In this way, the true model posterior can be ap-

proximated by minimizing the Kullback-Leibler divergence

between q∗(ω) and p(ω | X,Y), which results in perform-

ing variational inference in Bayesian modeling [8]. Dropout

variational inference is a practical technique [15, 16] to ap-

proximate variational inference using dropout at training

time to update model parameters and at test time to sample

from the dropout distribution q(ω). As a result, the predic-

tive distribution with Monte Carlo integration is as follows:

p(Y|X,X,Y) ≈
1

L

L∑

l=1

p(Y|X, ω̂) ω̂ ∼ q(ω), (2)

where L is the number of samples with dropout at test time.

The MC sampling technique enables us to capture mul-

tiple plausible trajectories over the uncertainties of the

learned weight parameters. For evaluation, however, we use

the mean ofL samples as our prediction, which best approx-

imates variational inference in BNNs as in Eqn. 2. The effi-

cacy of the uncertainty embedding is visualized in Figure 6.

We compute the variance of L = 5 samples to measure

the uncertainty (second row) and their mean to output fu-

ture trajectory (third row). At training and test time, we use

dropout after C6 (with drop ratio r = 0.2) and C8 (r = 0.5)

of the spatial behavior encoder and fully connected layers

(r = 0.5) of the RGM, which seems reasonable to balance

regularization and model accuracy.

2Uncertainty can be categorized into two types [7]: (i) epistemic caused

by uncertainty in the network parameters and (ii) aleatoric captured by

inherent noise. We focus on epistemic uncertainty in this paper.
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Figure 6: The efficacy of the uncertainty embedding into

our framework. We observe that the performance of our

model (first row) can be improved with MC dropout (third

row). The uncertainty is visualized in the second row.

5. Experiments

We mainly use the SDD dataset [30] to evaluate our ap-

proach and use ETH [27] and UCY [21] to additionally

compare the performance with the state-of-the-art methods.

5.1. Dataset and Preprocessing

The proposed approach aims to infer relational behavior

of agents toward the environment, in addition to that against

other agents. For this purpose, SDD [30] fits well due to its

diverse scenarios with different types of road obstacles and

layouts, captured from a static platform. We exclude out-

liers following the preprocessing step in [20]. As a result,

19.5 K instances3 are used to train and test our model. Next,

we find a center coordinate of each bounding box and use it

to locate a corresponding road user onto images. Note that

all RGB images are resized to fit in a 256x256 image tem-

plate, and the corresponding center coordinates are rescaled

to the 128x128 pixel space. Finally, we generate ground-

truth heatmaps H of size 128x128 using the rescaled center

coordinates. At training and test time, we use 3.2 sec of

past images I and coordinates X k of the target road user

k as input and predict 4.0 sec of future frames as heatmaps

Ĥk. For evaluation, we first find a coordinate of a point with

a maximum likelihood from each heatmap and further pro-

cess the coordinates to be the same scale as original images.

Then, the distance error between the ground-truth future lo-

cations Yk and our predictions Ŷk is calculated. We report

our performance at 1 / 5 scale as proposed in [20].

5.2. Comparison to Baselines

We conduct extensive evaluations to verify our design

choices. Table 1 quantitatively compares the self-generated

baseline models by measuring average distance error (ADE)

3[20] might be more aggressively found those of unstabilized images,

but we were not able to further remove outliers to match their number.

during a given time interval and final distance error (FDE)

at a specific time frame in pixels.

Spatio-temporal interactions: Encoding spatio-temporal

features from images is crucial to discover both human-

human and human-space interactions, which makes our

approach distinct from others. We first conduct abla-

tive tests to demonstrate the rationale of using spatio-

temporal representations for understanding the relational

behavior of road users. For this, we compare four base-

lines4: (i) RE Conv2D which discovers only spatial in-

teractions from τ past images using 2D convolutions; (ii)

RE Conv3D which extracts both spatial and temporal in-

teractions using a well-known technique, 3D convolutions;

(iii) RE Conv2D+LSTM which first extracts spatial behav-

ior using 2D convolutions and then build temporal inter-

actions using LSTM; and (iv) RE Conv2D+Conv3D where

we infer spatio-temporal interactions as discussed in Sec-

tion 3.1. As shown in the second section of Table 1, the

performance of the RE Conv2D+LSTM baseline is dramat-

ically improved against RE Conv2D by replacing the final

convolutional layer with LSTM. The result indicates that

discovering spatial behavior of road users and their tem-

poral interactions is essential to learn descriptive relations.

It is further enhanced by using 3D convolutions instead of

LSTM, as RE Conv2D+Conv3D achieves lower prediction

error than does the RE Conv2D+LSTM baseline. This com-

parison validates the rationale of our use of 2D and 3D

convolutions together to model more discriminative spatio-

temporal features from a given image sequence. Interest-

ingly, the RE Conv3D baseline shows similar performance

to RE Conv2D that is trained to extract only spatial informa-

tion. For RE Conv3D, we gradually decrease the depth size

from τ to 1 through 3D convolutional layers for a consis-

tent size of spatio-temporal featuresO over all baselines. In

this way, the network observes temporal information from

nearby frames in the early convolutional layers. However,

it might not propagate those local spatio-temporal features

to the entire sequence in the late layers.

Relation gate module: To demonstrate the efficacy of the

proposed RGM, we train an additional model GRE Vanilla

as a baseline which simply replaces the fully connected

layers of RE Conv2D+Conv3D with the proposed RGM

pipeline. Note that we match its number of parameters to

RE Conv2D+Conv3D for a fair comparison. The third sec-

tion of Table 1 validates the impact of the RGM, showing

the improvements of both ADE and FDE by a huge margin

in comparison to the RE Conv2D+Conv3D baseline. The

internal gating process of our RGM explicitly determines

which objects are more likely to affect the future target mo-

tion and allows the network to focus on exploring their rela-

tions to the target road user based on the given context. The

4The baselines with a prefix RE do not employ the proposed gating

process but assume equal importance of relations similarly to [34].

926



Category Method 1.0 sec 2.0 sec 3.0 sec 4.0 sec

State-of-the-art
S-LSTM [1] 1.93 / 3.38 3.24 / 5.33 4.89 / 9.58 6.97 / 14.57

DESIRE [20] - / 2.00 - / 4.41 - / 7.18 - / 10.23

Spatio-temporal

Interactions

RE Conv2D 2.42 / 3.09 3.50 / 5.23 4.72 / 8.16 6.19 / 11.92

RE Conv3D 2.58 / 3.24 3.62 / 5.29 4.83 / 8.25 6.27 / 11.92

RE Conv2D+LSTM 2.51 / 3.19 3.54 / 5.08 4.60 / 7.54 5.81 / 10.52

RE Conv2D+Conv3D 2.36 / 2.99 3.33 / 4.80 4.37 / 7.26 5.58 / 10.27

Relation Gate GRE Vanilla 1.85 / 2.41 2.77 / 4.27 3.82 / 6.70 5.00 / 9.58

Spatial Refine
GRE Deeper 2.19 / 2.84 3.24 / 4.88 4.36 / 7.44 5.63 / 10.54

GRE Refine 1.71 / 2.23 2.57 / 3.95 3.52 / 6.13 4.60 / 8.79

Uncertainty (Ours)

GRE MC-2 1.66 / 2.17 2.51 / 3.89 3.46 / 6.06 4.54 / 8.73

GRE MC-5 1.61 / 2.13 2.44 / 3.85 3.38 / 5.99 4.46 / 8.68

GRE MC-10 1.60 / 2.11 2.45 / 3.83 3.39 / 5.98 4.47 / 8.65

Table 1: Quantitative comparison (ADE / FDE in pixels) of our approach with the self-generated baselines as well as state-

of-the-art methods [1, 20] using SDD [30]. Note that we report our performance at 1 / 5 resolution as proposed in [20].

ETH hotel ETH eth UCY univ UCY zara01 UCY zara02 Average

State-of-the-art

S-LSTM [1] 0.076 / 0.125 0.195 / 0.366 0.196 / 0.235 0.079 / 0.109 0.072 / 0.120 0.124 / 0.169

SS-LSTM [44] 0.070 / 0.123 0.095 / 0.235 0.081 / 0.131 0.050 / 0.084 0.054 / 0.091 0.070 / 0.133

Ours

GRE Vanilla 0.020 / 0.036 0.054 / 0.113 0.067 / 0.129 0.055 / 0.112 0.076 / 0.152 0.048 / 0.094

GRE Refine 0.019 / 0.034 0.052 / 0.100 0.066 / 0.128 0.054 / 0.100 0.073 / 0.136 0.046 / 0.087

GRE MC-2 0.018 / 0.033 0.052 / 0.100 0.065 / 0.128 0.050 / 0.099 0.071 / 0.134 0.045 / 0.086

Table 2: Quantitative comparison (ADE / FDE in normalized pixels) of the proposed approach with the state-of-the-art

methods [1, 44] using the ETH [27] and UCY [21] dataset.

implication is that the use of the RGM is more beneficial for

relational inference, and its generalization in other domains

is being considered as our future work.

Spatial refinement: In addition to the qualitative evalua-

tion in Figure 5, we quantitatively explore how the proposed

spatial refinement process helps to produce more accept-

able future trajectory. The GRE Refine baseline is trained

using the additional spatial refinement network on top of

the GRE Vanilla structure. In Table 1, GRE Refine sig-

nificantly outperforms GRE Vanilla both in terms of ADE

and FDE all over time. It validates that the proposed net-

work effectively acquires rich contextual information about

dependencies between future locations from initial activa-

tions ĤA in a feature space. To further validate the use of

the separate SRN structure, we additionally design a sin-

gle end-to-end network (GRE Deeper), replacing the shal-

low TPN of GRE Vanilla with larger receptive fields and

adding more layers (D1-D2 and C18-C25). Its performance

is even worse than GRE Vanilla. The GRE Deeper baseline

experiences the difficulties in training, which can be inter-

preted as vanishing gradient. Thus, we conclude that the

proposed approach with the separate SRN takes advantage

of the intermediate supervision with two loss functions (LA

and LO), preventing the vanishing gradient problem [40].

Monte Carlo dropout: To validate our uncertainty strategy

for future trajectory forecast, we generate a set of GRE MC

baselines with a different suffix -L, where L denotes the

number of samples drawn at test time. The fact that any

GRE MC-L baselines performs better than GRE Refine cer-

tainly indicates the efficacy of the presented uncertainty em-

bedding. By operating along with heatmap prediction, the

presented approach eventually helps us to choose the points

with the global maximum over the samples. Therefore, the

experiments consistently show the decrease in error rate for

both near and far future prediction. It is also worth noting

that the use of more samples gradually increases the overall

performance but introduces a bottleneck at some point as

the error rate of GRE MC-10 is not significantly improved

from GRE MC-5.

5.3. Comparison with Literature

We quantitatively compare the performance of our mod-

els to the state-of-the-art methods using a publicly avail-

able SDD dataset [30]. Two different methods are used for

fair comparisons, one from human-human interaction ori-

ented approaches (S-LSTM [1]) and the other from human-

space interaction oriented approaches (DESIRE5 [20]). In

Table 1, both ADE and FDE are examined from four dif-

5We use DESIRE-SI-IT0 Best which shows the best performance

among those without using the oracle error metric.
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(a)                                                            (b)                                               (c)                              (d) 

Figure 7: The proposed approach properly encodes (a) human-human and (b) human-space interactions by inferring relational

behavior from a physical environment (highlighted by a dashed arrow). However, we sometimes fail to predict a future

trajectory when a road user (c) unexpectedly changes the direction of its motion or (d) does not consider the interactions with

an environment. (Color codes: Yellow - given past trajectory, Red - ground-truth, and Green - our prediction)

Past trajectory

Our prediction

(a)               (b)                             (c)

Figure 8: Illustrations of our prediction during complicated human-human interactions. (a) A cyclist (•••) interacts with a

person moving slow (•••). (b) A person (•••) meets a group of people. (c) A cyclist (•••) first interacts with another cyclist

in front (•••) and then considers the influence of a person (•••). The proposed approach socially avoids potential collisions.

ferent time steps. The results indicate that incorporating

scene context is crucial to successful predictions as our

methods and [20] show a lower error rate than that of [1].

Moreover, all of our models with GRE generally outper-

form [20], validating the robustness of the proposed spatio-

temporal interactions encoding pipeline which is designed

to discover the entire human-human and human-space inter-

actions from local to global scales. Note that the effective-

ness of our approach is especially pronounced toward far

future predictions. As discussed in Section 2, the state-of-

the-art methods including [1, 20] restrict human interactions

to nearby surroundings and overlook the influence of distant

road structures, obstacles, and road users. By contrast, the

proposed approach does not limit the interaction boundary

but considers interactions of distant regions, which results

in more accurate predictions toward the far future. Note that

ADE / FDE at 4 sec is 5.93 / 10.56 without interactions of

distant regions (worse than 5.00 / 9.58 of GRE Vanilla).

In addition to the evaluation using SDD, we perform the

experiments on the ETH [27] and UCY [21] dataset, com-

paring with S-LSTM [1] and SS-LSTM [44]. In Table 2,

both ADE and FDE at 4.8 sec are examined in normalized

pixels as proposed in [44]. Our approach mostly improves

the performance over these methods, further validating our

capability of interaction modeling and relational inference.

5.4. Qualitative Evaluation

Figure 7 qualitatively evaluates how inferred relations

encourage our model to generate natural motion for the tar-

get with respect to the consideration of human-human inter-

actions (7a) and human-space interactions (7b). Both cases

clearly show that spatio-temporal relational inferences ad-

equately constrain our future predictions to be more realis-

tic. We also present prediction failures in Figure 7c where

the road user suddenly changes course and 7d where the

road user is aggressive to interactions with an environment.

Extension to incorporate such human behavior is our next

plan. In Figure 8, we specifically illustrate more compli-

cated human-human interaction scenarios. As validated in

these examples, the proposed approach visually infers rela-

tional interactions based on the potential influence of others

toward the future motion of the target.

6. Conclusion

We proposed a relation-aware framework which aims to

forecast future trajectory of road users. Inspired by the hu-

man capability of inferring relational behavior from a phys-

ical environment, we introduced a system to discover both

human-human and human-space interactions. The proposed

approach first investigates spatial behavior of road users and

structural representations together with their temporal inter-

actions. Given spatio-temporal interactions extracted from

a sequence of past images, we identified pair-wise relations

that have a high potential to influence the future motion of

the target based on its past trajectory. To generate a fu-

ture trajectory, we predicted a set of pixel-level probability

maps and find the maximum likelihood. We further refined

the results by considering spatial dependencies between ini-

tial predictions as well as the nature of uncertainty in future

forecast. Evaluations show that the proposed framework is

powerful as it achieves state-of-the-art performance.
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