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Abstract

Extracting geometric features from 3D scans or point

clouds is the first step in applications such as registra-

tion, reconstruction, and tracking. State-of-the-art meth-

ods require computing low-level features as input or ex-

tracting patch-based features with limited receptive field.

In this work, we present fully-convolutional geometric fea-

tures, computed in a single pass by a 3D fully-convolutional

network. We also present new metric learning losses that

dramatically improve performance. Fully-convolutional ge-

ometric features are compact, capture broad spatial con-

text, and scale to large scenes. We experimentally validate

our approach on both indoor and outdoor datasets. Fully-

convolutional geometric features achieve state-of-the-art

accuracy without requiring prepossessing, are compact (32

dimensions), and are 290 times faster than the most accu-

rate prior method.

1. Introduction

Finding geometric correspondences is a key step in

many 3D registration, tracking, and scene flow estimation

pipelines. A substantial body of work has thus focused on

designing 3D features that can capture discriminative local

geometry for correspondence establishment [16, 29, 26, 24,

23, 36, 17, 7, 6].

Learning-based 3D features have recently gained popu-

larity due to their robustness and superior performance. Ex-

isting learning-based features rely on low-level geometric

characteristics as input: e.g., angular deviation [7, 6, 26, 29,

23], point distributions [17, 16, 21], or volumetric distance

functions [36, 11]. Then, a 3D patch is extracted at each

point of interest and mapped to a low-dimensional feature

space through a multi-layer perceptron or 3D convolutions.

This process is computationally expensive and features are

extracted only at downsampled interest points, thus lower-

ing the spatial resolution for subsequent registration steps.

Such patch-based processing is inefficient because in-

termediate network activations are not reused across ad-

jacent patches. If we use a 2D analogy, extracting 3D

∗Equal contribution.

Figure 1: Feature-match recall [6, 7] and speed in log scale

on the 3DMatch benchmark [36]. Our approach is the most

accurate and the fastest. The gray region shows the Pareto

frontier of the prior methods.

patches for feature learning is akin to extracting small 2D

patches around each pixel for semantic segmentation. Fur-

thermore, current pipelines limit spatial context by focusing

on patches with restricted spatial extent.

Instead, we could apply 3D convolutions on the en-

tire input without cropping out sections by simply trans-

forming convolutions to fully-convolutional counterparts.

Similarly, we could convert all fully-connected layers in a

multi-layer perceptron into a series of convolutional lay-

ers with kernel size 1 × 1 × 1. This is known as fully-

convolutional processing and has been widely used in im-

age analysis [20, 35, 5, 3]. Fully-convolutional networks

can capture broad context, and are faster and more memory-

efficient than non-fully-convolutional counterparts since in-

termediate activations are reused across overlapping re-

gions.

Despite these advantages, fully-convolutional networks

have not been widely used for 3D geometric feature extrac-

tion due to the characteristics of 3D data. A standard input

representation for convolutional networks on 3D data is a

dense 4D tensor: three spatial dimensions and one feature

dimension. This representation has a massive memory foot-
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print, even though most 3D voxels are empty.

In this work, we adopt a sparse tensor representation, in-

troduced in recent work on 3D semantic segmentation [12,

2]. We also introduce new losses for fully-convolutional

metric learning, based on the observation that the character-

istics of fully-convolutional features differ from traditional

independent identically distributed (i.i.d.) features tradi-

tionally assumed in metric learning. Our approach does not

require low-level preprocessing or 3D patches as input, and

can rapidly generate high-resolution features with state-of-

the-art discriminative power.

We validate fully-convolutional geometric features

(FCGF) on both indoor and outdoor 3D datasets [36, 10].

Our approach achieves state-of-the-art performance on the

3DMatch benchmark [36], while being nine times faster

than the fastest learning-based method and 290 times faster

than the current state of the art (Fig. 1).

2. Related Work

Hand-crafted 3D features. Early work on 3D fea-

ture description focused on hand-crafting descriptors that

can discriminatively characterize local geometry. Spin Im-

ages [16] use a projection of adjacent points onto the tan-

gent plane. USC [29] uses covariance matrices of point

pairs. SHOT [26] creates a 3D histogram of normal vec-

tors. PFH [24] and FPFH [23] build an oriented histogram

using pairwise geometric properties. Guo et al. [13] provide

a comprehensive review of such hand-crafted descriptors.

Learning-based 3D features. More recently, attention

has shifted to learning-based 3D features. Zeng et al. [36]

use a siamese convolutional network to learn 3D patch de-

scriptors. Khoury et al. [17] map 3D oriented histograms

to a low-dimensional feature space using multi-layer per-

ceptrons. Deng et al. [7, 6] adapt the PointNet architecture

for geometric feature description. Yew and Lee [34] use a

PointNet to extract features in outdoor scenes.

Our work addressed a number of limitations in the prior

work. First, all prior approaches extract a small 3D patch or

a set of points and map it to a low-dimensional space. This

not only limits the receptive field of the network but is also

computationally inefficient since all intermediate represen-

tations are computed separately even for overlapping 3D re-

gions. Second, using expensive low-level geometric signa-

tures as input can slow down feature computation. Lastly,

limiting feature extraction to a subset of interest points re-

sults in lower spatial resolution for subsequent matching

stages and can thus reduce registration accuracy.

Fully-convolutional networks. Fully-convolutional net-

works for images were introduced by Long et al. [20]. In

3D space, fully-convolutional networks have been used for

semantic segmentation [4, 12, 22, 2]. The broad adop-

tion of fully-convolutional networks can be attributed to

three factors. First, fully-convolutional networks are effi-

cient and fast because they share intermediate activations

across neurons with overlapping receptive fields. Second,

neurons in fully-convolutional networks can have bigger re-

ceptive fields because they are not constrained by operat-

ing on separately extracted and processed patches. Third,

fully-convolutional networks produce dense output, which

is well-suited for tasks that call for detailed characterization

of scenes.

Deep metric learning. Deep metric learning combines

deep networks and metric learning to produce compact em-

beddings. The contrastive loss formulates the objective in

terms of pairwise constraints [14]. There has also been

significant interest in higher-order loss terms, including

triplet [32], quadruplet [18], and histogram losses [30]. Due

to the polynomial growth in complexity that accompanies

high-order losses, many recent papers focus on triplets with

hard-negative mining within a batch. Lifted structure [28]

and N-pair losses [27] proposed using a softmax for mining

hard negatives within a batch.

In this work, we study fully-convolutional metric learn-

ing, where the basic assumption that features are indepen-

dent and identically distributed (i.i.d.) within a batch no

longer holds. To address this, we develop new losses for

fully-convolutional feature learning and show that they are

more effective than traditional ones.

3. Sparse Tensors and Convolutions

The 3D data of interest in this work consists of 3D

scans of surfaces. In such datasets, most of the 3D space

is empty. To handle this sparsity, we use sparse tensors:

high-dimensional equivalents of sparse matrices. Mathe-

matically, we can represent a sparse tensor for 3D data as a

set of coordinates C and associated features F :

C =







x1 y1 z1 b1
...

...
...

...

xN yN zN bN






, F =







fT1
...

fTN






(1)

where xi, yi, zi ∈ Z is the i-th 3D coordinate and bi is

the batch index which provides an additional dimension for

batch processing. fi is the feature associated with the i-th
coordinate.

Convolutions on sparse tensors (also known as sparse

convolutions) require a somewhat different definition from

conventional (dense) convolutions. In discrete dense 3D

convolution, we extract input features and multiply with

a dense kernel matrix. Denote a set of offsets in n-

dimensional space by Vn(K), where K is the kernel size.
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Figure 2: We use a ResUNet architecture. The white blocks

indicate input and output layers. Each block is character-

ized by three parameters: kernel size, stride, and channel

dimensionality. All convolutions except the last layer are

accompanied by batch normalization followed by a nonlin-

earity (ReLU).

For example, in 1D, V1(3) = {−1, 0, 1}. The dense con-

volution can be defined as in Eq. 2, where Wi denotes the

kernel value at offset i:

xout
u =

∑

i∈V3(K)

Wix
in
u+i for u ∈ Z

3. (2)

In contrast, a sparse tensor has a feature at location u

only if the corresponding coordinates are present in the set

C. Thus it suffices to evaluate the convolution terms only

over a subset Nn(u,K,C) = {i|i ∈ Vn(K), i+ u ∈ C}.

(I.e., the set of offsets i for which i + u is present in the

set of coordinates C.) If we make the sets of input and out-

put coordinates different (C in and Cout, respectively), we ar-

rive at the generalized sparse convolution [2], summarized

in Eq. 3:

x′out

u =
∑

i∈N 3(u,K,C in)

Wix
′in

u+i for u ∈ Cout. (3)

Sparse fully-convolutional features. Fully-

convolutional networks consist purely of translation-

invariant operations, such as convolutions and elementwise

nonlinearities. Similarly, if we apply a sparse convolu-

tional network to a sparse tensor, we get a sparse output

tensor. We refer to the contents of this output tensor as

fully-convolutional features. We use a UNet structure with

skip connections and residual blocks to extract such sparse

fully-convolutional features. Our network architecture is

visualized in Fig. 2.

4. Fully-convolutional Metric Learning

In this section, we briefly go over a few standard met-

ric learning losses and negative-mining techniques. Then,

we characterize metric learning in the fully-convolutional

setting and propose variants for fully-convolutional fea-

tures that integrate negative-mining into the contrastive and

triplet losses. We refer to these new losses as “hardest-

contrastive” and “hardest-triplet”.

Metric learning begins with two constraints:

similar features have to be close to each other –

D(fi, fj) → 0 ∀(i, j) ∈ P – and dissimilar features have

to be at least a margin away: D(fi, fj) > m ∀(i, j) ∈ N ,

where D(·, ·) is a distance measure. We square the vio-

lation and get a standard contrastive loss. Lin et al. [19]

showed that the constraints for positive pairs could lead to

overfitting and proposed a margin-based loss for positive

pairs:

L(fi, fj) = Iij [D(fi, fj)−mp]
2
+ + Īij [mn −D(fi, fj)]

2
+

where Iij = 1 if (i, j) ∈ P and 0 otherwise, and ·̄ is the

NOT operator. mp and mn are margins for positive and

negative pairs. Similarly, we can convert the ranking con-

straint m+D(f , f+) < D(f , f−) into a triplet loss:

L(f , f+, f−) = [m+D(f , f+)−D(f , f−)]
2
+ (4)

For both contrastive and triplet losses, the sampling strategy

affects the performance greatly as the decision boundary is

defined by very few hardest negatives.

4.1. Characteristics of Fully­convolutional Features

Traditional metric learning assumes that the features are

independent and identically distributed (i.i.d.) since a batch

is constructed by random sampling [14, 32, 28, 27]. How-

ever, in fully-convolutional feature extraction, adjacent fea-

tures are locally correlated. Thus, hard-negative mining

could find features adjacent to anchors, and they are false

negatives. Thus, filtering out the false negatives is crucial,

and Choy et al. [3] used a distance threshold.

Also, the number of features used in the fully-

convolutional setting is orders of magnitude larger than in

standard metric learning algorithms [27, 28]. For instance,

FCGF generates ∼40k features for a pair of scans (this in-

creases proportionally with the batch size) while a mini-

batch in traditional metric learning has around 1k features.

Thus, it is not feasible to use all pairwise distances within a

batch as in standard metric learning.

4.2. Hardest­contrastive and Hardest­triplet Losses

In this section, we propose metric learning losses for

fully-convolutional feature learning. Like many algorithms

in metric learning, we focus on efficient hard-negative min-

ing. First, we sample anchor points and a set for mining

per scene. Then, we mine the hardest negatives f−i , f−j for

both fi and fj in a positive pair (fi, fj) (Fig. 3) and re-

move false negatives that fall within a certain radius from

the corresponding anchor. Then, we use the pairwise loss

for the mined quadruplet (fi, fj , f
−
i , f−j ) and form the fully-
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Contrastive Triplet Hardest-contrastive Hardest-triplet

Figure 3: Sampling and negative-mining strategy for each method. Traditional contrastive and triplet losses use random

sampling. Our hardest-contrastive and hardest-triplet losses use the hardest negatives.

convolutional contrastive loss:

LC =
∑

(i,j)∈P

{

[D(fi, fj)−mp]
2
+ /|P|

+ λnIi

[

mn − min
k∈N

D(fi, fk)

]2

+

/|Pi|

+ λnIj

[

mn − min
k∈N

D(fj , fk)

]2

+

/|Pj |

}

(5)

where P is a set of all positive pairs in fully-convolutionally

extracted features in a minibatch and N is a random subset

of fully-convolutional features in a minibatch that will be

used for negative mining. Ii is short for I(i, ki, dt), which

is an indicator function that returns 1 if the feature ki is

located outside a sphere with diameter dt centered at fea-

ture i and 0 otherwise, where ki = argmink∈N D(fi, fk).
|Pi| =

∑

(i,j)∈P I(i, ki, dt) is the number of valid mined

negatives for the first item (|Pj | for the second item) in a

pair. The normalization term for negative pairs is simply

averaging all valid negative pairs equally. λn is a weight for

negative losses and we simply used 0.5 to weight positives

and negatives equally. Similarly, we can form a triplet loss

with hard negatives mined within a batch:

LT =
1

Z

∑

(i,j)∈P

(

I(i, ki)

[

m+D(fi, fj)− min
k∈N

D(fi, fk)

]

+

+ I(j, kj)

[

m+D(fi, fj)− min
k∈N

D(fj , fk)

]

+

)

(6)

where Z =
∑

(i,j)∈P(I(i, ki) + I(j, kj)), a normalization

constant. The above equation finds the hardest negatives

for both (i, j) ∈ P (Fig. 3). Here P is the set of all pos-

itive pairs in the batch. Note that we followed Hermans

et al. [15] and used non-squared loss to mitigate features

from collapsing into a single point. Experimentally, we still

observed that the fully-convolutional hardest triplet loss is

prone to collapse (all features converge to a single point).

Instead, we mix the above triplet loss with randomly sam-

pled triplets to mitigate the collapse. Similar to Eq. 6, we

weigh both randomly subsampled triplets and hard-negative

triplets equally.

5. Implementation

We use the Minkowski Engine [2], an auto-

differentiation library for sparse tenors, for sparse

convolution and other essential layers. As the input to the

network requires unique coordinates C and corresponding

features F , we first downsample the input point cloud using

a fast GPU-based voxel downsampling function. All these

preprocessing steps can be parallelized in data-loading

parallel processes and consume a fraction of the training

time.

Hash-based negative filtering. One of the most time-

consuming parts in both Eqs. 5 and 6 is computing

I(i, ji, dt), the indicator function that filters out false hard

negatives. We use hash-based filtering to efficiently remove

false negatives from the hard negative mining step to imple-

ment I(i, ji). First, we create a matrix P that contains the

indices of positive pairs (i, j) as well as an additional matrix

Pdt
that contains all pairs of indices that fall within a cer-

tain distance threshold dt. Next, we find the hardest nega-

tives for all positive pairs and filter out the hardest negatives

that fall within the vicinity of positive pairs by comparing

the hash keys. Filtering out hash keys can be implemented

efficiently using two sets of sorted lists.

6. Experiments

We validate our fully-convolutional geometric features

(FCGF) on both indoor and outdoor datasets. We show

that FCGF outperform all state-of-the-art methods in both

accuracy and speed, and analyze the proposed hardest-

contrastive and hardest-triplet losses.

6.1. Datasets and Training

For indoor data, we use the standard 3D Match

dataset [36]. For outdoor experiments, we use the KITTI

odometry dataset [10]. We followed the official data split

for 3D Match. For KITTI, we use the odometry training

set because it provides GPS ground truth. This training set

contains 11 sequences, which we split into train/val/test sets

as follows: sequence 0 to 5 for training, sequence 7 to 8 for
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validation, and sequence 8 to 10 for testing. For all LIDAR

scans, we used the first scan that is taken at least 10m apart

within each sequence to create a pair. We found the GPS

“ground truth” to be very noisy and used the Iterative Clos-

est Point algorithm (ICP) to refine the alignment. If ICP

fails or the number of overlapping voxels is less than 1k, we

removed the pair from the dataset. This procedure yielded

1358 pairs for training, 180 for validation, and 555 for test-

ing.

We train the networks for 100 epochs using Stochastic

Gradient Descent starting with learning rate 0.1 with a Ex-

ponential learning rate schedule with γ = 0.99. We used

batch size 4 for all experiments and analysis. We applied

data augmentation including random scaling ∈ [0.8, 1.2]
to a pair, and different random rotation augmentation ∈
[0◦, 360◦) along an arbitrary 3D direction for both scans in a

pair. We found rotation augmentation to be a simple (SO(3)

multiplication) and effective way to make FCGF invariant

to relative camera pose change.

Since a sparse tensor is defined as a pair of coordinates

and associated features, we tried to use a few different fea-

tures such as color and normal for input sparse tensor fea-

tures. However, the dataset was not diverse or large enough,

even with data augmentation, to prevent the network from

overfitting when color was provided in the input. Also, as

FCGF was trained to capture the underlying geometry, us-

ing normal directions did not make a meaningful difference.

In the end, we create an input sparse tensor with coordinates

from a scan and 1-vectors as features for all experiments.

However, we suspect that color could boost the performance

if used with a large and diverse dataset.

6.2. Evaluation Metrics

For the 3D Match benchmark, we use two standard met-

rics to measure the quality of features under registration:

feature-match recall and registration recall. For the outdoor

dataset, we use the Relative Translation Error and the Rela-

tive Rotation Error.

Feature-match recall. The feature-match recall [7] mea-

sures the percentage of fragment pairs that can recover the

pose with high confidence. Mathematically, it is

R =
1

M

M
∑

s=1

1

(

[ 1

|Ωs|

∑

(i,j)∈Ωs

1
(

‖T∗
xi−yj‖<τ1

)

]

>τ2

)

(7)

where M is the number of fragment pairs, Ωs is a set of

correspondences between a fragment pair s, x and y are

3D coordinates from the first and second fragment, and

T∗ ∈ SE(3) is the ground-truth pose. τ1 = 0.1m is the

inlier distance threshold and τ2 = 0.05 or 5% is the inlier

recall threshold, following [6, 7].

Registration recall. The feature-match recall measures

the quality of feature under pairwise registration. How-

ever, it does not measure the quality of feature when used

within a reconstruction system. Instead, the registration re-

call [1] takes a set of overlapping fragments with a ground-

truth pose and measures how many overlapping fragments a

matching algorithm can correctly recover. Specifically, the

registration recall uses the following error metric between

estimated fragments {i, j}, and corresponding pose estima-

tion T̂i,j to define a true positive:

ERMSE =

√

√

√

√

1

Ω∗

∑

(x∗,y∗)∈Ω∗

‖T̂i,jx∗ − y∗‖2 (8)

where Ω∗ is a set of corresponding ground-truth pairs in

fragments {i, j}, and x∗ and y∗ are the 3D coordinates

of the ground-truth pair. For fragments {i, j} with at least

30% overlap, the registration is evaluated as a correct pair

if ERMSE < 0.2m. As noted in several works [1, 7, 6, 17],

recall is more important than precision since it is possible

to improve precision with better pruning.

Relative translation and rotation error. The Rela-

tive Translation Error (RTE) and Relative Rotation Er-

ror (RRE) measure the registration errors of features used

for RANSAC. Thus, they are indirect measures, but we

follow Yew and Lee [34] for outdoor dataset evalua-

tion. RTE and RRE are defined as RTE=|T̂ − T ∗|
where T̂ is the estimated translation after registration and

RRE=arccos((Tr(R̂TR∗)−1)/2) where R̂ is the estimated

rotation matrix and R∗ is the ground-truth rotation matrix.

6.3. 3D Match Benchmark

We compare FCGF with hand-crafted features and recent

state-of-the-art methods on the 3DMatch benchmark [36]

using feature-match recall and registration recall.

Tab. 1 lists the feature-match recall for all methods at

τ1 = 10cm and τ2 = 0.05 (following [6, 7]), the feature

dimension, and the feature extraction time. FCGF outper-

forms all hand-crafted features and PointNet-based methods

by a large margin and marginally outperforms a recent 3D-

convolution-based method [11]. FCGF is the fastest fea-

ture extraction method and is 290 times faster than [11].

Please refer to Fig. 1 for visualization of the performance

and speed of each method, and Sec. 6.7 for more details

on timing. Note that FCGF is 32-dimensional while most

state-of-the-art methods have higher dimensionality. Stan-

dard deviation (STD) of feature-match recall is computed

across room types following [11]. Fig. 4 shows the sensi-

tivity of feature-match recall to the inlier distance threshold

τ1 and inlier recall threshold τ2.

Overall, FCGF has better registration recall and feature-

match recall across different scenes, a wide range of dis-
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Figure 4: Feature-match recall with respect to inlier ratio threshold τ2 (left) and inlier distance accuracy tolerance τ1 (right).

The vertical lines are τ2 = 0.05 (left) and τ1 = 0.1 (right), following [6, 7].

Kitchen Hotel 1

Lab Study room

Figure 5: Color-coded features overlaid on selected fragment pairs. The 32-dimensional FCGF features for each pair of point

clouds are mapped to a scalar space using t-SNE [31] and colorized with the Spectral color map.

Pair 1 Pair 2

Pair 3 Pair 4

Figure 6: Color-coded FCGF features for pairs of KITTI LIDAR scans that are 10m apart. FCGF features from downsampled

LIDAR scans are mapped to a scalar space using t-SNE [31] and colorized with the Spectral color map.
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Method
3DMatch with Rot. Aug. Feat. Time

FMR STD FMR STD Dim. (ms)

Spin [16] 0.227 0.114 0.227 0.121 153 0.133

SHOT [26] 0.238 0.109 0.234 0.095 352 0.279

FPFH [23] 0.359 0.134 0.364 0.136 33 0.032

USC [29] 0.400 0.125 - - 1980 3.712

PointNet [21] 0.471 0.127 - - 256 0.171

CGF [17] 0.582 0.142 0.585 0.140 32 1.463

3DMatch [36] 0.596 0.088 0.011 0.012 512 3.210

Folding [33] 0.613 0.087 0.023 0.010 512 0.352

PPFNet [7] 0.623 0.108 0.003 0.005 64 2.257

PPF-Fold [6] 0.718 0.105 0.731 0.104 512 0.794

DirectReg [8] 0.746 0.094 - - 512 0.794

CapsuleNet [37] 0.807 0.062 0.807 0.062 512 1.208

PerfectMatch [11] 0.947 0.027 0.949 0.024 32 5.515

Ours 0.952 0.029 0.953 0.033 32 0.019

Table 1: Feature-match recall at τ1 = 0.1, τ2 = 0.05 [6] on

3DMatch [33]. FMR and STD indicate the Feature Match

Recall and its standard deviation. Feat. Dim. indicates fea-

ture dimensionality and Time is in milliseconds consumed

per feature.

Feat. Dimensions 16 32 48 64

Feat. Match Recall (5cm) 0.9011 0.9242 0.9235 0.9343

STD (5cm) 0.0328 0.0439 0.0429 0.0365

Feat. Match Recall (2.5cm) 0.9412 0.9535 0.9489 OOM

STD (2.5cm) 0.0336 0.0334 0.0393 OOM

Table 2: Hardest-contrastive loss feature match recall with

different feature dimensionality on 3DMatch. OOM de-

notes Out Of Memory under the same hyperparameters.

tance thresholds, and inlier recall thresholds. To visual-

ize the general quality of FCGF, we use t-SNE [31] to

project all FCGFs in a pair of scans to a color-coded one-

dimensional space and visualize them in Fig. 5.

Rotation and translation invariance. One of the most

important characteristics of good geometric features is rota-

tion and translation invariance. Some of the baseline meth-

ods achieve this by aligning 3D patches along the normal di-

rection of a patch. Instead, FCGF learns the rotation invari-

ance through on-the-fly data augmentation (details in the

supplement). Translation invariance is an inherent property

of a sparse tensor as the translation does not affect convo-

lutions. Tab. 1 shows the feature-match recall of FCGF and

other features on the augmented 3DMatch dataset [6]. Note

that FCGF maintains similar performance on the augmented

dataset without any explicit mechanism.

6.4. Hardest­contrastive and Hardest­triplet Losses

We compare the traditional contrastive and triplet losses

with the proposed hardest-contrastive and hardest-triplet

losses in Tab. 3. As the hardest-triplet loss tends to collapse

Hardest-Triple
Feature Match Recall STD

Num. HN / RT

1024 / 512 COLLAPSE

768 / 512 COLLAPSE

768 / 768 0.8866 0.0377

512 / 768 0.8935 0.0393

512 / 1024 0.9022 0.0399

128 / 2048 0.9087 0.0458

0 / 2048 0.7903 0.0494

Contrastive 0.7309 0.0245

Contrastive (norm.) 0.8493 0.0489

Triplet 0.7903 0.0494

Triplet (norm.) 0.6935 0.0446

Hardest-Contrastive 0.9344 0.0365

Table 3: Feature match recall of the hardest-triplet loss with

various hardest-negative and random triplet ratios (Hardest-

Negative triplets (HN) and Random Triplets (RT) per a

pair of scans with 5cm voxel downsampling), contrastive,

triplet, and hardest-contrastive loss. The hardest-contrastive

loss outperforms random triplets, hardest-triplet, and con-

trastive loss. ”norm.” denotes the normalized feature.

easily, we varied the number of hardest-negatives and ran-

dom triplets per pair (increase proportionally to the batch

size) and reported the feature-match recall on Tab. 3.

For the contrastive loss, we use both normalized (de-

noted norm.) and unnormalized features. We used L2 nor-

malization to project features to the surface of a hypersphere

and pass the gradient from the loss through the normaliza-

tion layer to train the network with normalization. For the

normalized features, we used positive margin 0.1, negative

margin 1.4; for the unnormalized features, positive margin

0.1 and negative margin 2. Similarly, we used both normal-

ized (denoted norm.) and unnormalized features for the ran-

dom triplet loss. (Note that the hardest-negative triplet with

0 hardest negatives becomes the random triplet.) However,

for the random triplets with the normalized feature, higher

margins lead to performance degradation, and at margin 0.5,

the random triplets fail to achieve reasonable performance.

For all triplets with unnormalized features, we use the mar-

gin 1.4. Please refer to the supplement for an analysis of the

margin for the hardest-triplet loss.

Interestingly, as we increase the number of random

triplets, feature-match recall also increases (the top sec-

tion of Tab. 3). However, if we remove the hardest neg-

atives altogether, the performance drops significantly (the

row 0/2048). Surprisingly, we did not observe any degen-

eration for the hardest-negative contrastive loss, which uses

the same mining technique, and does not require random

negatives.
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Neg. margin Pos. margin Feature Match Recall STD

4 0.1 0.9169 0.0478

3 0.1 0.9206 0.0398

2 0.1 0.9344 0.0362

1.4 0.1 0.9242 0.0439

1 0.1 0.9249 0.0403

0.5 0.1 0.8832 0.0433

4 0.2 0.9158 0.0450

2 0.2 0.9110 0.0438

1 0.2 0.9116 0.0527

1 0.4 0.9013 0.0464

Table 4: Feature-match recall of FCGF (5cm voxel down-

sampling) on 3DMatch with various positive margins mp

and negative margins mn.

FPFH USC CGF 3DMatch PPFNet
Ours

[23] [29] [17] [36] [7]

Kitchen 0.36 0.52 0.72 0.85 0.90 0.93

Home 1 0.56 0.35 0.69 0.78 0.58 0.91

Home 2 0.43 0.47 0.46 0.61 0.57 0.71

Hotel 1 0.29 0.53 0.55 0.79 0.75 0.91

Hotel 2 0.36 0.20 0.49 0.59 0.68 0.87

Hotel 3 0.61 0.38 0.65 0.58 0.88 0.69

Study 0.31 0.46 0.48 0.63 0.68 0.75

Lab 0.31 0.49 0.42 0.51 0.62 0.80

Average 0.40 0.43 0.56 0.67 0.71 0.82

Table 5: Registration recall on 3DMatch [36].

6.5. Effect of Margins for Hardest­contrastive

The hardest-contrastive loss in Eq. 5 requires two hyper-

parameters: positive margin and negative margin. We

trained networks with various margins with 5cm voxel

downsampling and report the result in Tab. 4. In gen-

eral, the ratio between negative margin and positive margin

(mn/mp) plays a significant role: the larger the ratio, the

higher the performance. However, the absolute value of the

negative margin is also critical since 1/0.2 (negative margin

/ positive margin) has the same ratio as 0.5/0.1, but 1/0.2

yields better results. Please refer to the supplement for an

analysis of the margin for the hardest-triplet loss.

Registration recall. We used the 3DMatch registration

set [36] to evaluate the registration recall of FCGF. The re-

sults are reported in Tab. 5. For all experiments, we used

RANSAC [9] with early termination [38].

6.6. Outdoor Experiment: KITTI

We trained FCGF on the KITTI registration dataset

with various voxel-downsampling sizes and report Relative

Translation Error (RTE) and Relative Rotation Error (RRE)

with RANSAC in Tab. 6. Registration is considered suc-

cessful if RTE < 2m and RRE < 5◦ (following [34]). Note

DS voxel size RTE (cm) STD(cm) RRE(◦) STD(◦) Succ. rate

3DFeat [34] 25.9 26.2 0.57 0.46 95.97%

FCGF 20cm 4.881 5.338 0.170 0.175 97.83%

FCGF 25cm 6.066 8.730 0.213 0.291 98.56%

FCGF 30cm 6.466 6.067 0.228 0.229 98.92%

FCGF 35cm 6.978 5.332 0.254 0.240 98.92%

FCGF 40cm 8.025 5.935 0.273 0.251 98.92%

Table 6: Results on the KITTI dataset. Relative Trans-

lation Error (RTE) and Relative Rotation Error (RRE) af-

ter RANSAC on FCGF trained with the hardest-contrastive

loss with various downsampling voxel sizes. Success if

RTE < 2m and RRE < 5◦ [34].

that the translation error and success rate increase as the

voxel size increases. This is because a high-resolution point

cloud increases the specificity of the registration, which

leads to lower translation error. Fig. 6 visualizes the dis-

tribution and stability of the computed features on pairs of

scans.

6.7. Runtime

We compare the runtimes of all different methods on

3DMatch in Fig. 1 and Tab. 1. The reported times include

data preprocessing and feature extraction. We use an Intel

i7 10-core 3.0GHz CPU (i7-6950) and an Nvidia Titan-X

Pascal GPU to measure FCGF runtime. ([7, 6, 36] used an

Intel i7 8-core 3.2GHz CPU and an Nvidia Titan-X Pas-

cal.) We ran other baselines on the same workstation us-

ing PCL 1.8 [25] to test SHOT, USC, and Spin Image, and

Open3D [38] to test FPFH. The reported times include both

data preprocessing and feature extraction. FCGF is about

42 times faster than PPF-FoldNet [6], 169 times faster than

3DMatch [36], and 290 times faster than PerfectMatch [11].

We ascribe this speed to the fully-convolutional network

that takes the point cloud directly without heavy prepro-

cessing such as creating a volumetric function or search-

ing neighboring points and grouping. On average, our ap-

proach takes about 0.36 seconds to extract features for a

single fragment on 3DMatch with 2.5cm voxel size. With

5cm voxel size, our approach takes about 0.17 seconds for

a single fragment.

7. Conclusion

We presented fully-convolutional geometric features

(FCGF): fast and compact metric features for geometric

correspondence. Experimentally, we showed that FCGF is

more accurate and faster than state-of-the-art methods. An

interesting avenue for future work is to extend the FCGF

methodology to end-to-end registration.
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