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Abstract

This paper considers vehicle re-identification (re-ID)

problem. The extreme viewpoint variation (up to 180 de-

grees) poses great challenges for existing approaches. In-

spired by the behavior in human’s recognition process, we

propose a novel viewpoint-aware metric learning approach.

It learns two metrics for similar viewpoints and different

viewpoints in two feature spaces, respectively, giving rise

to viewpoint-aware network (VANet). During training, two

types of constraints are applied jointly. During inference,

viewpoint is firstly estimated and the corresponding metric

is used. Experimental results confirm that VANet signifi-

cantly improves re-ID accuracy, especially when the pair is

observed from different viewpoints. Our method establishes

the new state-of-the-art on two benchmarks. 1

1. Introduction

Vehicle re-identification (re-ID) aims at matching vehi-

cles in surveillance cameras with different viewpoints. It is

of significant value in public security and intelligent trans-

portation. The major challenge is the viewpoint variation

problem. As illustrated in Fig. 1, two different vehicles

may appear similar from the similar viewpoint (Fig. 1 (a)),

while the same vehicle appears quite different from differ-

ent viewpoints (Fig. 1 (b)). For simplicity, we define S-view

as similar viewpoint and D-view as different viewpoint.

Handling viewpoint variations in object recognition has

been well studied, e.g., for person re-identification [36, 37,

28, 24, 3, 19, 20, 14, 23] and face verification [33, 41, 30,

21]. While deep metric learning has achieved certain suc-

cess in obtaining viewpoint invariant features, the viewpoint

variation for vehicles is extreme (180 degrees) and this is

still very challenging.

∗Corresponding author
1R. Chu and Y. Sun share equal contribution.
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Figure 1. Illustration of vehicle re-ID with viewpoint variations.

Two different vehicles from similar viewpoints (a) appear more

similar than the same vehicle observed from different viewpoints

(b). (c) distance distribution of a baseline method (see Tab. 1). (d)

distance distribution of proposed VANet method. S-view pos: pos-

itive pairs from S-views. S-view neg: negative pairs from S-views.

D-view pos: positive pairs from D-views. D-view neg: negative

pairs from D-views. In the baseline (c), the “D-view pos” are not

well separated from “S-view neg”. In VANet (d), the distances

of “D-view pos” become smaller, while the distances of “S-view

neg” become larger. They are better separated.
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We experimented with a deep metric learning baseline

(as detailed in Sec. 3.1 and 4.1). The distribution of distance

of positive pairs from D-views (D-view pos) and distance

of negative pairs from S-views (S-view neg) are plotted in

Fig. 1 (c). Statistically, many positive pairs with different

views have larger distances than those of negative pairs with

the same view. This severely deteriorates the retrieval accu-

racy.

We propose to tackle this challenge through learning

viewpoint-aware metrics. Our idea is inspired by mimick-

ing the human behavior of recognizing vehicles. When a

human compares two vehicle images, he/she only examines

the detailed visual appearance when the vehicles are from

S-view. If they are from D-view, he/she relies on associ-

ation and memorization, instead of directly comparing the

visual appearance. In another word, a human adopts dif-

ferent strategies when confronted with vehicle images from

S-view and D-view.

We embed this a mechanism in a deep metric learning

network, named Viewpoint-Aware Network (VANet) in this

work. VANet has two viewpoint-specific metric learning

branches, which correspond to two feature spaces where S-

view and D-view metrics are learnt, respectively.

Specifically, we enforce two types of metric constraints

during training, i.e., within-space constraint and cross-space

constraint. The former pushes positive pairs closer than

negative pairs in each feature space (corresponding to S-

view pos vs S-view neg and D-view pos vs D-view neg).

The latter pushes positive pairs closer than negative pairs

when they are in different feature spaces (corresponding to

D-view pos vs S-view neg and S-view pos vs D-view neg).

Experiments confirm that both constraints are crucial to the

discriminative ability of VANet. They jointly improve vehi-

cle re-ID accuracy significantly, as shown in Fig. 1 (d).

To summarize, our contribution are as follows:

• We propose a novel viewpoint-aware metric learning

approach for vehicle re-ID. It learns two viewpoint-

aware metrics corresponding to S-view pairs and D-

view pairs, respectively.

• We propose two types of constraints, i.e., the within-

space constraint and the cross-space constraint for

training. The cross-space constraint facilitates retriev-

ing D-view samples under S-view distractions and is

especially beneficial. The within-space constraint fur-

ther brings incremental improvement to our method.

• We comprehensively evaluate our method on two

large-scale vehicle re-ID datasets and validate the ef-

fectiveness of proposed VANet. Experimental results

confirm that VANet significantly improves re-ID ac-

curacy over the baseline, and as well outperforms the

state of the arts.

2. Related Works

Vehicle re-ID. Due to the wide application in urban

surveillance and intelligent transportation, vehicle re-ID

gains rapidly increasing attention in the past two years. To

enhance re-ID capacity, some approaches utilize extra at-

tribute information e.g., model/type, color to guide vision-

based representation learning [5, 15, 17, 31, 26, 38, 40, 39,

18]. For instance, Liu et al. [13] introduce a two-branch

retrieval pipeline to extract both model and instance differ-

ences. Yan et al. [32] explore multi-grain relationships of

vehicles with multi-level attributes. Other works investigate

spatial-temporal association, which gains extra benefit from

the topology information of cameras [31, 26, 16]. In com-

parison with the above-mentioned works, our method only

relies on ID supervision and auxiliary viewpoint informa-

tion, which is relatively resource-efficient, and yet achieves

competitive re-ID accuracy.

We further compare the proposed VANet with some

other works w.r.t. viewpoint variation issue. Some works

inject orientation information into feature embedding ex-

plicitly [27] or implicitly [31]. Sochor et al. [27] embed

the orientation vector into feature map and gain viewpoint

awareness. Wang et al. [31] learn a feature for each side

of the vehicle and then credit the feature of visible side

during matching. Moreover, some methods employ GAN

[38, 39, 40] to generate images from required viewpoints, so

as to achieve viewpoint alignment. Arguably, these works

solve viewpoint variation problem through viewpoint align-

ment. In contrast, VANet does NOT align viewpoints. From

another perspective, VANet divides the re-ID into S-view

comparison, D-view comparison and learns a respective

deep metric for each case. Experimental results confirm the

effectiveness of this strategy, especially when confronted

with the difficult problem of distinguishing D-view positive

samples from S-view negative samples.

Deep metric learning. Deep metric learning is a com-

mon approach employed in computer vision tasks e.g., im-

age retrieval [22, 34], person and vehicle re-identification

[1, 3, 6] and face recognition [25]. Generally, deep metric

learning aims to learn a feature space, in which the sam-

ples of a same class are close to each other and the samples

of different classes are far away. There are two fundamen-

tal types of loss functions for deep metric learning, i.e., the

contrastive loss [8] and the triplet loss [25]. The triplet loss

is validated as superior to the contrastive loss by a lot of

works related to face recognition [25, 10] and person re-

identification [6, 2]. We basis our work on triplet loss func-

tion.

The proposed VANet is featured for two convolutional

branches, which correspond to S-view metric and D-view

metric, respectively. Experimentally, we demonstrate that

viewpoint-aware metrics improve the vehicle re-ID accu-

racy over the baseline with a single metric. We also con-

8283



firm that the improvement is largely due to the capacity of

VANet to distinguish D-view positive samples from S-view

negative samples, as to be detailed in Sec. 4.3.

3. Methods

To learn a respective deep metric for both S-view pairs

and D-view pairs, we design a two-branch network to

project a single input image into two feature spaces. The

distances of S-view pairs and D-view pairs are then mea-

sured (through Euclidean distance) in the corresponding

feature space, respectively. Sec. 3.1 briefly introduces the

metric learning baseline. Sec. 3.2 introduces the viewpoint-

aware metric learning objective and the corresponding loss

function. Sec. 3.3 implements the viewpoint-aware metric

learning with a deep neural network, i.e., VANet.

3.1. Metric Learning Baseline

We adopt the commonly-used triplet loss to build the

metric learning baseline. Let X denote the set of data, and

P = (xi, xj) denote a image pair, where xi and xj ∈ X .

Let function f denote the mapping from the raw image to

the feature, and D denote the Euclidean distance between

features. Given a image pair P = (xi, xj), we calculate

their distance by D(P ) = D(xi, xj) = ||f(xi)− f(xj)||2.

Following these definitions, given three samples x, x+,

and x−, where x and x+ are from a same class (i.e., same

vehicle ID in our work) and x− are from another class,

we form a positive pair P+ = (x, x+) and a negative pair

P− = (x, x−). A triplet loss is then defined as follows:

LTri.(x, x
+
, x

−) = max{D(P+)−D(P−) + α, 0}, (1)

where α is a margin enforced between positive and nega-

tive pairs. Generally, Eq. (1) pulls the samples from a same

ID close to each other and pushes samples from different

IDs far away. However, as shown in Fig. 1 (c), due to the

extreme viewpoint variation problem, the baseline fails to

separate a large proportion of D-view positive samples from

S-view negative samples.

3.2. Viewpoint­aware Metric Learning

From the observation in Fig. 1 (c), we argue that a unique

similarity metric may be insufficient for vehicle re-ID in

presence of both S-view and D-view pairs. Instead of learn-

ing a unique feature for both cases, we propose a viewpoint-

specific framework, which learns two separate deep metrics

for samples from S-views and D-views, respectively.

Formally, we define two functions fs and fd, which map

the input image into two respective feature spaces, i.e., S-

view and D-view feature space, respectively. Consequen-

tially, we calculate the pair-wise distance in S-view and D-

view feature space by Ds(P ) = ||fs(xi) − fs(xj)||2 and
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Figure 2. Comparison of the metric learning in the baseline and

our method. (a): in the baseline, the D-view positive samples are

hard to be separated from S-view negative samples. (b): three

loss functions aim to separate (1) S-view pos and S-view neg (2)

D-view pos and D-view neg and (3) D-view pos and S-view neg.

The expected distance distributions are in (1)(2)(3) of (b), respec-

tively. They jointly allows accurate blending viewpoint re-ID, and

the overall distance distribution is expected to be as in (4).

Dd(P ) = ||fd(xi)− fd(xj)||2, respectively. We further de-

fine P+
s (S-view positive pair), P+

d (D-view positive pair),

P−

s (S-view negative pair) and P−

d (D-view negative pair).

We find two types of constraints necessary for viewpoint-

aware metric learning, i.e., within-space constraints and

cross-space constraints. The within-space constraints ex-

pect that in both feature spaces, D(P+) is smaller than

D(P−). The cross-space constraints expect that in each

feature space, D(P+) is smaller than D(P−) in the other

feature space.

Within-space constraints. It is straightforward that in each

feature space, the positive samples should be closer than

negative samples. To this end, we enforce the within-space

constraints through two triplet losses, one in S-view feature

space and one in D-view feature space. The triplet loss in

S-view feature space is defined as:

Ls = max{Ds(P
+
s )−Ds(P

−

s ) + α, 0}, (2)

and the triplet loss in D-view feature space is defined as:

Ld = max{Dd(P
+

d )−Dd(P
−

d ) + α, 0}. (3)

In each viewpoint-specific feature space, the correspond-

ing loss function only acts on viewpoint-specific samples.

In another word, Ls focuses on S-view pairs, while Ld fo-

cuses on D-view pairs. In this way, our model can learn

to extract discriminative fine-grained visual cues for distin-

guishing hard vehicles from S-views in the S-view feature

space. Meanwhile, our model is able to learn a robust cor-

relation between samples of the same vehicle from D-views

in the D-view feature space.
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Figure 3. The architecture of VANet. Firstly VANet employs a viewpoint predictor to predict the actual viewpoints of N images. Then

VANet inputs N images into a stack of convolutional layers (“shared conv”), and appends two convolutional branches (“branch conv”) to

transform all images to 2N features, i.e., N features in each feature space. Thus VANet generates a N ×N distance matrix in each feature

space. In S-view feature space (corresponding to the upper branch), VANet only uses the distances of S-view pairs (green cells) to compute

the loss function Ls (defined in Sec. 3.2). The distances of D-view pairs are omitted. In D-view feature space (corresponding to the bottom

branch), VANet only selects the distances of D-view pairs (red cells) to compute Ld. Moreover, VANet generates an integrated distance

matrix by combining two distance matrices, in which the distances (green and red cells) are used to compute Lcross.

Cross-space constraints. Within-branch constraint is not

sufficient, since the realistic re-ID system is confronted with

a mixture of both cases, i.e., S-view pairs and D-view pairs.

Under this settings, focusing within each feature space ac-

tually underestimates the viewpoint variation problem and

consequentially decreases re-ID accuracy, as to be accessed

in Sec. 4.2. We further propose the cross-space constraints

between two viewpoint-specific feature spaces, which are

implemented with the following triplet loss:

Lcross = max{Dd(P
+

d )−Ds(P
−

s ) + α, 0}. (4)

We note that Lcross only enforces a constraint between

P−

s and P+

d and neglects the constraint between P−

d and

P+
s . This is reasonable because two observations of a vehi-

cle from the S-view are prone to be closer than two obser-

vations of two different vehicles from D-views.

Joint optimization. The total loss triplet function in our

work is as follows:

L = Ls + Ld + Lcross (5)

The individual action and joint effect of three losses are

illustrated in Fig. 2. By the joint optimization of three

losses, the model not only learns from two relatively sim-

ple scenarios (i.e., S-view positive vs S-view negative and

D-view positive vs D-view negative), but also a relatively

confusing scenario (i.e., D-view pos vs S-view neg).

3.3. Network Architecture

We implement the metric learning formulated in Sec. 3.2

through VANet, which contains two feature learning

branches, as illustrated in Fig. 3.

VANet requires to recognize the viewpoint relation (i.e.,

S-view or D-view) between the input image pair. To this

end, VANet first employs a viewpoint classifier to predict

the viewpoint of each image, e.g., “front” and “rear”. If

two images are captured from the same/similar viewpoint,

we assign them as a S-view image pair. Otherwise, we as-

sign them as a D-view image pair. Specifically, the classi-

fier is trained with the cross-entropy loss using GoogLeNet

[29] as the backbone. We manually annotate the view-

points of 5,000 images from VehicleID [13] and Veri-776

[16] respectively as training samples. The viewpoint labels

are available 2. Please note that the viewpoint predictor is

trained separately. So the viewpoint predictions are not up-

dated during re-ID feature learning or feature inference.

Then VANet inputs the images into a stack of convolu-

tional layers named “shared conv”. After that, VANet ap-

pends two convolutional branches, which are of the identi-

cal structure but do not share any parameters. Each branch

layer can be regarded as a function for viewpoint-specific

feature extraction, i.e. fs and fd defined in Sec. 3.2. For

each image, VANet outputs dual features in difference fea-

ture spaces, i.e., both fs(x) in S-view feature space and

fd(x) in D-view feature space. During training, given a

mini-batch consisted of N input images, VANet generates a

S-view and a D-view distance matrix in parallel. Each dis-

tance matrix contains N×N elements of distance values. It

means that for a D-view image pair, VANet still predicts the

S-view distance, i.e., Ds(Pd). Similarly, for a S-view image

pair, VANet still predicts the D-view distance, i.e., Dd(Ps).

2 http://github.com/RyanRuihanG/VANet_labels
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In Fig. 3, we denote these distance values with grey cells

in the distance matrix. We recall that Eq. (2) (Eq. (3))

focuses on S-view (D-view) samples. So during training,

Ds(Ps) and Dd(Pd) (denoted with the green and red cells

in the distance matrices in Fig. 3) respectively contribute to

the loss Ls and Ld, while Ds(Pd) and Dd(Ps) are omitted.

Moreover, VANet selects all Ds(Ps) values from the S-

view distance matrix, and Dd(Pd) values from the D-view

distance matrix, to form an integrated distance matrix. As

shown in Fig. 3, in the integrated distance matrix, the green

(red) cells corresponds to green (red) cells in S-view (D-

view) distance matrix. VANet then further computes triplet

loss Lcross as Eq. (4) in the integrated distance matrix, en-

forcing the cross-space constraints.

During testing, given a query image, VANet performs

viewpoint-specific comparison with gallery images. Specif-

ically, if the query and the gallery image are predicted as

from the S-view, we calculate their distance by Ds(Ps)
through S-view branch, otherwise by Dd(Pd) through D-

view branch.

4. Experiments

4.1. Datasets and Settings

We conduct extensive experiments on two public bench-

marks for vehicle re-ID, i.e., VehicleID [13] and Veri-776

[16]. VehicleID is a large-scale vehicle dataset, containing

110,178 images of 13,134 vehicles for training and 111,585

images of 13,113 other vehicles for testing. The test set is

further divided into three subsets with different sizes (i.e.,

Small, Medium, Large). Veri-776 dataset consists of more

than 50,000 images of 776 vehicles captured by 20 surveil-

lance cameras, split to a training set containing 37,778 im-

ages of 576 vehicles and a testing set including 11,579 im-

ages of 200 vehicles.

Evaluation protocols. During evaluation, we follow the

protocol proposed in [13, 16]. On VehicleID, one of the im-

ages of a vehicle is randomly selected as the gallery sample

and the rest is regarded as query. On Veri-776, we follow

the original protocol to retrieve queries in an image-to-track

fashion, where queries and the correct gallery samples must

be captured from different cameras. We compute the Cu-

mulative Matching Characteristic (CMC) curves for both

datasets, and further compute the Mean Precision (mAP)

for Veri-776 (which has multiple true matches for a sin-

gle query). The experiments on VehicleID are repeated 10

times for an average result.

Implementation Details. We adopt GoogLeNet [29] as

the backbone model in our experiments. Specifically, we

adopt the all layers before Inception (4a) module as the

“shared conv”, and layers from Inception (4a) model to the

global average pooling layer as the “branch conv”. The im-

ages are resized to 224×224 then augmented with color

Method
VehicleID Veri-776

top1 top5 top1 top5 mAP

(a) Baseline 75.23 91.84 84.68 93.74 58.75

(b) VANet w/o Lcross 70.23 79.26 66.20 84.56 43.32

(c) VANet w/o Lwithin 81.20 94.08 87.42 95.81 63.22

(d) VANet 83.26 95.97 89.78 95.99 66.34

Table 1. Results evaluated on the small test set of VehicleID and

Veri-776. We make comparison between VANet, the baseline,

VANet w/o Lwithin, VANet w/o Lcross.

jittering and horizontal flip. We train the model for 200

epoch applying the Adam optimizer [12] with default set-

tings (ǫ = 10−3, β1 = 0.9, β2 = 0, 999). The learning rate

is initialized to 0.001 and decreased by a factor of 0.1 after

the 80th and 160th epoch. The margin α is set to 0.5. Each

batch contains 128 samples (32 IDs, 4 images for each) on

VehicleID, and 256 samples (32 IDs, 8 images for each)

on Veri-776. During training, we adopt batch hard mining

strategy [10] for deducing the triplet loss.

In addition to the triplet loss, we adopt a cross-entropy

loss, following several recent re-ID methods [1, 35].

Specifically, we append an ID-classifier upon the feature-

embedding layer. The classifier is implemented with a fully-

connected layer and a sequential softmax layer. The soft-

max output is supervised by the ID label of the training im-

ages through the cross-entropy loss. Employing extra cross-

entropy loss slightly improves the re-ID accuracy of both

VANet and the baseline, which is consistent with [1, 35].

For viewpoint classifier, vehicles are captured from ei-

ther front or rear viewpoint in VehicleID, so we define

(front-front) and (rear-rear) as the S-view pairs, and (front-

rear) and (rear-front) as D-view pairs. As for Veri-776, all

images are coarsely categorized into three viewpoints as

front, side and rear, then we define (front-front), (rear-rear),

and (side-side) as S-view pairs, and (front-side), (front-rear)

and (rear-side) as D-view pairs.

4.2. Evaluation and Ablation Study

We evaluate the effectiveness of VANet by comparing

it against the baseline (Sec. 3.1), which adopts the same

training settings as VANet. Moreover, to validate the im-

portance of the within-space constraints and the cross-space

constraints, we conduct an ablation study by removing the

Lcross and the Lwithin (i.e., Ls and Ld), respectively. The

results are summarized in Tab. 1, from which we make three

observations.

First, VANet significantly improves vehicle re-ID per-

formance over the baseline. Comparing VANet with the

baseline, we observe that VANet gains +8.03% top1 accu-

racy on VehicleID and +7.59% mAP on Veri-776, respec-

tively. It demonstrates that VANet can not only improve the

retrieval accuracy at rank-1, but also enhance the capacity
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Method top1s top1d top1∗

s top1∗d
(a) Baseline 92.23 33.53 94.01 56.09

(b) VANet w/o Lcross 95.83 13.59 96.23 67.66

(c) VANet w/o Lwithin 91.34 52.81 95.12 60.67

(d) VANet 92.80 59.85 96.06 67.67

Table 2. Results evaluated by proposed protocol on the small test

set of VehicleID. We make comparison between VANet, the base-

line, VANet w/o Lwithin and VANet w/o Lcross.

in spotting more challenge samples.

Second, the cross-space constraints is vital for re-ID.

Comparing “VANet w/o Lcross” with VANet, we observe

a dramatic performance degradation (-13.0% top1 accuracy

in VehicleID and -23.02% mAP in Veri-776). The perfor-

mance even drops below the baseline (-5.0% top1 accu-

racy). It is reasonable because without cross-space con-

straints, VANet only learns from two relatively easy scenar-

ios: both the positive pairs and the negative pairs are syn-

chronously observed from S-views (or D-views). We thus

infer that cross-space constraints plays an important critical

role in enhancing the retrieval capacity.

The within-space constraints brings incremental im-

provement. Comparing VANet with “VANet w/o Lwithin”,

we observe an additional improvement (+2.06% top1 accu-

racy on VehicleID and +3.12% mAP on Veri-776). Specif-

ically, while employing single “Lcross” already brings

+5.97% top1 accuracy improvement on VehicleID over the

baseline, adding “Lwithin” further enhances the top1 accu-

racy by +2.06%. It indicates that additional within-space

loss further benefits the metric learning in each feature

space, thus allows more accurate re-ID.

4.3. How VANet Improves Re­ID Accuracy.

We offer an insight about how VANet improves re-ID

accuracy by separating S-view and D-view re-ID scenarios.

For simplicity, we conduct the experiments on VehicleID,

which has only one single true match for each query. we

investigate the following two questions:

• Q1: What is the performance when the true match is

observed from S-view and D-view, respectively.

• Q2: Given the prior that the true match is observed

from S-view (D-view), what is the performance when

the gallery images are all observed from S-view (D-

view).

Viewpoint-related evaluation protocol. We propose

two specific protocol for Q1 and Q2, respectively.

For Q1, we define top1s and top1d by: The top1s is the

matching accuracy at rank-1 when the query and the ground

truth are observed from S-views. The top1d is is the match-

ing accuracy at rank-1 when the query and the ground truth

are from D-views.

For Q2, we define top1∗s and top1∗d by: Given the prior

that the true match is observed from S-view (as the query),

we remove all the D-view gallery images and calculate the

rank-1 matching accuracy to get top1∗s . Similarly, given the

prior that the true match is observed from D-view, we re-

move all the S-view gallery images and calculate the rank-1

matching accuracy to get top1∗d. We note that top1∗d can be

viewed as top1d under a relatively easier condition, because

the distraction from S-view gallery images are eliminated.

Similar interpretation can be made upon top1∗s and top1s.

With the proposed viewpoint-specific protocol, we con-

duct another ablation study on VehicleID. The results are

summarized in Tab. 2, from which we draw three observa-

tions:

First, for the baseline, negative pairs from S-view ap-

pear similar and thus lead to false match. From “(a) base-

line”, we clearly observe a significant gap between top1s

and top1d (92.23% vs 33.53%). It indicates that D-view

ground truth is much more difficult to retrieve. However,

when removing all the S-view gallery images, the matching

accuracy significantly increases (from 33.53% to 56.09%).

It indicates that S-view negative pairs introduce significant

distractions to re-ID.

Second, VANet effectively suppresses the S-view dis-

tractions, especially when retrieving the D-view true

match. Comparing “(d) VANet” with “(a) Baseline”, we

observe a significant improvement, especially on top1d

(+26.32%). It indicates that VANet presents much higher

discriminative ability when retrieving D-view true match

(when exposed to the S-view distractions). Even if we elim-

inate the S-view distractions (i.e., the top1∗d case), VANet

still exhibits considerable improvement over the baseline

(+11.58%). In contrast, the improvement on top1s and

top1∗s are relatively minor. We thus conclude that the su-

periority of VANet (over baseline) mainly originates from

its strong capacity to retrieve D-view true match.

Third, the cross-space constraint is the major rea-

son for gaining resistance against S-view distractions.

Comparing “(b) VANet w/o Lcross” with “(a) Baseline”,

we find that without cross-space constraints, VANet does

not increase the top1d, but dramatically decreases it. Re-

call that top1d indicates the capacity of retrieving D-view

ground truth under S-view distractions. We thus infer that

the cross-space constraint is critical for VANet to gain re-

sistance against S-view distractions. It also explains the ob-

servation in Tab. 1 that VANet w/o Lcross drops below the

baseline.

With the above observations, we confirm that a signif-

icant drawback of the baseline is: it lacks the capacity to

retrieve D-view ground truth, especially when exposed to

S-view distractions. In contrast, the proposed viewpoint-

aware metric in VANet significantly improves the discrim-

inative ability to retrieve D-view images, while maintain-
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Figure 4. The top1 accuracy evaluated on VehicleID using differ-

ent viewpoint predictors. The red line denotes the results in the

baseline and the blue line denotes the results in VANet. The σ

denotes the error rate of viewpoint prediction.

ing (if not slightly improving) the performance under other

cases. As a result, VANet significantly improves the overall

performance.

4.4. Visualization of Distance Distribution

We investigate the learned feature space of VANet and

the baseline. Specifically, we calculate the sample dis-

tances in the feature space and draw a histogram, as shown

in Fig. 1 (c) (the baseline) and (d) (VANet), respectively.

From Fig. 1(c), we observe that in baseline, the distance

ranges of D-view positive pairs and S-view negative pairs

are highly overlapped. It implies the baseline cannot sep-

arate D-view positive samples from S-view negative sam-

ples well in its feature space. In Fig. 1(d), D-view positive

pairs are squeezed to a smaller range (smaller D-view sam-

ple distances), and thus are distinctive from S-view negative

samples. We thus conclude that VANet presents higher re-

sistance against extreme viewpoint variations.

4.5. Investigations of Viewpoint Prediction

Viewpoint predictor is a prerequisite component of

VANet and its prediction accuracy is important to re-ID ac-

curacy. To validate this point, we train a set of viewpoint

predictors with various accuracy by adding error samples.

The experimental results are illustrated in Fig. 4. We ob-

serve that higher viewpoint accuracy brings higher re-ID

accuracy for VANet. When the error rate σ increases to 0.1,

the top1 accuracy drops from 83.26% to 77.63% (- 5.63%).

It implies that training a viewpoint predictor is important.

In our implementation, we build two different editions

of viewpoint predictors with GoogLeNet and Xception [4]

as the backbone, respectively. The GoogLeNet-based pre-

dictor achieves 99.4% accuracy among 2000 randomly se-

lected images in VehicleID and 98.9% accuracy in Veri-776.

The Xception-based predictor only contains 10% parame-

ters compared with GoogLeNet and achieves roughly the

Branches
Small Medium Large

top1 top5 top1 top5 top1 top5

2 83.26 95.97 81.11 94.71 77.21 92.92

3 83.01 95.80 81.23 94.14 76.89 92.87

4 82.39 94.79 81.11 94.01 76.34 92.08

Table 3. Results evaluated on the small test set of VehicleID using

different branch numbers.

same viewpoint prediction accuracy. We recommend using

the Xception-based predictor with consideration of compu-

tational efficiency.

4.6. Impact of Viewpoint Granularity

In VANet, we only divide the viewpoint relation into

two types, i.e., S-view and D-view. To investigate the im-

pact of viewpoint granularity on re-ID accuracy, we intro-

duce several finer-grained divisions to viewpoint relations.

On VehicleID, we further construct a three-branch and a

four-branch network. Specifically, the thee-branch network

learns three different metrics, i.e., (front-front), (rear-rear)

and (front/rear) viewpoint metrics. The four-branch net-

work learns (front-front), (rear-rear), (front-rear) and (rear-

front) viewpoint metrics explicitly. The experimental re-

sults are summarized in Tab. 3. It is observed that finer-

grained viewpoint division actually compromises re-ID ac-

curacy. Moreover, we implement a six-branch network on

Veri-776, which learns (front-front), (rear-rear), (side-side),

(front-rear), (front-side) and (rear-side) metrics. It only

achieves 64.35% mAP, i.e., -1.99% lower than the two-

branch VANet. There are two reasons for this phenomenon.

First, since the dataset contains a fixed amount of images,

finer division reduces training samples for each branch, ex-

posing each branch to a higher over-fitting risk. Second,

as we observe in Fig. 4, an inaccurate viewpoint predictor

compromises the performance of VANet. Because finer di-

vision is more likely to increase the viewpoint prediction er-

ror, using finer-grained viewpoint division could be worse.

4.7. Comparison with State of The Art

Performance on VehicleID. We compare our method with

several state-of-the-art methods on VehicleID, including

DRDL [13], XVGAN [38], CLVR [11], OIFE [31], RAM

[18], ABLN [39], VAMI [40], C2F [7], NuFACT [17], and

GSTE [1]. Among these methods, OIFE [31] utilizes ex-

ternal datasets for training models. All the methods except

GSTE utilize additional labels (e.g., vehicle types, brands).

On the contrary, our method is only supervised by ID la-

bels. Tab. 4 shows the comparison results on VehicleID.

Our method significantly outperforms the competing meth-

ods, including those involving additional labeling informa-

tion. Particularly, for fairly comparison with GSTE which

also uses the ResNet-50 [9] as its backbone model, we fur-
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Methods
Small Medium Large

top1 top5 top20 top1 top5 top20 top1 top5 top20

DRDL [13] 48.93 75.65 88.47 45.05 68.85 79.88 41.05 63.38 76.62

XVGAN [38] 52.87 80.83 91.86 49.55 71.39 81.73 44.89 66.65 78.04

CLVR [11] 62.00 76.00 - 56.10 71.80 - 50.60 68.00 -

OIFE+ [31] - - - - - - 67.00 82.90

RAM [18] 75.20 91.50 - 72.30 87.00 - 67.70 84.50 -

ABLN [39] 52.63 80.51 91.25 - - - - - -

VAMI [40] 63.12 83.25 92.40 52.87 75.12 83.49 47.34 70.29 79.95

C2F [7] 61.10 81.70 - 56.20 76.20 - 51.40 72.20 -

NuFACT [17] 48.90 69.51 - 43.64 65.34 - 38.63 60.72 -

GSTE(GoogLeNet) [1] 77.20 - - 76.40 - - 74.60 - -

GSTE(ResNet50) [1] 87.10 - - 82.10 - - 79.80 - -

Baseline 75.23 91.84 97.01 73.39 87.95 94.84 69.16 85.15 93.48

VANet 83.26 95.97 98.70 81.11 94.71 98.47 77.21 92.92 97.66

Baseline(ResNet50) 78.41 92.41 97.59 75.55 91.18 95.04 72.38 86.74 94.88

VANet(ResNet50) 88.12 97.29 99.13 83.17 95.14 98.78 80.35 92.97 98.21

Table 4. Comparison with state of the art method on VehicleID. “+” denotes method that utilize external data for training models.

Methods mAP top1 top5

FACT+STR [16] 27.77 61.44 78.78

XVGAN [38] 24.65 60.20 77.03

OIFE++ST [31] 51.42 68.30 89.70

S+LSTM [26] 58.27 83.49 90.04

RAM [18] 61.50 88.60 94.00

ABLN [39] 22.91 58.14 74.41

VAMI+STR [40] 61.32 85.92 91.84

GSTE [1] 59.40 - -

Baseline 58.75 84.68 93.74

VANet 66.34 89.78 95.99

Table 5. Comparison with state of the art method on Veri-776.

ther report the results of our method using ResNet-50 as

well. Specifically, VANet based on ResNet-50 also gains a

significant improvement over the baseline, and outperforms

GSTE on three test sets of VehicleID.

Performance on Veri-776. The compared state-of-the-art

methods on Veri-776 include FACT+STR [16], XVGAN

[38], OIFE+ST [31], S+LSTM [26], RAM [18], ABLN

[39], VAMI+STR [40], and GSTE [1], where the names

with “+ST” and “+STR” mean that the corresponding meth-

ods involve the spatio-temporal information. The results

shown in Tab. 5 demonstrate the superiority of our method

in the lower ranks of CMC accuracy and mAP. To compare

with RAM, which has the second best performance, VANet

achieves higher both top1 accuracy and mAP. The great su-

periority on mAP than RAM demonstrates VANet success-

fully promotes the ranks of very hard true samples captured

from the different viewpoints with the query. This leads to a

great improvement of the matching of D-view pairs, which

is a common and useful application in real-world scenes.

Computational Cost. When we adopt GoogLeNet [29]

as the backbone, adding a branch to the baseline increases

5.1M (+87%) parameters and 675 MFlops (+44%) compu-

tational cost. However, VANet is still computational effi-

cient compared with other current methods in Tab. 4 and

Tab. 5. Among them, we found that VANet has the second

fewest parameters (10.9M). GSTE [1] has smallest parame-

ter size (almost 6M), but it has much worse performance

compared to VANet (-6.06% top1 accuracy in VehicleID

and -6.94% mAP in Veri776.)

5. Conclusion

This paper proposes learning viewpoint-aware deep met-

rics for vehicle re-identification through a two-branch net-

work named VANet. VANet divides vehicle re-ID into

two scenarios, i.e., re-ID from similar viewpoints (S-view)

and re-ID from different viewpoints (D-view). Corre-

spondingly, VANet learns two respective deep metrics, i.e.,

the S-view metric and the D-view metric. By enforcing

both within-space constraints and cross-space constraints,

VANet improves the re-ID accuracy, especially when re-

trieving D-view images under exposure to S-view distrac-

tions. Experimental results confirm that VANet signifi-

cantly improves re-ID accuracy, especially when the posi-

tive pairs are observed from D-view and the negative pairs

are observed from S-view (which is particularly difficult for

the baseline method). The achieved performance surpasses

all state of the arts.
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[11] Aytaç Kanacı, Xiatian Zhu, and Shaogang Gong. Vehicle

reidentification by fine-grained cross-level deep learning. In

BMVC AMMDS Workshop, 2017.

[12] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

[13] Hongye Liu, Yonghong Tian, Yaowei Yang, Lu Pang, and

Tiejun Huang. Deep relative distance learning: Tell the dif-

ference between similar vehicles. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

2016.

[14] Jinxian Liu, Bingbing Ni, Yichao Yan, Peng Zhou, Shuo

Cheng, and Jianguo Hu. Pose transferrable person re-

identification. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2018.

[15] Xinchen Liu, Wu Liu, Huadong Ma, and Huiyuan Fu. Large-

scale vehicle re-identification in urban surveillance videos.

In 2016 IEEE International Conference on Multimedia and

Expo, 2016.

[16] Xinchen Liu, Wu Liu, Tao Mei, and Huadong Ma. A

deep learning-based approach to progressive vehicle re-

identification for urban surveillance. In European Confer-

ence on Computer Vision, 2016.

[17] Xinchen Liu, Wu Liu, Tao Mei, and Huadong Ma. Provid:

Progressive and multimodal vehicle reidentification for

large-scale urban surveillance. IEEE Transactions on Multi-

media, 2018.

[18] Xiaobin Liu, Shiliang Zhang, Qingming Huang, and Wen

Gao. Ram: a region-aware deep model for vehicle re-

identification. In 2018 IEEE International Conference on

Multimedia and Expo, 2018.

[19] Liqian Ma, Xu Jia, Qianru Sun, Bernt Schiele, Tinne Tuyte-

laars, and Luc Van Gool. Pose guided person image genera-

tion. In Advances in Neural Information Processing Systems,

2017.

[20] Liqian Ma, Qianru Sun, Stamatios Georgoulis, Luc

Van Gool, Bernt Schiele, and Mario Fritz. Disentangled per-

son image generation. In The IEEE Conference on Computer

Vision and Pattern Recognition, 2018.

[21] Iacopo Masi, Stephen Rawls, Gérard Medioni, and Prem

Natarajan. Pose-aware face recognition in the wild. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2016.

[22] Michael Opitz, Georg Waltner, Horst Possegger, and Horst

Bischof. Bier-boosting independent embeddings robustly. In

Proceedings of the IEEE International Conference on Com-

puter Vision, 2017.

[23] Xuelin Qian, Yanwei Fu, Tao Xiang, Wenxuan Wang, Jie

Qiu, Yang Wu, Yu-Gang Jiang, and Xiangyang Xue. Pose-

normalized image generation for person re-identification. In

The European Conference on Computer Vision, 2018.

[24] M Saquib Sarfraz, Arne Schumann, Andreas Eberle, and

Rainer Stiefelhagen. A pose-sensitive embedding for per-

son re-identification with expanded cross neighborhood re-

ranking. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 2018.

[25] Florian Schroff, Dmitry Kalenichenko, and James Philbin.

Facenet: A unified embedding for face recognition and clus-

tering. In The IEEE Conference on Computer Vision and

Pattern Recognition, 2015.

[26] Yantao Shen, Tong Xiao, Hongsheng Li, Shuai Yi, and Xiao-

gang Wang. Learning deep neural networks for vehicle re-id

with visual-spatio-temporal path proposals. In Proceedings

of the IEEE International Conference on Computer Vision,

2017.

[27] Jakub Sochor, Adam Herout, and Jiri Havel. Boxcars: 3d

boxes as cnn input for improved fine-grained vehicle recog-

nition. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2016.

[28] Chi Su, Jianing Li, Shiliang Zhang, Junliang Xing, Wen Gao,

and Qi Tian. Pose-driven deep convolutional model for per-

son re-identification. In The IEEE International Conference

on Computer Vision, 2017.

[29] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

8290



Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2015.

[30] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior

Wolf. Deepface: Closing the gap to human-level perfor-

mance in face verification. In The IEEE Conference on Com-

puter Vision and Pattern Recognition, 2014.

[31] Zhongdao Wang, Luming Tang, Xihui Liu, Zhuliang Yao,

Shuai Yi, Jing Shao, Junjie Yan, Shengjin Wang, Hong-

sheng Li, and Xiaogang Wang. Orientation invariant feature

embedding and spatial temporal regularization for vehicle

re-identification. In Proceedings of the IEEE International

Conference on Computer Vision, 2017.

[32] Ke Yan, Yonghong Tian, Yaowei Wang, Wei Zeng, and

Tiejun Huang. Exploiting multi-grain ranking constraints for

precisely searching visually-similar vehicles. In The IEEE

International Conference on Computer Vision, 2017.

[33] Junho Yim, Heechul Jung, ByungIn Yoo, Changkyu Choi,

Dusik Park, and Junmo Kim. Rotating your face using multi-

task deep neural network. In The IEEE Conference on Com-

puter Vision and Pattern Recognition, 2015.

[34] Yuhui Yuan, Kuiyuan Yang, and Chao Zhang. Hard-aware

deeply cascaded embedding. In Proceedings of the IEEE

International Conference on Computer Vision, 2017.

[35] Zhizheng Zhang, Cuiling Lan, Wenjun Zeng, and Zhibo

Chen. Densely semantically aligned person re-identification.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2019.

[36] Liming Zhao, Xi Li, Yueting Zhuang, and Jingdong Wang.

Deeply-learned part-aligned representations for person re-

identification. In The IEEE International Conference on

Computer Vision, 2017.

[37] Qin Zhou, Heng Fan, Shibao Zheng, Hang Su, Xinzhe Li,

Shuang Wu, and Haibin Ling. Graph correspondence trans-

fer for person re-identification. In Thirty-Second AAAI Con-

ference on Artificial Intelligence, 2018.

[38] Yi Zhou and Ling Shao. Cross-view gan based vehicle gen-

eration for re-identification. In BMVC, 2017.

[39] Yi Zhou and Ling Shao. Vehicle re-identification by adver-

sarial bi-directional lstm network. In 2018 IEEE Winter Con-

ference on Applications of Computer Vision, 2018.

[40] Yi Zhou and Ling Shao. Viewpoint-aware attentive multi-

view inference for vehicle re-identification. In The IEEE

Conference on Computer Vision and Pattern Recognition,

2018.

[41] Zhenyao Zhu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.

Multi-view perceptron: a deep model for learning face iden-

tity and view representations. In Advances in Neural Infor-

mation Processing Systems, 2014.

8291


