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Abstract

In this paper, we propose a fast and practical neural ar-

chitecture search (FPNAS) framework for automatic net-

work design. FPNAS aims to discover extremely efficient

networks with less than 300M FLOPs. Different from pre-

vious NAS methods, our approach searches for the whole

network architecture to guarantee block diversity instead

of stacking a set of similar blocks repeatedly. We model

the search process as a bi-level optimization problem and

propose an approximation solution. On CIFAR-10, our

approach is capable of design networks with compara-

ble performance to state-of-the-arts while using orders of

magnitude less computational resource with only 20 GPU

hours. Experimental results on ImageNet and ADE20K

datasets further demonstrate transferability of the searched

networks.

1. Introduction

Convolutional Neural Networks (CNN) have achieved

remarkable success in many computer vision tasks, includ-

ing image classification [14, 8], object detection [23, 7],

and semantic segmentation [31]. Manually designed net-

works, such as VGGNet [27], ResNet [8], and DenseNet

[11], are very effective to yield top performance along with

high computational complexity. Along the other research

direction, to pursue decent trade-off between performance

and inference speed, mobile architectures, like MobileNet

[9, 26] and ShuffleNet [34, 19], were developed to satisfy

computation requirements considering constrained compu-

tational resource on mobile and embedded devices. In gen-

eral, design of new network architectures requires expertise

and a load of hyper-parameter tunning.

Recent surge of interest in Neural Architecture Search

(NAS) [39, 40] aims to construct neural networks automat-

ically. In NAS, candidate networks are selected via rein-

forcement learning [39, 2, 40, 36, 20, 29] or evolutionary

schemes [32, 22, 21, 16, 5]. They are then trained and eval-

uated on a validation set. The validation performance helps
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Figure 1. Search time and Top-1 accuracy of different NAS frame-

works on ImageNet validation set. Green dots represent networks

with less than 300M FLOPs while black ones are those with

300M+ FlOPs. Orange dots are top handcrafted mobile-friendly

networks. Our proposed FPNAS is able to find useful networks

(FPNASNet) within one GPU day. We note that ENAS [12] is not

included in this figure since the performance is not reported on

ImageNet.

update the network generation process.

Although searched architectures yield competitive per-

formance on image recognition and language modeling

tasks, most of the search process is computationally expen-

sive – it may take many GPU days, as plotted in Fig. 1. An-

other bottleneck is that the discovered high-accuracy archi-

tectures may be with high FLOPs in Fig. 1, making them not

easy to be used on mobile devices. To search for resource-

constrained models, MNAS [29] utilized extra mobile de-

vices and considered the inference latency as one of the op-

timization targets. It may not be widely applicable to gen-

eral applications since the searched networks are device-

specific. It also takes thousands of GPU hours in search

process.

In this paper, we propose a Fast and Practical Neural

Architecture Search (FPNAS) framework that is capable of
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discovering competitive network architectures using signif-

icantly less computational resource. FPNAS focuses on

searching for extremely efficient networks with computa-

tion complexity less than 300M FLOPs. With constrained

resource on mobile devices, we introduce the mobile search

space, which consists of computationally efficient building

blocks inspired by previously successful practice of design-

ing handcrafted CNNs [26, 19] and NAS [12, 29]. Instead

of searching for a general convolutional “cell” and repeat-

edly stacking it to form the CNN network, FPNAS builds

the entire network to ensure block diversity. To accelerate

the search process, we model search as a bi-level optimiza-

tion problem and solve it via iterative approximation. It is

achieved by alternatively optimizing blocks while keeping

other blocks fixed.

The whole search process only takes 20 GPU hours and

the searched network generalizes well on a variety of com-

puter vision tasks. We also empirically show that FPNAS is

able to output network architectures with comparable state-

of-the-art performance on small network scales and yet with

orders of magnitude faster search speed. On CIFAR-10, our

FPNAS network (FPNASNet) achieves test error of 3.99%,

outperforming MobileNet V2 [26] and ShuffleNet V2 [19]

by 0.14% and 1.84% respectively. Directly applying the

searched network to ImageNet, our model also works bet-

ter than MobileNet V2 and ShuffleNet V2 by 1.34% and

0.74%, yielding a Top-1 accuracy of 73.34%. Compared

with other NAS methods, our model performs similarly in

terms of accuracy under the same computational complex-

ity. The main benefit is that our search process only takes

20 GPU hours, which is significantly faster than PNAS[15],

NASNet[40], and MNAS[29].

To demonstrate the transferability of the searched net-

work, we utilize our model as the feature extractor in PSP-

Net [35] framework for the semantic segmentation task. Ex-

perimental results on ADE20K [37] show that our model

achieves superior performance compared to MobileNet V2

and ShuffleNet V2 based frameworks.

Key contributions of our work are as follows.

• Our Fast and Practical Neural Architecture Search (FP-

NAS) can construct decent small-scale networks using

only 20 GPU hours.

• This strategy involves new mobile search space con-

taining computationally efficient building blocks.

• The networks discovered by FPNAS are applicable to

the more challenging semantic segmentation task.

2. Related Work

In this section, we review representative Neutral Archi-

tecture Search (NAS) methods, which can be categorized

into reinforcement learning based and evolutionary algo-

rithm based approaches.

Reinforcement Learning Schemes Reinforcement

learning was first applied to neural architecture search by

Zoph et al. [39] and Baker et al. [2], where controllers

are trained to select the neural network architecture from

a large space including all possible layer operations. The

algorithm is very time-consuming because of the huge

search space and the need to train many epochs to get the

reward. To alleviate these two problems, Zoph et al. [40]

and Zhong et al. [36] proposed searching for the cell or

block structure and then stack them to get the final network,

which greatly reduce the complexity of search space. To

get the reward as early as possible during search, early

stop strategy is applied [36] and the surrogate model was

trained in [15]. To further reduce the training steps to get

the reward, parameter sharing was developed by ENAS

[20], where a controller is trained with policy gradient to

select a subgraph by parameter sharing. Other methods

[3, 12] used layer transformation or morphism to increase

complexity of the network to achieve high performance.

It is found in previous work that the reinforcement learn-

ing strategy may be unstable and hard to train. Moreover,

work only considering large networks with high accuracy

may not be helpful on mobile-level deployment. Recently,

MNAS [29] were proposed to search for networks for mo-

bile devices. It needs to get the reward from mobile device

cloud, which is difficult in general. Compared with previous

methods, ours can search for extremely efficient networks

without deploying reinforcement learning schemes.

Evolutionary Methods Evolutionary algorithms give an-

other direction for NAS. In [32, 22], evolutionary algo-

rithms first demonstrated its effectiveness on small datasets,

such as CIFAR-10 and MNIST. After that, the method of

[21] applied the evolutionary algorithm to ImageNet with

search speed faster than reinforcement learning on the same

hardware, especially at the early stages of search. Although

evolutionary methods work on NAS, it faces the same prob-

lem as reinforcement learning – that is, a lot of resource

is needed in evolution. To address this problem, Liu et al.

[16] proposed a hierarchical genetic representation scheme

and an expressive search space to accelerate the evolution

progress. Besides, Elsken et al. [5] proposed a LEMON-

ADE evolutionary algorithm along with a Lamarckian in-

heritance mechanism to much improve the evolution speed.

We note it is not always easy to control the evolutionary pro-

cess due to various hyper parameters, undetermined hered-

ity operations and variation operations. Our search process

overcomes these obstacles, and is more controllable.

3. Our Method

3.1. Mobile­efficient Search Space

A convolutional neural network can be defined as an

ordered set {Block1, Block2, ..., BlockN}, where each
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Block is a directly acyclic graph (DAG). To ensure block

diversity, our proposed FPNAS searches for the whole net-

work instead of a single DAG as in [40, 15, 12].

In the following, we first present the basic elements of

our search space and then explain the importance of block

diversity.

3.1.1 Block Architecture

Following [39, 15], we define a Block as a DAG G =
(V,E), where each vertex in V represents a combination

operation (e.g., element-wise addition) or split operation,

and the edge in E represents an arithmetic operation, such

as convolution or pooling. We note that the vertex or edge

could be an “empty operation”, standing for removing the

vertex or edge in the graph. Since our goal is to discover

efficient network architectures, we restrict each block to at

most three vertices to satisfy the constrained resource on

mobile or embedded devices. The candidates of operations

of vertexes and edges are as follows.

Vertices:

• Element-wise addition

• Concat operation

• Split operation

• Identity mapping

Edges:

• Convolution: mobile inverted bottleneck convolution

with different expansion ratios

• Convolutional kernel size: 3×3 or 5×5

• Identity mapping

We restrict the concat operation as only appearing if it

follows a split operation in order to match the channels of

input and output. For each block, there is at most one con-

volutional operation. Fig. 2 illustrates the structure of the

block. As for edges, we adopt mobile inverted bottleneck

convolution operation in our search space as it has shown

good trade-off between speed and accuracy [26]. To enlarge

the size of the search space, we search for the expansion ra-

tio and kernel size of depth-wise convolution.

We design our search space based on the following con-

sideration. We keep mobile-inverted bottleneck convolution

only, and disregard other common convolutional operations

because the search results of [29] show that the search pro-

cess only favors this type of convolution. The element-wise

addition can form a residual connection, which is found use-

ful in previous work [8, 26, 19]. We add the split operation

because it is excellent at feature reuse.

Based on the finding of DenseNet[11] and DPN[4], fea-

ture reuse is a rather effective technique to improve per-

formance. ShuffleNetV2 [19] demonstrated that the split

operation is an efficient operation for mobile level net-

works. The number of vertices is set to 3 because too many

Figure 2. Overview of every block’s architecture. Every box rep-

resents a vertex and there are at most three vertices, each arrowed

line represents an edge. There are two edges from the green vertex

to the blue one because the green vertex may be a split operation.

Initially, operations on edges and vertices are unknown. We put

questions marks for indication.

branches cause fragmentation and affect efficiency [19].

3.1.2 Block Diversity

Most existing work only searches for one general block and

stacks it for predefined times to form a CNN. This makes

all blocks have the same topological structure, which means

Block1 = Block2 = ... = BlockN . Such a strategy sim-

plifies the search process and greatly improves search effi-

ciency. The limitation is on the need of repetitive blocks to

make them work well. Mobile networks are constrained to

limited resource, stacking the same blocks cannot guaran-

tee a good trade-off between speed and accuracy. Recent

works [29, 30, 24] also showed that it may be more efficient

to have different blocks at various positions in a network.

We denote the number of different blocks as block diver-

sity.

Generally speaking, the essence of convolutional neu-

ral networks is to extract and combine features of images.

We consider the importance of block diversity from two

aspects. First, there are different kinds of features in im-

ages. In [29], it shows that blocks of different topological

structures are effective to extract different features. Second,

blocks at different positions of CNNs are optimized to con-

quer their respective difficulties [33]. For instance, blocks

in low levels of a network pay more attention to edges and

corners while higher-level blocks focus more on semantic

information. Therefore, it is intriguing to see if it is benefi-

cial when a CNN has blocks in different topological struc-

tures in terms of achieving decent performance.

To answer the above question, we quickly design a sys-

tem with the following experiments. We train different net-

works on CIFAR-10 dataset. These networks are very sim-

ple and only have 5 blocks followed by a fully-connected

layer. The first and last blocks are the same, i.e., 3×3 DW-

Conv and 1×1 Conv respectively. The 2nd-4th blocks of

networks are chosen with different topological structures

listed in Section 3.1.1. These three blocks use a mobile

inverted bottleneck convolution and may incorporate short-
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Figure 3. Block diversity verification. The x-axis is the three-digit

network ID. Every point denotes the average accuracy and the ver-

tical line is the standard variance for multiple times training. Blue

points represent networks with different blocks at different posi-

tions. Red points are for networks with only one type of blocks.

cut, split or both along with the convolution. This results

in a total of 27 different networks. We use a 3-digit ternary

number as the network ID to represent them individually.

We set the channels of networks adaptively to ensure their

FLOPs are within 10±0.5M. We train these networks five

times with the same setting and show the results in Fig. 3.

It is observable from the plot that all top-performing net-

works are composed of blocks of different topological struc-

tures. Moreover, it reveals that the lower-level blocks prefer

not to split the channels while blocks at the highest level

favor the opposite. This might be because the split opera-

tion is better for blocks to combine different features than

extracting features.

The above experiments, albeit simple, still show the di-

rection for us to further explore. We then design new effi-

cient networks by making use of different topological struc-

tures. We allow each Blocki to have its own structures,

which needs to be searched in our method.

Assuming there are a total of K different architectures

for one block, the whole search space is naturally KN . It is

too big to get a good architecture with limited computation.

Here, we propose a fast neural network architecture search

to address this problem.

3.2. Fast Search

In this section, we first define our task as solving an opti-

mization problem. We analyze and define our goal as mul-

tiple bi-level optimization and propose a fast search method

to efficiently address it. We also compare our fast search

with previous reinforcement learning based schemes.

Problem Formulation A network is composed of

an ordered set of blocks denoted as Block1:N =
{Block1, Block2, ..., BlockN}, where each Blocki is the

i-th block’s structure. Our NAS is, therefore, formulated as

the constrained optimization as

max
Block1:N

R(Block1:N )

s.t. f(Block1:N ) < b. (1)

where R(Block1:N ) denotes the reward of the network,

which is defined as the accuracy on validation set. The con-

straint written as f(Block1:N ) < b is added where f(x)
measures the computation complexity of network x in terms

of FLOPs. The goal is to search for an efficient network

with less than b FLOPs. Similar to that of [1], the hard con-

straints can be relaxed by redefining the reward function as

R(Block1:N ) =

{

Acc, f(Block1:N ) < b

− 1, f(Block1:N ) ≥ b
(2)

where Acc is the accuracy of the searched network on vali-

dation set. Even with the relaxation, the problem is still very

challenging since not only the network with different blocks

needs to be constructed, but also the structure of each block

is to be optimized. Traditional methods or recent reinforce-

ment learning schemes are difficult to yield good results.

They may also require a large amount of computation. We

instead propose fast search.

Search Algorithm We apply the bi-level optimization

[28], which has two levels of optimization formally written

as

max
x∈X,y∈Y

F (x, y)

s.t. x = argmax
x∈X

G(x, y). (3)

This function can be efficiently optimized as discussed in

[28].

The reason that we can approximate our problem by bi-

level optimization is as follows. Suppose Block1:N/2 have

been determined, the optimal choice of BlockN/2+1:N is

related to Block1:N/2. Contrarily, when BlockN/2+1:N are

fixed, optimal Block1:N/2 is also related to them. Hence,

our problem can be expressed approximately as

max
Block1:N/2,BlockN/2+1:N

R(Block1:N )

s.t. Block1:N/2 = arg max
Block1:N/2

R(Block1:N ) (4)

If we consider Block1:N/2 as x, BlockN/2+1:N as y, and

F (·) = G(·) = R(·), this problem becomes exactly a bi-

level optimization one.
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Algorithm 1 Fast Search Algorithm

1: Initialize Block1:N ;

2: repeat

3: for Blocki ∈ Block1:N do

4: Fix Block1:N\Blocki and optimize Blocki;

5: end for

6: until converge

7: Output Block1:N as the final result.

To solve it, we use the similar idea to that of [17] by op-

timizing Block1:N/2 and BlockN/2+1:N alternatively. This

makes the complexity of our problem reduces greatly. Be-

sides, when optimizing Block1:N/2, we can further depart

it into Block1:N/4 and BlockN/4+1:N/2 in a recursive way.

The final solution becomes coordinate descent to optimize

Blocki alternatively. The detail of the algorithm is given in

Algorithm 1.

Blocki Optimization For each Blocki we observe that

the number of possible operation combinations is still large.

Exhaustive search like training every possible architecture

of Blocki and finding the best one is feasible, and yet could

still be time-consuming.

It is noteworthy that when the architecture of Blocki
changes, other parts of the network remain the same. It is

thus possible to share weights of the unchanged part instead

of training from scratch for every architecture. This sharing-

weight strategy reduces the search time significantly.

To alleviate possible adverse effect in weight sharing, we

develop a two-stage method. In the first stage, we train all

architectures with sharing weights and select top architec-

tures. Then in the second stage we train these architectures

independently to pick the best. The first stage limits the

number of networks into a controllable range. Then we

search for the reasonable architectures among these a few

candidates.

3.3. Analysis

Complexity of Our Algorithm For the original combi-

natorial optimization problem, the complexity reaches the

size of search space, which is intractable. After breaking it

into multiple bilevel optimization problems, the complexity

is greatly reduced.

A reasonable measure for comparison is to count the

total number of examples used by the search process

[15]. From this perspective, suppose we train P epochs

in sharing-weight stage to select E best ones and train Q
epochs in independent training stage for each of E networks

with T iterations. We totally use T × (P +Q× E) epochs

of training data.

In our experiments, we set P = 4, Q = 4, and E =
10. It is found that after T = 16 iterations, FPNAS can
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Figure 4. We train our fast search and reinforcement learning for

several times, and compare their top-1 and top-5 test accuracy af-

ter training 40 epochs on CIFAR-10. It is clear that our method

archives comparable accuracy taking much less time.

converge very well. So, we totally use 31M images, which

is significantly smaller than 1 billion images used by [15],

21 billion images used by [40] and 25 billion images in [21].

Comparison with Reinforcement Learning Reinforce-

ment learning (RL) is applied in several previous methods.

To compare with it, we designed a reinforcement learning

framework as follows. We use a two-layer RNN as the con-

troller. For every different architecture, we encode each

property into a number for convenience of controller gen-

eration. It makes the controller produce a list of numbers at

a time. Then we decode these numbers to an architecture

and train it on CIFAR-10 for several epochs. The relative

accuracy of moving average on the validation set is taken as

the reward.

RL is useful in finding high-performance network ar-

chitectures in our experiments. It is also well known for

its slow process as demonstrated in Fig. 4 . Our method

uses much less time because of the special architecture of

the proposed search space and the efficient alternative op-

timization along with sharing-weight strategy. Reinforce-

ment learning does not give the freedom to control output,

making weight sharing difficult to apply in the same way.

4. Experiments

During the course of neural architecture search, we con-

duct experiments on CIFAR-10 [13] given its small scale.

After we obtain the target neural network architectures with

the best performance on CIFAR-10 [13], we apply them

to ImageNet [25] classification and ADE20K [38] seman-

tic segmentation tasks. Experimental results demonstrate

the generalization ability of the networks constructed by our
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Model Params Error (%) Inference Speed (Images/s)

ShuffleNet V2 (1.5×) [19]* 2.47M 5.83 8,000

MobileNet V2 (1×) [26]* 2.20M 4.13 16,000

FPNASNet (Ours) 1.68M 3.99 13,500

Hier-EA [16] 15.70M 3.75 -

PNASNet-5 [15] 3.20M 3.41 -

AmoebaNet-A [21] 3.20M 3.34 -

DARTS (first order) [17] + CutOut 3.30M 3.00 -

ENAS [20] + CutOut 4.60M 2.89 900

DARTS (second order) + CutOut 3.30M 2.76 -

NASNET-A [40] + CutOut 3.30M 2.65 -

FPNASNet (2×) + CutOut (Ours) 5.76M 3.01 12,800

Table 1. Results of our FPNASNet on CIFAR-10. They are compared to MobileNet V2, ShuffleNet V2 and other NAS methods. For better

performance, the first three layers with stride 2 in MobileNet V2 are changed to 1 and the first two layers with stride 2 in ShuffleNet V2

are set to 1. * denotes our implementation. ‘FPNASNet (2×)’ means we double all channels. The inference time is tested with PyTorch

for MobileNet V2, ShuffleNet V2 and FPNASNet. The inference speed is tested with Tensorflow for ENAS.

method. For all the experiments, We implement our method

using PyTorch.

4.1. Image Classification on CIFAR­10

Training Details CIFAR-10 comprises of 50,000 training

images and 10,000 test images. We use standard data pre-

processing and augmentation as those in [15]. Each image

is upsampled to 40 × 40 and a 32 × 32 patch is randomly

cropped from it or its horizontal flip. These patches are sub-

tracted with channel mean and divided by channel standard

deviation.

During the search process, we separate the original

50,000 training images into 45,000 for training and 5,000

for validation. We set N = 16 for our network and use SGD

optimizer with momentum 0.9 and weight decay 0.0005. In

the weight-sharing stage, the learning rate is fixed at 0.05.

In the independent training stage, we use the cosine anneal-

ing schedule [18] with T0 = 10 and only one run to decrease

the learning rate until it reaches 1e-5. We set the batch size

to 128.

For full CIFAR-10 training, we use SGD optimizer with

momentum 0.9. The initial learning rate is set to 0.02 and a

weight decay of 0.0005 is applied. We use cosine annealing

schedule [18] with T0 = 10 and Tmult = 2 to decrease the

learning rate until it reaches 1e-4. Batch size is set to 192.

Comparison with State-of-the-art Classification results

on CIFAR-10 are listed in Table 1. Compared with the

handcrafted networks, i.e., MobileNet V2 and ShuffleNet

V2, our searched model outperforms them by a large mar-

gin with a much smaller number of network parameters. For

NASNET, Hier-EA, AmoebaNet and PNASNet, they all use

thousands of GPU hours to get the final result, while we

only use 20 GPU hours to achieve a comparable result.

We also compare other neural architecture search meth-

ods for the sake of fairness. ENAS also consumes much

GPU resource and takes long time. Our FPNASNet (2×)
net achieves an error rate of 3.01, comparable with ENAS

[20], which is also based on parameter sharing. It is note-

worthy that the networks searched by ENAS are with much

more complex topological structures with several network

fragmentations and element-wise operations. According to

the analysis of [19], network fragmentation reduces the de-

gree of parallelism and element-wise operations introduce

heavy MAC, decreasing network efficiency.

We test the inference speed of networks obtained by our

FPNASNet (2×) and ENAS with image size 32 × 32 and

batch size 100 on one NVIDIA P40 GPU. Our FPNAS-

Net (2×) handles 12,800 images per second, which is 10

times faster than ENAS. ENAS deals with 900 images per

second. Besides, complex topological structures may not

be that friendly to hardware deployment. In contrast, our

model is easier to implement with limited components, thus

becomes more applicable to mobile devices.

Analysis of Search Efficiency Our method only takes 20

GPU hours to achieve decent performance, far more effi-

cient than other methods. We summarize here that NAS

and NASNet take thousands of GPU hours to construct a

reasonable result. PNAS trains networks for 25,600 epochs

in total on CIFAR-10. Although much time is saved com-

pared with NAS, still thousands of GPU hours are needed.

MNAS conducts network search directly on the large-scale

ImageNet with gradient-based reinforce learning. At least

40,000 epochs in training are conducted during the entire

search process – it takes much longer time than ours.

4.2. Image Classification on ImageNet

Training Details We follow the common practice for

training networks on ImageNet [8]. We first pre-process
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Model Type GPU Hours DataSet for NAS Parameters Mult-Adds Top-1 (%)

SqueezeNext [6] manual - - 3.20M 708M 67.50

MobileNet V1 [9] manual - - 4.20M 575M 70.60

CondenseNet (G=C=8) [10] manual - - 4.80M 529M 73.80

MobileNet V2 (1×) [26] manual - - 3.47M 300M 72.00

ShuffleNet V2 (1.5×) [19] manual - - 3.50M 299M 72.60

ShuffleNet (1.5×) [34] manual - - 3.40M 292M 71.50

CondenseNet (G=C=4) [10] manual - - 2.90M 274M 71.00

MobileNet V2 (0.75×) [26] manual - - 2.61M 209M 69.80

MobileNet V1 (0.5×) [9] manual - - 1.30M 149M 63.70

ShuffleNet V2 (1×) [19] manual - - 2.30M 146M 69.40

NASNet-A [40] auto 32400 CIFAR-10 5.30M 564M 74.00

MnasNet-92 [29] auto 7000∗ ImageNet 4.40M 388M 74.79

MnasNet [29] auto 7000∗ ImageNet 4.20M 317M 74.00

MnasNet-65 [29] auto 7000∗ ImageNet 3.60M 270M 73.02

PNASNet [15] auto 3600 CIFAR-10 5.10M 588M 74.20

DARTS [17] auto 96 CIFAR-10 4.90M 595M 73.10

FPNASNet-C (Ours) auto 20 CIFAR-10 1.91M 149M 69.91

FPNASNet-B (Ours) auto 20 CIFAR-10 3.07M 216M 70.67

FPNASNet-A (Ours) auto 20 CIFAR-10 2.95M 245M 72.01

FPNASNet (Ours) auto 20 CIFAR-10 3.41M 300M 73.34

Table 2. Results of image classification on ImageNet. We compare our FPNASNet models with both handcrafted mobile models and

other automated approaches. FPNASNet, FPNASNet-A, FPNASNet-B and FPNASNet-C are the searched models (for comparison) with

different FLOPs and parameters. #Parameters: number of trainable parameters; #Mult-Adds: number of multiplication-add operations per

image; Top-1 Acc: top-1 accuracy on ImageNet validation set. * is our estimation according to the number of models reported in [29] (with

about 8K different models).

each image and obtain a random crop of the image with size

224×224. This is accomplished using the RandomResized-

Crop function in PyTorch with the default setting. Then

the cropped image patch is randomly horizontal flipped, fol-

lowed by subtraction of channel mean and division by chan-

nel standard deviation. We use slightly less aggressive scale

augmentation for a small model, where similar modifica-

tions are also utilized in [9]. In the test process, we resized

the input image to 256 × 256 and the central crop of size

224× 224 is used as network input.

We use SGD optimizer with momentum 0.9. The initial

learning rate is set to 0.45, which decreases to 1e-5 over

the training process according to cosine annealing schedule

[18] with T0 = 10 and Tmult = 2. We use 4 GPUs for

training with batch size 1,024. To compare the performance

of our FPNASNet to other networks, we adjust channels of

each layer to limit the model size and computational cost

when necessary. Part of the structure of our network (FP-

NASNet) is shown in figure 5. The full structure is longer

and is presented in the supplementary files.

Comparison with State-of-the-art Table 2 summarizes

results of variants of our model and other handcrafted or

automatically searched mobile networks on ImageNet vali-

dation set. We first observe that compared with MobileNet

V2 and ShuffleNet V2, our model (FPNASNet) achieves the

best performance with 300M FLOPs, outperforming them

by 1.34% and 0.74% respectively. This manifests that our

search algorithm is capable of discovering generic and ef-

fective neural network architecture. Compared with Con-

denseNet (G=C=4), our FPNASNet-A outperforms it by

1.01% with less FLOPs and comparable number of param-

eters. Besides, in the extreme setting with FLOPs less than

150M, our model (FPNASNet-C) improves ShuffleNet V2

(1×) by 0.51% and significantly outperforms MobileNet V1

(0.5×).

Second, most networks discovered by other NAS meth-

ods [15, 40] require a lot of search time or computation

resource. They may focus on discovering large-scale net-

works. For models with around 300M FLOPs, MNAS per-

forms slightly better than ours. We note MNAS directly

searches networks on ImageNet and requires at least 350

times more GPU hours than ours. The major advantage of

our work is the more efficient search process since it relies

on CIFAR-10. The contemporary work DARTS [17] uses

the same dataset for NAS and takes comparable GPU hours.

Our searched models perform significantly better.

4.3. Semantic Segmentation

To evaluate the generalization ability of our FPNASNet,

we also apply it to the semantic segmentation task with
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Model MultiScale Testing Mean IoU (%) Pixel Accuracy (%)

ShuffleNet V2* No 35.64 77.51

MobileNet V2* No 35.75 77.77

FPNASNet (Ours) No 36.76 77.91

ShuffleNet V2* Yes 35.95 77.99

MobileNet V2* Yes 36.28 78.26

FPNASNet (Ours) Yes 37.40 78.42

Table 3. Results of semantic segmentation on ADE20K. We compare our FPNASNet with MobileNet V2 and ShuffleNet V2. Result of

MobileNet V2 is extracted from [38] with the same experimental setting. The result of Shufflenet V2 is from our own implementation.

Figure 5. More details of our searched network structure. Blocks at

different positions are with their special topological architectures.

MBConv6 and MBConv8 are mobile inverted bottleneck con-

volution with expansion ratios 6 and 8 respectively.

ADE20K dataset. We use PSPNet with deep supervision

trick in the open-source code from [38]. We use the default

setting except for replacing the encoder network by ours.

Our results are listed in Table 3. Our FPNASNet reaches

36.76% Mean IoU and 77.91% Pixel Accuracy without

multiscale testing, which is significantly higher than both

MobileNet V2 and ShuffleNet V2. With multiscale testing,

our FPNASNet further increases Mean Iou to 37.40% and

Pixel Accuracy to 78.42%. The performance on ADE20K

shows that our FPNASNet possesses a good generalization

ability on other challenging computer vision tasks.

4.4. Ablation Study

We conduct experiments on CIFAR10 to exam the dif-

ferent choices of P , Q, and E . As shown in Table 4, with

the increase of Q and E , performance of searched networks

increases. However, when Q > 4 and E > 10, performance

does not change significantly. Moreover we need to select

a proper P to balance performance and complexity. Our

choice of P , Q, and E is made upon these experiments.

Parameters
Top-1(%)

P Q E

2 4 10 95.59

8 4 10 95.48

4 2 10 95.80

4 8 10 95.93

4 4 5 95.38

4 4 20 96.01

4 4 10 96.01

Table 4. FPNAS results with different parameter setting.

5. Conclusion

In this paper, we have proposed a Fast and Practical Neu-

ral Architecture Search (FPNAS) framework for mobile-

level network architecture design. We first formulate NAS

as a mathematical optimization problem and break down

the original combinatorial optimization into multiple bilevel

optimization tasks, which greatly reduces complexity of the

problem. We also introduce a new search space, which tar-

gets at light-weight and efficient network search. Our FP-

NAS only takes 20 GPU hours, considered as extremely fast

compared with other NAS methods. Finally, FPNASNet

found by FPNAS shows its great generalization ability on

ImageNet and ADE20K datasets for classification and se-

mantic segmentation tasks respectively.

There are many possible directions for future work.

First, channel numbers are important factors that can be

considered in the search process. Second, considering dy-

namically changing the depth of networks in the search pro-

cess is possible. Finally, applying FPNAS directly to se-

mantic segmentation or object detection tasks is also an in-

triguing and promising direction to explore.
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