
Joint Embedding of 3D Scan and CAD Objects

Manuel Dahnert1 Angela Dai1 Leonidas Guibas2,3 Matthias Nießner1

1Technical University of Munich 2Stanford University 3Facebook AI Research

Figure 1: We learn a joint embedding space of scan and CAD object geometry, visualized here by t-SNE. Semantically

similar objects lie close together, despite very different lower-level geometric characteristics (clutter, noise, partialness, etc).

Abstract

3D scan geometry and CAD models often contain com-

plementary information towards understanding environ-

ments, which could be leveraged through establishing a

mapping between the two domains. However, this is a chal-

lenging task due to strong, lower-level differences between

scan and CAD geometry. We propose a novel approach to

learn a joint embedding space between scan and CAD ge-

ometry, where semantically similar objects from both do-

mains lie close together. To achieve this, we introduce a

new 3D CNN-based approach to learn a joint embedding

space representing object similarities across these domains.

To learn a shared space where scan objects and CAD mod-

els can interlace, we propose a stacked hourglass approach

to separate foreground and background from a scan object,

and transform it to a complete, CAD-like representation to

produce a shared embedding space. This embedding space

can then be used for CAD model retrieval; to further enable

this task, we introduce a new dataset of ranked scan-CAD

similarity annotations, enabling new, fine-grained evalu-

ation of CAD model retrieval to cluttered, noisy, partial

scans. Our learned joint embedding outperforms current

state of the art for CAD model retrieval by 12% in instance

retrieval accuracy.

1. Introduction

The capture and reconstruction of real-world 3D scenes

has seen significant progress in recent years, driven by in-

creasing availability of commodity RGB-D sensors such as

the Microsoft Kinect or Intel RealSense. State-of-the-art 3D

reconstruction approaches can achieve impressive recon-

struction fidelity with robust tracking [18, 14, 20, 32, 7, 9].

Such 3D reconstructions have now begun to drive forward

3D scene understanding with the recent availability of anno-

tated reconstruction datasets [8, 3]. With the simultaneous

availability of synthetic CAD model datasets [4], we have

an opportunity to drive forward both 3D scene understand-

ing and geometric reconstruction.
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3D models of scanned real-world objects as well as syn-

thetic CAD models of shapes contain significant informa-

tion about understanding environments, often in a comple-

mentary fashion. Where CAD models often comprise rela-

tively simple, clean, compact geometry, real-world objects

are often more complex, and scanned real-world object ge-

ometry is then more complex, as well as noisy and incom-

plete. It is thus very informative to establish mappings be-

tween the two domains – for instance, to visually transform

scans to CAD representations, or transfer learned semantic

knowledge from CAD models to a real-world scan. Such

a semantic mapping is difficult to obtain due to the lack of

exact matches between synthetic models and real-world ob-

jects and these strong, low-level geometric differences.

Current approaches towards retrieving CAD models rep-

resentative of scanned objects thus focus on the task of

retrieving a CAD model of the correct object class cate-

gory [26, 8, 13, 24], without considering within-class sim-

ilarities or rankings. In contrast, our approach learns a

joint embedding space of scan and CAD object geometry

where similar objects from both domains lie close together

as shown in Fig. 1. To this end, we introduce a new 3D

CNN based approach to learn a semantically mixed embed-

ding space as well as a dataset of 5102 scan-CAD ranked

similarity annotations. Using this dataset of scan-CAD sim-

ilarity, we can now fully evaluate CAD model retrieval, with

benchmark evaluation of retrieval accuracy as well as rank-

ing ability. To learn a joint embedding space, our model

takes a stacked hourglass approach of a series of encoder-

decoders: first learning to disentangle a scan object from its

background clutter, then transforming the partial scan ob-

ject to a complete object geometry, and finally learning a

shared embedding with CAD models through a triplet loss.

This enables scan and CAD object geometry into a shared

space and outperforms state-of-the-art CAD model retrieval

approaches by 12% in instance retrieval accuracy.

In summary, we make the following contributions:

• We propose a novel stacked hourglass approach lever-

aging a triplet loss to learn a joint embedding space

between CAD models and scan object geometry.

• We introduce a new dataset of ranked scan-CAD ob-

ject similarities, establishing a benchmark for CAD

model retrieval from an input scan object. For this task,

we propose fine-grained evaluation scores for both re-

trieval and ranking.

2. Related Work

3D Shape Descriptors Characterizations of 3D shapes

by compact feature descriptors enable a variety of tasks in

shape analysis such as shape matching, retrieval, or orga-

nization. Shape descriptors have thus seen a long history

in geometry processing. Descriptors for characterizing 3D

shapes have been proposed leveraging handcrafted features

based on lower-level geometric characteristics such as vol-

ume, distance, or curvature [22, 21, 10, 27, 29], or higher-

level characteristics such as topology [12, 5, 28]. Charac-

terizations in the form of 2D projections of the 3D shapes

have also been proposed to describe the appearance and ge-

ometry of a shape [6]. Recently, with advances in deep neu-

ral networks for 3D data, neural networks trained for point

cloud or volumetric shape classification have also been used

to provide feature descriptors for 3D shapes [26, 25].

CAD Model Retrieval for 3D Scans CAD model re-

trieval to RGB-D scan data has been increasingly studied

with the recent availability of large-scale datasets of real-

world [8, 3] and synthetic [4] 3D objects. The SHREC chal-

lenges [13, 24] for CAD model retrieval to real-world scans

of objects have become very popular in this context. Due

to lack of ground truth data for similarity of CAD models

to scan objects, CAD model retrieval in this context is com-

monly evaluated using the class categories as a coarse proxy

for similarity; that is, a retrieved model is considered to be

a correct retrieval if the category matches that of the query

scan object. We propose a finer-grained evaluation for the

task of CAD model retrieval for a scan object with our new

Scan-CAD Object Similarity dataset and benchmark.

Multi-modal Embeddings Embedding spaces across dif-

ferent data modalities have been used for various com-

puter vision tasks, such as establishing relationships be-

tween image and language [30, 31], or learning similarity

between different image domains such as photos and prod-

uct images [2]. These cross-domain relationships have been

shown to aid tasks such as object detection [23, 17]. More

recently, Herzog et al. proposed an approach to relate 3D

models, keywords, images, and sketches [11]. Li et al. also

introduced a CNN-based approach to learn a shared embed-

ding space between CAD models and images, leveraging a

CNN to map images into a pre-constructed feature space of

CAD model similarity [15]. Our approach also leverages a

CNN to construct a model which can learn a joint embed-

ding between scan objects and CAD models in an end-to-

end fashion, learning to become invariant to differences in

partialness or geometric noise.

3. Method Overview

Our method learns a shared embedding space between

real-world scans of objects and CAD models, where seman-

tically similar scan and CAD objects lie near each other,

with scan and CAD objects mixed together, invariant to

lower-level geometric differences (partialness, noise, etc).

We represent both scan and CAD objects by binary grids

representing voxel occupancy, and design a 3D convolu-
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Figure 2: Our network architecture to construct a joint embedding between scan and CAD object geometry. The architecture

is designed in a stacked hourglass fashion, with a series of hourglass encoder-decoders to transform a scan input to a more

CAD-like representation, before mapping the features into an embedding space with a triplet loss. The first hourglass (blue)

segments a scan object from its background clutter, the second hourglass (green) predicts the complete geometry for the

segmented object, from which the final feature encoding is computed (yellow); CAD object features are computed with the

same final encoder. Note that layers are denoted with parameters c× (k, s, p) with number of output channels c, kernel size

k, stride s, and padding p. Lighter colored layers denote residual blocks, darker colored layers denote a convolutional layer.

tional neural network to encourage scan objects and CAD

objects to map into a shared embedding space. Our model

is thus structured in a stacked hourglass [19] fashion, de-

signed to transform scan objects to a more CAD-like repre-

sentation before mapping them into this joint space.

The first hourglass learns to segment the scan geometry

into object and background clutter, using an encoder with

two decoders trained to reconstruct foreground and back-

ground, respectively. The segmented foreground then leads

to the next hourglass, composed of an encoder-decoder

trained to reconstruct the complete geometry of the seg-

mented but partial scan object. This helps to disentangle

confounding factors like clutter and partialness of scanned

objects before mapping them into a shared space with CAD

objects. Here, the completed scan is then input to an en-

coder to train a latent feature vector which maps into this

embedding space, by constraining the latent space to match

that of a CAD encoder on a matching CAD object and be

far away from the encoder for a non-matching CAD object.

This enables learning of a joint embedding space where

semantically similar CAD objects and scan objects lie

mixed together. With this learned shared embedding space,

we can enable applications such as much finer-grained CAD

model retrieval to scan objects than previously attainable.

To this end, we demonstrate our joint scan-CAD embed-

ding in the context of CAD model retrieval, introducing

a Scan-CAD Object Similarity benchmark and evaluation

scores for this task.

4. Learning a Joint Scan-CAD Embedding

4.1. Network Architecture

Our network architecture is shown in Fig. 2. It is an end-

to-end, fully-convolutional 3D neural network designed to

disentangle lower-level geometric differences between scan

objects and CAD models. During training, we take as input

a scan object S along with a corresponding CAD model Cp

and a dissimilar CAD model Cn, each represented by its

binary occupancy in a 323 volumetric grid. At test time, we

use the learned feature extractors for scan or CAD objects

to compute a feature vector in the joint embedding space.

The model is composed as a stacked hourglass of two

encoder-decoders followed by a final encoder. The first two

hourglass components focus on transforming a scan object

to a more CAD-like representation to encourage the joint

embedding space to focus on higher-level semantic and

structural similarities between scan and CAD than lower-

level geometric differences.

The first hourglass is thus designed to segment a scan

object from nearby background clutter (e.g., floor, wall,

other objects), and is composed of an encoder and two

decoders (one for the foreground scan object, one for the

background). The encoder employs an initial convolution

followed by a series of 4 residual blocks, and a final con-

volution layer resulting in a 512-dimensional latent feature

space. This feature is then split in half; the first half feeds

into a decoder which reconstructs the segmented scan object
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from background, and the second half to a decoder which

reconstructs the background clutter of the input scan ge-

ometry. The decoders are structured symmetrically to the

encoder (each using half the feature channels). For pre-

dicted scan object geometry xfg and background geometry

xbg , we train with a proxy loss Lseg = BCE(xfg, gtfg) +
BCE(xbg, gtbg) for reconstructing segmented scan object

and background clutter, respectively, as occupancy grids.

The second hourglass takes the segmented scan object

and aims to generate the complete geometry of the object,

as real-world scans often result in partially observed geom-

etry. This is structured in encoder-decoder fashion, where

the encoder and decoder are structured symmetrically to the

decoders of the first segmentation hourglass. We then em-

ploy a proxy loss on the completion as an occupancy grid:

Lcmp = BCE(xcmp, Cp), for completion prediction xcmp

and CAD model Cp corresponding to the scan object.

The final encoder aims to learn the joint scan-CAD em-

bedding space. This is formulated as a triplet loss:

L = max(d(f(S), g(Cp))− d(f(S), g(Cn)) + margin, 0),

where f(S) = fe(f c(fs(S))) with fs representing the

scan segmentation, f c the scan completion, and fe an en-

coder structured symmetrically to the encoder of f c which

produces a feature vector of size 256. g(C) is an encoder

structured identically to fe which computes the feature vec-

tor for a CAD occupancy grid. For all our experiments, all

losses are weighted equally and we use Euclidean distance

and a margin of 0.2.

4.2. Network Training

We train our model end-to-end from scratch. For training

data, we use the paired scan and CAD models (S and Cp),

from Scan2CAD [1], which provides CAD model align-

ments from ShapeNet [4] onto the real-world scans of Scan-

Net [8]. For the non-matching CAD models Cn, we ran-

domly sample models from Scan2CAD from different class

categories. After every epoch we re-sample new negatives.

We train our model using an Adam optimizer with a

batch size of 128 and an initial learning rate of 0.001,

which is decayed by 10 every 20k iterations. Our model

is trained for 100k iterations (≈ 1 day) on a single Nvidia

GTX 1080Ti.

5. Scan-CAD Object Similarity Benchmark

Our learned joint embedding space between scan and

CAD object geometry enables characterization of these ob-

jects at higher-level semantic and structural similarity. This

allows us to formulate applications like CAD model re-

trieval in a more comprehensive fashion, in particular in

contrast to previous approaches which evaluate retrieval

by the class accuracy of the retrieved object [13, 26, 24].

Figure 3: Annotation interface for obtaining ranked similar-

ity of CAD models to a scan query. A user selects and ranks

up to 3 CAD models from a pool of 6 proposed models.

We aim to characterize retrieval through finer-grained ob-

ject similarity than class categories. Thus, we propose a

new Scan-CAD Object Similarity dataset and benchmark

for CAD model retrieval.

To construct our Scan-CAD Object Similarity dataset,

we develop an intuitive annotation web interface designed

to measure scan-CAD similarities, inspired by [16]. As

shown in Fig. 3, the geometry of a query scan model is

shown, along with a set of 6 CAD models. A user then

selects up to 3 similar CAD models from the proposed set,

in order of similarity to the query scan geometry, result-

ing in ranked scan-CAD similarity annotations. Users are

instructed to measure the similarity in terms of object ge-

ometry. Initially, the models are displayed in a canonical

pose, but the user can rotate, translate or zoom each model

individually to inspect it in closer detail. As scan objects

can occasionally be very partial, we also provide an option

to click on a ‘hint’ which shows a color image of the object

with a bounding box around it, in order to help identify the

object if the segmented geometry is insufficient.

To collect these scan-CAD similarity annotations, we use

segmented scan objects from the ScanNet dataset [8], which

provides labeled semantic instance segmentation over the

scan geometry. CAD models are proposed from ShapeNet-

Core [4]. The CAD model proposals are sampled lever-

aging the annotations from the Scan2CAD dataset [1],

which provides CAD model alignments for 3049 unique

ShapeNetCore models to objects in 1506 ScanNet scans.

We propose CAD models for a scan query by sampling in

the latent space of an autoencoder trained on ShapeNetCore

using the feature vector of the associated CAD model from

the Scan2CAD dataset. In the latent space, we select the

30 nearest neighbors of the associated CAD model and ran-

domly select 6 to be proposed to the user. This enables a

description of ranked similarity for a scan object to several

CAD models, which we can then use for fine-grained eval-

uation of CAD model retrieval.
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Method trash bin bathtub bed bookshelf cabinet chair display file sofa table class avg inst (k=10) inst (k=50)

FPFH [27] 0.09 0.06 0.01 0.03 0.02 0.05 0.08 0.02 0.02 0.01 0.03 0.02 0.04

SHOT [29] 0.17 0.14 0.06 0.02 0.03 0.12 0.13 0.08 0.01 0.05 0.08 0.04 0.07

PointNet [25] 0.10 0.08 0.18 0.08 0.03 0.07 0.06 0.12 0.04 0.05 0.06 0.05 0.13

3DCNN [26] 0.29 0.31 0.32 0.31 0.21 0.14 0.29 0.28 0.29 0.18 0.22 0.20 0.33

Ours (no seg, no cmpl) 0.14 0.13 0.23 0.11 0.07 0.15 0.14 0.28 0.19 0.18 0.16 0.14 0.22

Ours (no cmpl) 0.24 0.32 0.26 0.28 0.13 0.21 0.44 0.24 0.19 0.25 0.24 0.21 0.31

Ours (no seg) 0.50 0.53 0.52 0.51 0.48 0.44 0.51 0.53 0.47 0.50 0.49 0.48 0.49

Ours (no triplet) 0.51 0.48 0.45 0.22 0.42 0.34 0.25 0.50 0.28 0.38 0.36 0.34 0.42

Ours (w/o end-to-end) 0.42 0.46 0.46 0.35 0.42 0.35 0.33 0.51 0.34 0.41 0.39 0.37 0.44

Ours 0.51 0.52 0.50 0.51 0.51 0.48 0.50 0.55 0.51 0.49 0.50 0.49 0.50

Table 1: Evaluation of the joint scan-CAD embedding space. We compare our learned scan-CAD feature space to those

constructed from features computed through both handcrafted and learned shape descriptors. We evaluate the confusion

between scan and CAD, where 0.5 reflects a perfect confusion.

Dataset Statistics To construct our Scan-CAD Object

Similarity dataset and benchmark, we employed three uni-

versity students as annotators, and trained them to become

familiar with the interface and to ensure high-quality anno-

tations for our task. Our final dataset is composed of 5102

annotations covering 31 different class categories (derived

from ShapeNet classes). These cover 3979 unique scan ob-

jects and 7650 unique CAD models.

5.1. Benchmark Evaluation

We also introduce a new benchmark to evaluate both

a scan-CAD embedding space as well as CAD model re-

trieval. To evaluate the learned embedding space, we mea-

sure a confusion score: for each object embedding feature,

we compute the percentage of scan neighbors and the per-

centage of CAD neighbors for its k nearest neighbors. The

final confusion score is then

0.5
(

1

k|scans|

∑

scans |{CAD nbrs}|+ 1

k|cads|

∑

CADs |{scan nbrs}|
)

.

This describes how well the embedding space mixes the two

domains, agnostic to the lower-level geometric differences.

Note that we evaluate this confusion score on a set of em-

bedded scan and CAD features with a 1-to-1 mapping be-

tween the scan and CAD objects, and use k = 10. A confu-

sion of 0.5 means a perfect balance between scan and CAD

objects in the local neighborhood around an object.

To evaluate the semantic embedding quality, we propose

two scores for scan-CAD similarity in the context of CAD

model retrieval: retrieval accuracy and ranking quality.

Here, we employ the scan-CAD similarity annotations of

our Scan-CAD Object Similarity dataset. For both retrieval

accuracy and ranking quality, we consider an input query

scan, and retrieval from the set of 6 proposed CAD models

supplemented with 100 additional randomly selected CAD

models of different class from the query (in order to reflect

a diverse set of models for retrieval). For retrieval accuracy,

we evaluate whether the top-1 retrieved model lies in the set

of models annotated as similar to the query scan. We also

evaluate the ranking; that is, for a ground truth annotation

with n rank-annotated similar models (n ≤ 3), we take the

top n predicted models and evaluate the number of models

predicted in the correct rank divided by n.

Note that for the task of CAD model retrieval, we con-

sider scan objects in the context of potential background

clutter from scanning; that is we assume a given object de-

tection as input, but not object segmentation.

6. Results and Evaluation

We evaluate both the quality of our learned scan-CAD

embedding space as well as its application to the task of

CAD model retrieval for scan objects using the confusion,

retrieval accuracy, and ranking quality scores proposed in

Section 5.1. Additionally, in Table 3, we evaluate on a

coarser level retrieval score based on whether the retrieved

model’s class is correct, which is the basis of retrieval evalu-

ation used in previous approaches [26, 13, 24]. We compare

Method trash bin bathtub bed bookshelf cabinet chair display file sofa table other class avg inst avg

FPFH [27] 0.02 0.07 0.00 0.00 0.00 0.18 0.03 0.00 0.07 0.02 0.03 0.04 0.08

SHOT [29] 0.00 0.20 0.09 0.00 0.01 0.06 0.12 0.00 0.07 0.02 0.03 0.05 0.04

PointNet [25] 0.38 0.00 0.61 0.23 0.04 0.43 0.37 0.17 0.09 0.13 0.07 0.23 0.29

3DCNN [26] 0.52 0.33 0.48 0.46 0.14 0.28 0.38 0.33 0.17 0.18 0.32 0.33 0.31

Ours (no seg, no cmpl) 0.06 0.00 0.15 0.04 0.00 0.47 0.30 0.00 0.20 0.13 0.04 0.13 0.23

Ours (no cmpl) 0.13 0.07 0.15 0.12 0.04 0.37 0.38 0.00 0.15 0.26 0.09 0.16 0.24

Ours (no seg) 0.14 0.07 0.24 0.13 0.15 0.40 0.32 0.17 0.15 0.21 0.13 0.19 0.26

Ours (no triplet) 0.03 0.13 0.39 0.04 0.11 0.07 0.08 0.00 0.13 0.09 0.04 0.10 0.08

Ours (w/o end-to-end) 0.42 0.27 0.48 0.07 0.15 0.42 0.27 0.25 0.35 0.21 0.32 0.29 0.32

Ours 0.50 0.60 0.42 0.19 0.26 0.55 0.45 0.25 0.33 0.32 0.43 0.39 0.43

Table 2: Top-1 retrieval accuracy for CAD model retrieval on the test split of our Scan-CAD Object Similarity benchmark.
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Figure 4: Our CAD model retrieval results, visualizing the top 4 retrieved models using our joint embedding space for various

scan and CAD queries. Our feature space learns to mix together scan and CAD objects in a semantically meaningful fashion.

our method with both state-of-the-art handcrafted shape de-

scriptors FPFH [27] and SHOT [29] as well as learned shape

descriptors from PointNet [25] and the volumetric 3D CNN

from [26]. We evaluate FPFH and SHOT on point clouds

uniformly sampled from the mesh surface of the scans and

CAD objects, with all meshes normalized to lie within a unit

sphere. We compute a single shape descriptor for the entire

object by using the centroid of the mesh and a radius of 1.

We train PointNet on 1024 points uniformly sampled

from the scan and CAD objects for object classification, and

extract the 256-dimensional feature vector before the final

classification layer. For the volumetric 3D CNN of [26], we

train on 323 occupancy grids of both scan objects and CAD

models, and extract the 512-dimensional feature vector be-

fore the final classification layer.

Learned joint embedding space. In Table 1, we show

that our model is capable of learning a very mixed embed-

ding space, where scan and CAD objects lie about as close

to each other as they do to other objects from the same do-

main, while maintaining semantic structure in the space. In

contrast, both previous handcrafted and learned shape de-

scriptors result in segregated feature spaces with scan ob-

jects lying much closer to scan than CAD objects and vice

versa, see Fig. 6. Our learned scan-CAD embedding space

is shown in Fig. 1, visualized by t-SNE. We also show the

top-4 nearest neighbors for various queries from our estab-

lished joint embedding space in Fig. 4, retrieving objects

from both domains while maintaining semantic structure.

Comparison to alternative CAD model retrieval ap-

proaches. Using our learned feature embedding space for

scan and CAD objects, we evaluate it for the task of CAD

model retrieval to scan object geometry. Tables 2 and 4

show our CAD retrieval quality in comparison to alterna-

tive 3D object descriptors, using our benchmark evalua-

tion. Fig. 5 shows the top-1 CAD retrievals for various

scan queries. Our learned features from the joint embed-

ding space achieve notably improved retrieval on both a

class accuracy-based retrieval score (Table 3) as well as our

proposed finer-grained retrieval evaluation scores.

How much do the segmentation and completion steps

matter? Tables 1, 2, and 4 show that the proxy segmen-

tation and completion steps in transforming scan object ge-

ometry to a more CAD-like representation are important to-
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Figure 5: CAD model retrieval results (top-1) for various scan queries (from left to right: piano, table, guitar, trash bin, bed,

lamp, dresser). Our approach to a joint embedding of scan and CAD can retrieve similar models at a finer-grained level than

state-of-the-art handcrafted (FPFH [27], SHOT [29]) and learned (PointNet [25], 3DCNN [26]) 3D object descriptors.

Method Top-1 Top-5

FPFH [27] 0.14 0.13

SHOT [29] 0.07 0.08

PointNet [25] 0.49 0.45

3DCNN [26] 0.57 0.47

Ours 0.68 0.62

Table 3: Evaluation of CAD model retrieval by Top-1 and

Top-5 using category-based evaluation of retrieval accuracy.

wards learning an effective joint embedding space as well

as for CAD model retrieval, with performance improving

by 20% and 23% with segmentation and completion, re-

spectively, for our retrieval accuracy (class average). Addi-

tionally, we show that end-to-end training significantly im-

proves the learned embedding space.

What is the impact of the triplet loss formulation? Us-

ing a triplet loss to train the feature embedding in a shared

space significantly improves the construction of the embed-

ding space, as well as CAD model retrieval from the space.

In Tables 1, 2, and 4, we show a comparison to training

our model using only positive scan-CAD associations rather

than both positive and negative samples; the triplet con-

straint of both positive and negative examples produces a

much more globally structured embedding space.
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Method trash bin bathtub bed bookshelf cabinet chair display file sofa table other class avg inst avg

FPFH [27] 0.01 0.09 0.01 0.00 0.00 0.06 0.01 0.00 0.03 0.01 0.02 0.02 0.03

SHOT [29] 0.00 0.06 0.01 0.00 0.01 0.03 0.02 0.00 0.04 0.01 0.01 0.02 0.02

PointNet [25] 0.22 0.03 0.24 0.15 0.04 0.16 0.11 0.00 0.02 0.04 0.05 0.10 0.12

3DCNN [26] 0.23 0.03 0.31 0.16 0.07 0.11 0.12 0.13 0.09 0.07 0.12 0.12 0.13

Ours (no seg, no cmpl) 0.05 0.00 0.08 0.03 0.01 0.17 0.14 0.00 0.10 0.04 0.04 0.06 0.10

Ours (no cmpl) 0.08 0.00 0.06 0.04 0.02 0.15 0.12 0.06 0.06 0.11 0.05 0.07 0.10

Ours (no seg) 0.08 0.06 0.12 0.08 0.09 0.14 0.09 0.06 0.07 0.07 0.04 0.08 0.10

Ours (no triplet) 0.01 0.06 0.13 0.03 0.04 0.03 0.02 0.06 0.04 0.04 0.05 0.05 0.04

Ours (w/o end-to-end) 0.14 0.18 0.12 0.04 0.06 0.18 0.14 0.13 0.16 0.08 0.12 0.12 0.13

Ours 0.29 0.24 0.19 0.08 0.12 0.19 0.14 0.19 0.15 0.10 0.09 0.16 0.16

Table 4: Ranking quality of CAD model retrieval on the test split of our Scan-CAD Object Similarity benchmark.

How robust is the model to rotations? To achieve ro-

bustness to rotations for scan queries, we can train our

method with rotation augmentation, achieving similar per-

formance for arbitrarily rotated scan inputs (0.42 instance

average retrieval accuracy, 0.16 instance average ranking

quality). See the supplemental material for more detail.

6.1. Limitations

While our approach learns an effective embedding space

between scan and CAD object geometry, there are still sev-

eral important limitations. For instance, we only consider

the geometry of the objects in both scan and CAD do-

main; considering color information would potentially be

another powerful signal for joint embedding or CAD model

retrieval. The geometry is also represented as an occupancy

grid, which can limit resolution of fine detail. For the CAD

model retrieval task, we currently assume a given object de-

tection, and while 3D object detection has recently made

significant progress, detection and retrieval would likely

benefit from an end-to-end formulation.

7. Conclusion

In this paper, we have presented a 3D CNN-based ap-

proach to jointly map scan and CAD object geometry into a

shared embedding space. Our approach leverages a stacked

hourglass architecture combined with a triplet loss to trans-

form scan object geometry to a more CAD-like represen-

tation, effectively learning a joint feature embedding space.

We show the advantages of our learned feature space for the

task of CAD model retrieval, and propose several new eval-

uation scores for finer-grained retrieval evaluation, with our

approach outperforming state-of-the-art handcrafted and

learned methods on all evaluation scores. We hope that

learning such a joint scan-CAD embedding space will not

only open new possibilities for CAD model retrieval but

also potentially enable further perspective on mapping or

reciprocal transfer of knowledge between the two domains.
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Figure 6: Comparison of latent spaces visualized by t-SNE. Filled triangles represent scan objects, circles represent CAD

models. While FPFH, SHOT, and PointNet result in almost entirely disjoint clusters, 3DCNN is able to co-locate the classes

of both domains next to each other, but does not confuse them. Our approach learns an embedding space where scan and

CAD objects mix together but remain semantically structured.
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