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Abstract

Since the person re-identification task often suffers from

the problem of pose changes and occlusions, some attentive

local features are often suppressed when training CNNs. In

this paper, we propose the Batch DropBlock (BDB) Network

which is a two branch network composed of a conventional

ResNet-50 as the global branch and a feature dropping

branch. The global branch encodes the global salient rep-

resentations. Meanwhile, the feature dropping branch con-

sists of an attentive feature learning module called Batch

DropBlock, which randomly drops the same region of all in-

put feature maps in a batch to reinforce the attentive feature

learning of local regions. The network then concatenates

features from both branches and provides a more compre-

hensive and spatially distributed feature representation. Al-

beit simple, our method achieves state-of-the-art on person

re-identification and it is also applicable to general metric

learning tasks. For instance, we achieve 76.4% Rank-1 ac-

curacy on the CUHK03-Detect dataset and 83.0% Recall-1

score on the Stanford Online Products dataset, outperform-

ing the exsiting works by a large margin (more than 6%).

1. Introduction

Person re-identification (re-ID) amounts to identify the

same person from multiple detected pedestrian images, typ-

ically seen from different cameras without view overlap.

It has important applications in surveillance and presents

a significant challenge in computer vision. Most of recent

works focus on learning suitable feature representation that

is robust to pose, illumination, and view angle changes to

facilitate person re-ID using convolution neural networks.

Because the body parts such as faces, hands and feet are un-

stable as the view angle changes, the CNN tends to focus

on the main body part and the other descriminative body

parts are consequently suppressed. To solve this problem,

many pose-based works [23, 48, 49, 74, 71] seek to local-

ize different body parts and align their associated features,

and other part-based works [8, 27, 30, 31, 51, 56, 64] use

coarse partitions or attention selection network to improve

feature learning. However, such pose-based networks usu-

Figure 1: The class activation map on Baseline and BDB Network.

Compared with the Baseline, the two-branch structure in BDB

Network learns more comprehensive and spatially distributed fea-

tures consisting of both global and attentive local representations.

ally require additional body pose or segment information.

Moreover, these networks are designed using specific parti-

tion mechanisms, such as a horizontal partition, which is fit

for person re-ID but hard to be generalized to other metric

learning tasks. The problems above motivate us to propose

a simple and generalized network for person re-ID and other

metric learning tasks.

In this paper, we propose the Batch DropBlock Network

(BDB Network) for the roughly aligned metric learning

tasks. The Batch DropBlock Network is a two-branch net-

work consisting of a conventional global branch and a fea-

ture dropping branch where the Batch DropBlock, an atten-

tive feature learning module, is applied. The global branch

encodes the global feature representations and the feature

dropping branch learns local detailed features. Specifically,

Batch DropBlock randomly drops the same region of all

the feature maps, namely the same semantic body parts, in

a batch during training and reinforces the attentive feature

learning of the remaining parts. Concatenating the features
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Figure 2: The Batch DropBlock Layer demonstrated on the triplet

loss function [40].

of both branches brings a more comprehensive saliency rep-

resentation rather than few discriminative features. In Fig-

ure 1, we use class activation map [84] to visualize the fea-

ture attention. We can see that the attention of baseline

mainly focuses on the main body part while the BDB net-

work learns more uniformly distributed representations.

Our Batch DropBlock is different from the general Drop-

Block [14] in two aspects. First, Batch DropBlock is an

attentive feature learning module for metric learning tasks

while DropBlock is a regularization method for classifica-

tion tasks. Second, Batch DropBlock drops the same block

for a batch of images during a single iteration, while Drop-

Block [14] erases randomly across different images. Here,

‘Batch’ means the group of images participating in a sin-

gle loss calculation during training, for example, a pair for

pairwise loss, a triplet for triplet loss and a quadruplet for

quadruplet loss. If we erase features randomly as [14], for

example, one image keeps head features and another image

keeps feet features, the network can hardly find the seman-

tic correspondence, not to mention reinforcing the learning

of local attentive representations.

In the experimental section, the ResNet-50 [16] based

Batch DropBlock Network with hard triplet loss [17]

achieves 72.8% Rank-1 accuracy on CUHK03-Detect

dataset, which is 6.0% higher than the state-of-the-art

work [58]. Batch DropBlock can also be adopted in differ-

ent metric learning schemes, including triplet loss [40, 17],

lifted structure loss [35], weighted sampling based margin

loss [62], and histogram loss [54]. We test it with the image

retrieval tasks on the CUB200-2011 [57], CARS196 [22],

In Shop Clothes Retrieval dataset [32] and Stanford online

products dataset [46]. The BDB Network can consistently

improve the Rank-1 accuracy of various schemes.

2. Related work

Person re-ID is a challenging task in computer vision due

to the large variation of poses, background, illumination,

and camera conditions. Historically, people used hand-craft

features for person re-identification [4, 9, 28, 29, 33, 34, 37,

38, 66, 77]. Recently, deep learning based methods domi-

nate the Person re-ID benchmarks [5, 42, 50, 71, 73, 79].

The formulation of person re-ID has gradually evolved

from a classification problem to a metric learning problem,

which aims to find embedding features for input images in

order to measure their semantic similarity. The work [76]

compares both strategies on the Market-1501 dataset. Cur-

rent works in metric learning generally focus on the de-

sign of loss functions, such as contrastive loss [55], triplet

loss [8, 30], lifted structure loss [35], quadruplet loss [6],

histogram loss [54], etc. In addition to loss functions, the

hard sample mining methods, such as distance weighted

sampling [62], hard triplet mining [17] and margin sample

mining [63] are also critical to the final retrieval precision.

Another work [69] also studies the application of mutual

learning in metric learning tasks. In this paper, the proposed

two-branch BDB Network is effective in many metric learn-

ing formulations with different loss functions.

The human body is highly structured and distinguish-

ing corresponding body parts can effectively determine the

identity. Many recent works [30, 51, 53, 56, 58, 61, 67,

69, 70] aggregate salient features from different body parts

and global cues for person re-ID. Among them, the part-

based methods [8, 51, 58] achieve the state-of-the-art per-

formance, which split an input feature map horizontally into

a fixed number of strips and aggregate features from those

strips. However, aggregating the feature vectors from mul-

tiple branches generally results in a complicated network

structure. In comparison, our method involves only a simple

network with two branches, one-third the size of the state-

of-the-art MGN method [58].

To handle the imperfect bounding box detection and

body part misalignment, many works [27, 42, 43, 44, 78]

exploit the attention mechanisms to capture and focus on

attentive regions. Saliency weighting [59, 72] is another

effective approach to this problem. Inspired by attention

models, Zhao et al. [71] propose part-aligned representa-

tions for person re-ID. Following the similar ideology, the

works [20, 24, 25, 31] have also demonstrated superior per-

formance, which incorporate a regional attention selection

sub-network into the person re-ID model. To learn a fea-

ture representation robust to pose changes, the pose guided

attention methods [23, 48, 74] fuse different body parts fea-

tures with the help of pose estimation and human parsing

network. However, such methods based on pose estimation

and semantic parsing algorithms are only designed for per-

son re-ID tasks while our approach can be applied to other

general metric learning tasks.
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Figure 3: The structure of our Batch DropBlock (BDB) Network with the batch hard triplet loss [17] demonstrated on the person re-ID

problem. The global branch is appended after ResNet-50 Stage 4 and the feature dropping branch introduces a mask to crop out a large

block in the bottleneck feature map. During training, there are two loss functions for both global branch and feature dropping branch.

During testing, the features from both branches are concatenated as the final descriptor of a pedestrian image.

To further improve the retrieval precision, re-ranking

strategies [2, 82] and inference with specific person at-

tributes [41] are adopted too. Recent works also introduce

synthetic training data [3], adversarially occluded sam-

ples [19] and unlabeled samples generated by GAN [80]

to remarkably augment the variant of input training dataset.

The work in [13] transfers the representations learned from

the general classification dataset to address the data sparsity

of the person re-ID problems. Some general data augmenta-

tion methods such as Random Erasing [82] and Cutout [11]

are also generally used. Notably, such policies above can be

used jointly with our method.

3. Batch DropBlock (BDB) Network

This section describes the structure and components of

the proposed Batch DropBlock Network.

Backbone Network. We use the ResNet-50 [16] as the

backbone network for feature extraction as many of the per-

son re-ID networks. For a fair comparison with the recent

works [51, 58], we also modify the backbone ResNet-50

slightly, in which the down-sampling operation at the be-

ginning of stage 4 is not employed. In this way, we get a

larger feature map of size 2048× 24× 8.

ResNet-50 Baseline. On top of this backbone network,

we append a branch denoted as global branch. Specifi-

cally, after stage 4 of ResNet-50, we employ global average

pooling to get a 2048-dimensional feature vector, the di-

mension of which is further reduced to 512 through a 1× 1

convolution layer, a batch normalization layer, and a ReLU

layer. We denote the backbone network together with the

global branch as ResNet-50 Baseline in the following sec-

tions. The performance of Baseline with or without triplet

loss on person re-ID datasets are shown in table 1. Our

baseline without triplet loss is identical to the baseline used

in recent works [51, 58].

Batch DropBlock Layer. Given the feature tensor T

computed by backbone network from a single batch of in-

put images, the Batch DropBlock Layer randomly drops the

same region of tensor T . All the units inside the dropping

area are zeroed out. We visualize the application of Batch

DropBlock Layer in the triplet loss function in Figure 2,

while it can be adopted in other loss functions [35, 54, 62]

as well. The height and width of the erased region varies

from task to task. But in general, the dropping region should

be big enough to cover a semantic part of input feature map.

Unlike DropBlock [14], there is no need to change the keep

probability hyper-parameter during training in Batch Drop-

Block Layer.

Network Architecture. As illustrated in Figure 3, our

BDB Network consists of a global branch and a feature

dropping branch.

The global branch is commonly used for providing

global feature representations in multi-branch network ar-

chitectures [8, 51, 58]. It also supervises the training for the

feature dropping branch and makes the Batch DropBlock

layer applied on a well-learned feature map. To demon-

strate it, we visualize in Figure 4 the class activation map

of the dropping branch trained with and without the global

branch. We can see that the features learned by the dropping

branch alone are more spatially dispersed with redundant

background noise (e.g. at the bottom of Figure 4 (c)). As
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Figure 4: The class activation map of the BDB Network, the fea-

ture dropping branch when training alone, and when DropBlock is

used in our network. ’FD Branch’ means feature dropping branch.

mentioned in [14], dropping a large area randomly on input

feature maps may hurt the network learning at the begin-

ning. It therefore uses a scheduled training method which

sets the dropping area small initially and gradually increases

it to stabilize the training process. In BDB network, we do

not need to change the dropping area with the intermediate

supervision of the global branch. At the beginning stage of

training, when the feature dropping branch could not learn

well, the global branch helps the training.

The feature dropping branch then applies the Batch

DropBlock Layer on feature map T and provides the batch

erased feature map T ′. Afterwards, we apply global max

pooling to get the 2048-dimensional feature vector. Finally,

the dimension of a feature vector is reduced from 2048 to

1024 for both triplet and softmax losses. The purpose of the

feature dropping branch is to learn multiple attentive fea-

ture regions instead of only focusing on the major discrim-

inative region. Figure 4 also visualizes the class activation

map of feature dropping branch with DropBlock or Batch

DropBlock. One can see the features learned by DropBlock

miss some attentive part features (e.g. legs in Figure 4 (d))

and the salient representations from Batch DropBlock have

more accurate and clearer contours. An intuitive explana-

tion is that, by blocking the same roughly aligned regions,

we reinforce the attentive feature learning of the rest parts

with semantic correspondences.

The BDB Network uses global average pooling (GAP)

on the global branch, the same as the original ResNet-50

network [16]. Notably, we use global max pooling (GMP)

in feature dropping branch, because GMP encourages the

network to identify comparatively weak salient features af-

ter the most descriminative part is dropped. The strong fea-

ture is easy to be selected while the weak feature is hard to

be distinguished from other low values. When the strong

feature is dropped, GMP could encourage the network to

strength the weak features. For GAP, low values except the

weak features would still impact the results.

Also noteworthy is the ResNet bottleneck block [16]

which applies a stack of convolution layers on feature map

T . Without it, the global average pooling layer and the

global max pooling layer would be applied simultaneously

on T , making the network hard to converge.

Then, during testing, features from the global branch and

the feature dropping branch are concatenated as the embed-

ding vector of a pedestrian image. Here, the following three

points are worth noting. 1) The Batch DropBlock Layer is

parameter free and will not increase the network size. 2)

The Batch DropBlock Layer can be easily adopted in other

metric learning tasks beyond person re-ID. 3) The Batch

DropBlock hyper-parameters are tunable without changing

the network structure for different tasks.

Loss function. The loss function is the sum of soft mar-

gin batch-hard triplet loss [17] and softmax loss on both the

global branch and feature dropping branch.

4. Experiments

We verify our BDB Network on the benchmark person

re-ID datasets. The BDB Network with different metric

learning loss functions is also tested on the standard image

retrieval datasets.

4.1. Person re­ID Experiments

4.1.1 Datasets and Settings

We test three generally used person re-ID datasets includ-

ing Market-1501 [75], DukeMTMC-reID [39, 80], and

CUHK03 [26] datasets. We also follow the same strat-

egy used in recent works [17, 51, 58] to generate training,

query, and gallery data. Notice that the original CUHK03

dataset is divided into 20 random training/testing splits for

cross validation which is commonly used in hand-craft fea-

ture based methods. The new partition method adopted in

our experiments further splits the training and gallery im-

ages, and selects challenging query images for evaluation.

Therefore, CUHK03 dataset becomes the most challenging

dataset among the three.

During training, the input images are re-sized to 384 ×

128 and then augmented by random horizontal flip and nor-

malization. In Batch DropBlock layer, we set the erased

height ratio rh to 0.3 and erased width ratio rw to 1.0. The

same setting is used in all the person re-ID datasets. The

testing images are re-sized to 384×128 and only augmented

with normalization.

For each query image, we rank all the gallery images in

decreasing order of their Euclidean distances to the query

images and compute the Cumulative Matching Characteris-

tic (CMC) curve. We use Rank-1 accuracy and mean av-

erage precision (mAP) as the evaluation metrics. Results

with the same identity and the same camera ID as the the

query image are not counted. It is worth noting that all the
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CUHK03-Label CUHK03-Detect DukeMTMC-reID Market1501

Method Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

IDE [76] 22.2 21.0 21.3 19.7 67.7 47.1 72.5 46.0

PAN [81] 36.9 35.0 36.3 34.0 71.6 51.5 82.8 63.4

SVDNet [50] - - 41.5 37.3 76.7 56.8 82.3 62.1

DPFL [7] 43.0 40.5 40.7 37.0 79.2 60.0 88.9 73.1

HA-CNN [27] 44.4 41.0 41.7 38.6 80.5 63.8 91.2 75.7

SVDNet+Era [83] 49.4 45.0 48.7 37.2 79.3 62.4 87.1 71.3

TriNet+Era [83] 58.1 53.8 55.5 50.7 73.0 56.6 83.9 68.7

DaRe [60] 66.1 61.6 63.3 59.0 80.2 64.5 89.0 76.0

GP-reid [1] - - - - 85.2 72.8 92.2 81.2

PCB [51] - - 61.3 54.2 81.9 65.3 92.4 77.3

PCB + RPP [51] - - 62.8 56.7 83.3 69.2 93.8 81.6

MGN [58] 68.0 67.4 66.8 66.0 88.7 78.4 95.7 86.9

Baseline 52.6 49.9 51.1 47.9 81.0 62.8 91.6 77.1

Baseline+Triplet 67.4 61.5 63.6 60.0 83.8 68.5 93.1 80.6

BDB 73.6 71.7 72.8 69.3 86.8 72.1 94.2 84.3

BDB+Cut 79.4 76.7 76.4 73.5 89.0 76.0 95.3 86.7

Table 1: The comparison with the existing person re-ID methods. ‘Era’ means Random Erasing [83]. ‘Cut’ means Cutout [11].

experiments are conducted in a single-query setting without

re-ranking[2, 82] for simplicity.

4.1.2 Training

Our network is trained using 4 GTX1080 GPUs with a batch

size of 128. Each identity contains 4 instance images in a

batch, so there are 32 identities per batch. The backbone

ResNet-50 is initialized from the ImageNet [10] pre-trained

model. We use the batch hard soft margin triplet loss [17] to

avoid margin parameters. We use the Adam optimizer [21]

with the base learning rate initialized to 1e-3 with a linear

warm-up [15] in first 50 epochs, then decayed to 1e-4 after

200 epochs, and further decayed to 1e-5 after 300 epochs.

The whole training procedure has 400 epochs and takes ap-

proximately 1.5 hours.

4.1.3 Comparison with State-of-the-Art

The statistical comparison between our BDB Network and

the state-of-the-art methods on CUHK03, DukeMTMC-

reID and Market-1501 datasets is shown in Table 1. It

shows that our method achieves state-of-the-art perfor-

mance on both CUHK03 and DukeMTMC-reID datasets.

Remarkably, our method achieves the largest improvement

over previous methods on CUHK03-Detect dataset, which

is the most challenging dataset. For Market1501 datasets,

our model achieves comparative performance to MGN [58].

However, it is worth to point out that MGN benefits from a

much lager and more complex network which generates 8

feature vectors with 8 branches supervised by 11 loss func-

tions. The model size (i.e., number of parameters) of MGN

is three times of BDB Network.

Some sample query results are illustrated in Figure 5. We

can see that, given a back view person image, BDB Network

Figure 5: The top-4 ranking list for the query images on CUHK03-

Label dataset from the proposed BDB Network. The correct re-

sults are highlighted by green borders and the incorrect results by

red borders.
can even retrieve the front view and side view images of the

same person.

4.1.4 Ablation Studies

We perform extensive experiments on Market-1501 and

CUHK03 datasets to analyze the effectiveness of each com-

ponent and the impact of hyper parameters in our method.

Benefit of Global Branch and Feature Dropping Branch.

Without the global branch, the BDB Network still performs
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Method Rank-1 mAP

Global Branch (Baseline) 93.1 80.6

Feature Dropping Branch 93.6 83.3

Both Branches (BDB) 94.2 84.3

Feature Dropping Branch + Cut 88.0 75.7

BDB + Cut 95.3 86.7

Table 2: The effect of global branch and feature dropping branch

on Market-1501 dataset. ‘Cut’ means Cutout [11] augmentation.

Figure 6: The comparison with Dropout methods on two feature

maps within the same batch.

better than the baseline as illustrated in Table 2. Adding the

global branch could further improve the performance. The

motivation behind the two-branch structure in the BDB Net-

work is that it learns both the most salient appearance clues

and fine-grained discriminative features. This suggests that

the two branches reinforce each other and are both impor-

tant to the final performance.

Comparison with Dropout and DropBlock.

Dropout [47] drops values of input tensor randomly

and is a widely used regularization technique to prevent

overfitting. We replace the Batch DropBlock layer with

various Dropout methods and compare their performance

in Table 3. SpatialDropout [52] randomly zeroes whole

channels of the input tensor. The channels to zero-out

are randomized on every forward call. Here, Batch

Dropout means we select random spatial positions and

drops all input features in these locations. The difference

between Batch DropBlock and Batch Dropout is that Batch

DropBlock zeroes a large contiguous area while Batch

Dropout zeroes some isolated features. DropBlock [14]

means for a batch of input tensor, every tensor randomly

drops a contiguous region. The difference between Batch

DropBlock and DropBlock is that Batch DropBlock drops

the same region for every input tensor within a batch while

DropBlock crops out different regions. These Dropout

methods are visualized in Figure 6. As shown in Table 3,

Batch DropBlock is more effective than these various

Dropout strategies in the person re-ID tasks.

Figure 7: (a) The effects of erased height ratio on mAP and CMC

scores. The erased width ratio is fixed to 1.0. (b) The comparison

of global average pooling and global max pooling on the feature

dropping branch under different height ratio settings. The statistics

are analyzed on the CUHK03-Detect dataset.

Global Average Pooling (GAP) vs Global Max Pooling

(GMP) in Feature Dropping Branch. As shown in Fig-

ure 7 (b), the Rank-1 accuracy of the feature dropping

branch with GMP is consistently superior to that with GAP.

We therefore demonstrate the importance of Max Pooling

for a robust convergence and increased performance on the

feature dropping branch.

Benefit of Triplet Loss The BDB Network is trained us-

ing both triplet loss and softmax loss. The triplet loss is a

vital part of BDB Network since the Batch DropBlock layer

has effect only when considering relationship between im-

ages. In table 4, ‘Baseline + Dropping’ is the BDB Network

without triplet loss. We can see that the triplet loss signifi-

cantly improves the performance.

Impact of Batch DropBlock Layer Hyper-parameters.

Figure 7 (a) studies the impact of erased height ratio on the

performance of the BDB Network. Here, the erased width

ratio is fixed to 1.0 in all the person Re-ID experiments. We

can see that the best performance is achieved when height

erased ratio is 0.3, which is the setting for BDB Network in

person re-ID experiments.

Relationship with Data Augmentation methods. A nat-

ural question about BDB Network is could BDB Network

still benefit from image erasing data augmentation methods

such as Cutout [11] and Random Erasing [83] since they

perform similar operations? The answer is yes. Because

the BDB Network contains a global branch which sees the

complete feature map and it can benefit from Cutout or Ran-

dom Erasing. To verify it, we apply image erasing augmen-

tation on BDB Network with or without the global branch

in Table 2. We can see Cutout performs bad without the

global branch. Table 5 shows BDB Network performs well

with data augmentation methods. As can be seen, ‘BDB +

Cut’ or ‘BDB + RE’ are significantly better than ‘Baseline

+ Cut’, ‘Baseline + RE’, or ‘BDB’.

4.2. Image Retrieval Experiments

The BDB Network structure can be applied directly on

image retrieval problems.
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Method Rank-1 mAP

SpatialDropout[52] 60.5 56.8

Dropout [47] 65.3 62.2

Batch Dropout 65.8 62.9

DropBlock [14] 70.6 67.7

Batch DropBlock 72.8 69.3

Table 3: The Comparison with

other Dropout methods on the

CUHK03-Detect dataset.

CUHK03-Detect Market1501

Method Rank-1 mAP Rank-1 mAP

Baseline 51.1 47.9 91.6 77.1

Baseline + Triplet 63.6 60.0 93.1 80.6

Baseline + Dropping 60.9 57.2 93.8 80.5

Baseline + Triplet +
72.8 69.3 94.2 84.3

Dropping (BDB Network)

Table 4: Ablation studies of the effective compo-

nents of BDB network on CUHK03-Detect and Mar-

ket1501 datasets. ‘Dropping’ means the feature

dropping branch.

CUHK03-Detect Market1501

Method Rank-1 mAP Rank-1 mAP

Baseline 63.6 60.0 93.1 80.6

Baseline + RE 70.6 65.9 93.3 81.5

Baseline + Cut 67.7 64.2 93.5 82.0

Baseline + RE + Cut 70.7 65.9 93.1 82.0

BDB 72.8 69.3 94.2 84.3

BDB + RE 75.9 72.6 94.4 85.0

BDB + Cut 76.4 73.5 95.3 86.7

Table 5: The comparison with data augmen-

tation methods. ‘RE’ means Random Eras-

ing [83]. ‘Cut’ means Cutout [11].

Dataset CARS CUB SOP Clothes

# images 16,185 11,788 120,053 52,712

# classes 196 200 22,634 11,735

# training class 98 100 11,318 3,997

# training image 8,054 5,864 59,551 25,882

# testing class 98 100 11,316 3,985

# testing image 8,131 5,924 60,502 26,830

Table 6: The statistics of the image retrieval datastes includ-

ing CARS196 [22], CUB200-2011 [57], Stanford online prod-

ucts(SOP) [35], and In-Shop Clothes retrieval dataset [32]. No-

tice that the test set of In-Shop Clothes retrieval dataset is further

split to query dataset with 14,218 images and gallery dataset with

12,612 images.

Figure 8: The class activation map of Baseline and BDB Network

on CARS196, CUB200-2011, In-Shop Clothes retrieval and SOP

datasets.

Figure 9: The top-5 ranking list for the query images on CUB200-

2011 dataset from BDB Network. The green and red borders re-

spectively denote the correct and incorrect results.

4.2.1 Datasets and Settings

Our method is evaluated on the commonly used im-

age retrieval datasets including CUB200-2011 [57],

CARS196 [22], Stanford online products (SOP) [35], and

In-Shop Clothes retrieval [32] datasets. For CUB200-2011

and CARS196, the cropped datasets are used since our BDB

Network requires input images to be roughly aligned. The

experimental setup is the same as that in [35]. We show the

statistics of the four image retrieval datasets in Table 6.

The training images are padded and resized to 256 ×

256 while the aspect ratio is fixed, and then cropped to 224

× 224 randomly. During testing, CUB200-2011, In-Shop

Clothes retrieval dataset, and SOP images are padded on the

shorter side and then scaled to 256 × 256, while CARS196

images are scaled to 256 × 256 directly. The dropping

height ratio and width ratio are both set to 0.5 in the Batch

DropBlock Layer. We use the standard Recall@K metric

to measure the image retrieval performance.

4.2.2 Comparison with State-of-the-Art

Table 7 shows that our BDB Network achieves the best

Recall@1 scores on all the experimental image retrieval

datasets. In particular, the BDB Network achieves an ob-

vious improvement (+3.5%) on the small scale CUB200-
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K 1 2 4 8

PDDM Triplet [18] 50.9 62.1 73.2 82.5

PDDM Quadruplet [18] 58.3 69.2 79.0 88.4

HDC [68] 60.7 72.4 81.9 89.2

Margin [62] 63.9 75.3 84.4 90.6

ABE-8 [20] 70.6 79.8 86.9 92.2

BDB 74.1 83.6 89.8 93.6

(a) CUB200-2011 (cropped) dataset

K 1 2 4 8

PDDM Triplet [18] 46.4 58.2 70.3 80.1

PDDM Quadruplet [18] 57.4 68.6 80.1 89.4

HDC [68] 83.8 89.8 93.6 96.2

Margin [62] 86.9 92.7 95.6 97.6

ABE-8 [20] 93.0 95.9 97.5 98.5

BDB 94.3 96.8 98.3 98.9

(b) CARS196 (cropped) dataset

K 1 10 20 30 40

FasionNet [32] 53.0 73.0 76.0 77.0 79.0

HDC [68] 62.1 84.9 89.0 91.2 92.3

DREML [65] 78.4 93.7 95.8 96.7 -

HTL [12] 80.9 94.3 95.8 97.2 97.4

A-BIER [36] 83.1 95.1 96.9 97.5 97.8

ABE-8 [20] 87.3 96.7 97.9 98.2 98.5

BDB 89.1 96.3 97.6 98.5 99.1

(c) In-Shop Clothes Retrieval dataset

K 1 10 100 1000

LiftedStruct [35] 62.1 79.8 91.3 97.4

N-Pairs [45] 67.7 83.8 93.0 97.8

Margin [62] 72.7 86.2 93.8 98.0

HDC [68] 69.5 84.4 92.8 97.7

A-BIER [36] 74.2 86.9 94.0 97.8

ABE-8 [20] 76.3 88.4 94.8 98.2

BDB 83.0 93.3 97.3 99.2

(d) Stanford online products dataset

Table 7: The comparison on Recall@K(%) scores with other state-of-the-art metric learning methods on CUB200-2011 (cropped),

CARS196 (cropped), In-Shop Clothes Retrieval, and Stanford online products datasets.

K 1 5 10 20

Baseline + LiftedStruct [35] 66.8 88.5 93.4 96.3

BDB + LiftedStruct [35] 71.4 89.7 93.9 96.3

Baseline + Margin [62] 65.7 88.1 93.1 96.4

BDB + Margin [62] 72.0 90.8 94.4 97.0

Baseline + Histogram [54] 64.6 87.2 93.0 96.4

BDB + Histogram [54] 73.1 90.7 94.2 96.9

Baseline + Hard Triplet [17] 69.5 89.5 94.0 96.8

BDB + Hard Triplet [17] 74.1 91.0 94.7 97.1

Table 8: The BDB network performance on the other standard

loss functions of metric learning methods. The statistics are based

on the CUB200-2011 (cropped) dataset. “Baseline” refers to the

ResNet-50 Baseline defined in section 3.

2011 dataset which is also the most challenging one. On the

large scale Stanford online products dataset which contains

22, 634 classes with 120, 053 product images, our BDB net-

work surpasses the state-of-the-art by 6.7%. We can see

that our BDB Network is applicable on both small and large

scale datasets.

Figure 9 visualizes sample retrieval results of CUB200-

2011 (cropped) dataset. In Figure 1, we also present the

class activation maps of Baseline and our BDB network on

the CARS196 and CUB200-2011 data-sets. We can see that

our two-branch network encodes more comprehensive fea-

tures with attentive detail features. This helps to explain

why our BDB Network is in some terms robust to the vari-

ance in illumination, poses and occlusions.

4.2.3 Adapt to Other Metric Learning Methods

Table 8 shows that our BDB Network can also be used with

other standard metric learning loss functions, such as lifted

structure loss[35], weighted sampling margin loss[62], and

histogram loss[54] to boost their performance. For a fair

comparison, we re-implement the above loss functions on

our ResNet-50 Baseline and BDB Network to evaluate their

performances. Here, the only difference between ResNet-

50 Baseline and BDB Network is that the BDB Network

has an additional feature dropping branch. For weighted

sampling margin loss, although the ResNet-50 Baseline out-

performs the results reported in the work [62] (+1.8%), the

BDB Network can still improve the result by a large mar-

gin (+7.7%). We can therefore conclude that the proposed

BDB Network can be easily generalized to other standard

loss functions in metric learning.

5. Conclusion

In this paper, we propose the Batch DropBlock to im-

prove the optimization in training a neural network for per-

son re-ID and other general metric learning tasks. The

corresponding BDB Network, which adopts this proposed

training mechanism, leverages a global branch to embed

salient representations and a feature erasing branch to learn

detailed features. Extensive experiments on both person re-

ID datasets and image retrieval datasets show that the BDB

Network can make significant improvement on person re-ID

and other general image retrieval benchmarks.
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