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Abstract

The outcome of standard statistical shape modelling is

a vector space representation of objects. Any convex com-

bination of vectors of a set of object class examples gener-

ates a real and valid example. In this paper, we propose

a Point Auto-Encoder (PointAE) with skip-connection, at-

tention block for 3D statistical shape modelling directly on

3D points. The proposed PointAE is able to refine the cor-

respondence with a correspondence refinement block. The

data with refined correspondence can be fed to the PointAE

again and bootstrap the constructed statistical models. In-

stead of two separate models, PointAE can simultaneously

model the shape and texture variation. The extensive evalu-

ation in three open-sourced datasets demonstrates that the

proposed method achieves better performance in represen-

tation ability of the shape variations.

1. Introduction

With prior knowledge and experience, people can easily

observe rich shape and texture variation for a certain type of

object, such as human faces, cats or chairs, in both 2D and

3D images. This ability helps us recognise the same person,

distinguish different kinds of creatures and sketch unseen

samples of the same object class. The process of capturing

this prior knowledge is mathematically interpreted as sta-

tistical modelling. One such outcome is a 3D morphable

model (3DMM), a vector space representation of objects,

that captures the variation of shape and texture. Any con-

vex combination of vectors of a set of object class examples

generates a real and valid example in this vector space. Sta-

tistical shape modelling is extensively studied in a variety of

disciplines; for example computer vision, where researchers

focus on applications in medical imaging, biometrics and

the creative industries.

Statistical shape modelling aims to characterise the mean

shape, and the variances and covariances of different object

parts for various classes of object. Shape, as defined by

D.G. Kendall [26], is all the geometrical information that

remains when location, scale and rotational effects are fil-

tered out from an object. In other words, those similarity

effects need to be filtered out by aligning a collection of

shape when doing shape analysis. A shape is described by

locating a number of points on the outline. These points

are defined as points of correspondence on each object that

matches between and within populations. Statistical shape

modelling is perhaps most commonly performed by Princi-

pal Component Analysis (PCA) over a set of meshes, which

finds the directions in the vector space that have maximum

variance, whilst being mutually orthogonal. However, PCA

filters out high frequency signals, thereby losing shape de-

tail in shape reconstruction. To overcome this, we employ

point auto-encoder to extract latent representation of shapes

and reconstruct the shapes.

The latent representation is a distributed representation

that captures the coordinates along the main factors of vari-

ation in the data. This is similar to the way the projection

on principal components would capture the main factors of

variation in the data. Indeed, if there is one linear hidden

layer and the mean squared error criterion is used to train

the network, then the m hidden units learn to project the in-

put in the span of the first m principal components of the

data. If the hidden layer is non-linear, the auto-encoder

behaves differently from PCA, with the ability to capture

multi-modal aspects of the input distribution.

We propose a deep method to model 3D shape. In par-

ticular, our approach features a novel Point Auto-Encoder

(PointAE) with skip-connection and attention block with

contributions in:

• Unlike the previous deep methods which requires

transferring the mesh into other geometric representa-

tions/features or remeshing the surface, 3D points can

be directly fed to the proposed pointAE for statistical

shape modelling.

• We propose a correspondence refinement block fol-

lowing PointAE to refine the correspondence. Then

we bootstrap the modelling process by feeding the data

with refined correspondence to PointAE. The ablation

study shows that this process enhanced the shape rep-
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resentation ability.

• Instead of modelling shape and texture separately,

PointAE can treat an input which includes 3D coor-

dinates XYZ and texture color RGB as a point cloud

with 6 channels. To our best knowledge, our PointAE

is the only deep method that models shape and texture

simultaneously.

• We apply the proposed PointAE to three types of pub-

lic datasets, which are face, head and body dataset,

respectively. Both qualitative and quantitative evalu-

ation demonstrate that the proposed method improves

performance over the current state-of-art methods.

2. Related Work

2.1. History of 3DMM

In the 1990s, Cootes et al. developed shape models

applied to 2D images, termed Point Distribution Models

(PDMs) [11]. The work is done with reference to 2D

shapes, where corresponding points are manually marked

on the boundaries of a set of training examples. Cootes et

al. presented Active Shape Models (ASM) in [12], where

pose, scale and shape parameters are determined in order

to fit the model to an image. This work was inspired by

the earlier work on active contour models [25]. The same

research team also went on to include texture in their mod-

els to give active appearance models [10]. They developed

a set of shape modelling approaches where the best corre-

spondences are those that define the most compact shape

model given some quality of fit between the model and the

data [16, 28]. Terzopoulos and Metaxas [39] introduced a

physically-based approach to fitting 3D shapes. They for-

mulated deformable superquadrics which incorporate the

global shape parameters of a conventional superellipsoid

with the local degrees of freedom of a spline. Kakadiaris

et al. [24] presented an integrated approach to do shape

segmentation and motion estimation using a physics-based

framework.

Existing 3D statistical face models mainly consist of ei-

ther morphable models, multilinear models and part-based

models. In the late 1990s, Blanz and Vetter built a 3DMM

from 3D face scans [3] and employed it in 2D face recogni-

tion [4]. Two hundred scans were used to build the model

(young adults, 100 males and 100 females). The Basel Face

Model (BFM) is the most well-known and widely-used and

was developed by Paysan et al. [31]. The part-based model

was shown to lead to a higher data accuracy than the global

model [38, 2].

A statistical model called the multi-linear model [42, 44,

5, 43] is employed to statistically model the varying facial

expressions. By using a multi-linear model, Vlasic et al.

[42] modelled facial shape using a combination of identity

and expression variation. Yang et al. [44] modelled the

expression of a face in a different input image of the same

subject. A number of PCA shape spaces for each expression

are built and combined with a multi-linear model. A follow-

up work [5, 43] used this model for a better description of

expressions in videos.

A hierarchical pyramids method was introduced by

Golovinskiy et al. to build a localised model [20]. In or-

der to model the geometric details in a high resolution face

mesh, this statistical model is able to describe the varying

geometric facial detail. Brunton et al. [7] described 3D fa-

cial shape variation at multiple scales using wavelet basis.

The wavelet basis provided a way to combine small signals

in local facial regions which are difficult for PCA to cap-

ture. Claes et al. [9] explored the independent effects of the

sex, genomic ancestry and genotype on facial shape varia-

tion. The experimental results showed that a set of 20 genes

has significant effects on facial shape variation.

In 2017, Booth et al. [6] built a Large Scale Facial Model

(LSFM), using the nonrigid iterative closest point template

morphing approach, as was used in the BFM, but with er-

ror pruning, followed by Generalised Procrustes Analysis

(GPA) for alignment, and PCA for the model construc-

tion. This 3DMM employs the largest 3D face dataset to

date, and is constructed from 9663 distinct facial identi-

ties. Marcel et al. [30] model the shape variations with a

Gaussian process, which they represent using the leading

components of its Karhunen-Loeve expansion. This Gaus-

sian Process Morphable Models (GPMMs) unify a variety

of non-rigid deformation models with B-splines and PCA

models as examples. In their follow-on work, they present a

novel pipeline for morphable face model construction based

on Gaussian processes [19]. GPMMs separate problem-

specific requirements from the registration algorithm by in-

corporating domain-specific adaptions as a prior model.

Tran et al. [41] proposed a framework to construct a

nonlinear 3DMM model from a large set of unconstrained

face images, without collecting 3D face scans. Specifically,

given a face image as input, a network encoder estimates

the projection, shape and texture parameters. Two decoders

served as the nonlinear 3DMM to map from the shape and

texture parameters to the 3D shape and texture, respectively.

2.2. Deep 3D Shape Modelling

Genova et al. [18] presented a method for training a re-

gression network from image pixels to 3D morphable model

coordinates, where supervised training data is not neces-

sary. Tewari et al. [40] fused a convolutional encoder with

a differentiable renderer and a self-supervised training loss

in a end-to-end training framework. Kim et al. [27] em-

ployed a deep convolutional inverse rendering framework

for faces that aimed at estimating facial pose, shape, ex-

pression, reflectance and illumination, by estimating all pa-

rameters from just a single image.
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Recently Bagautdinov et al. [1] proposed a method to

model multi-scale face geometry that learns the facial ge-

ometry using UV parameterization for mesh representation.

Tan et al. [37] employed mesh variational auto-encoders

to explore the probabilistic latent space of 3D meshes.

The training is performed on surface representation called

RIMD (Rotation Invariant Mesh Difference) rather than the

UV parameterization for the mesh. Ranjan et al. [34] in-

troduced a Convolutional Mesh Autoencoder (CoMa) con-

sisting of mesh downsampling and mesh upsampling lay-

ers with fast localised convolutional filters [17] defined on

the mesh surface. This requires remeshing the surface and

considering the triangulation relation. It is more difficult to

model the dynamic high resolution 3D meshes [8, 29] when

taking the temporal correlation into consideration.

The recent progress in 3DMM construction has a trend

in applying 3D deep learning to model the nonlinear shape

variations. Such variations are usually unable to be statisti-

cally described by traditional modelling methods. The pre-

vious methods described above need to remesh the surface,

consider connectivity relation or transfer mesh into other

geometric representations. In contrast, we propose a novel

point auto-encoder based on PointNet [33] architecture to

directly consume 3D point for statistical shape modelling.

Moreover, these deep methods stick to only shape mod-

elling.

3. Method

We propose a point auto-encoder for 3D statistical shape

and texture modelling. In the following sections, we first

describe the data preprocessing which is used for prepar-

ing the input data for the PointAE. We then formulate the

methodology of PointAE mathematically. Following this

we present the architecture of the proposed PointAE, which

is followed by a correspondence refinement block. The fol-

lowing section is used for the description of simultaneous

shape and texture modelling using PointAE. Finally, we

present the implementation detail of our method.

3.1. Data Preprocessing

The statistical modelling process is feasible if and only

if each mesh is reparametrised into a consistent form where

the number of vertices, the triangulation, and the (approxi-

mate) anatomical meaning of each vertex are made consis-

tent across all meshes. For example, given a vertex with in-

dex i in one mesh corresponding to the left mouth corner, it

is required that the vertex with the same index in every mesh

should correspond to the left mouth corner too. Meshes, ev-

ery vertex of which satisfies the above properties, are said

to be in dense correspondence with one another. We use

the template morphing method from [13] to build the dense

correspondence in Headspace dataset and the template mor-

phing method from [19] in BU3DFE dataset. Caesar dataset

provides registered scans with dense correspondence.

Once dense correspondence is established, the registered

data shares the same triangulation relationship across the

dataset. So we can take this triangulation relationship out

of the statistical modelling process and only use 3D points

for modelling. The collection of scans in dense correspon-

dence are then subjected to Generalised Procrustes Analysis

(GPA) [21] to remove similarity effects (rotation, and trans-

lation), leaving only shape information for modelling.

3.2. Problem Formulation

A global linear model such as the one of [23] represents

all possible face shapes as linear combinations in a set of

basis vectors. In [14, 15], it was obtained by performing

principal component analysis on a training database.

In this paper, the proposed PointAE consumes point

cloud directly to decompose the dataset into a latent repre-

sentation. The dense correspondence is already established

for each 3D scan. Each densely aligned 3D scan X ∈ R
n

has n points:

X = [x1,x2, · · · ,xi, · · · ,xn−1,xn], (1)

where xi indicates the i-th point, the value of which is the

3D coordinates xi = (xi, yi, zi). Formally, the point auto-

encoder can be formulated as:

L = E(X; θe), X∗ = D(L; θd) (2)

where E(.; θe) and D(.; θd) are multi-layer convolutional

encoder and decoder, parameterised by weights θe and θd
respectively, L ∈ R

k is a set of k latent parameters, and

X∗ ∈ R
n is the point cloud reconstructed from decoder,

such that ||X−X∗|| is minimised.

3.3. Point Auto­encoder

We propose a Point Auto-encoder (PointAE) to perform

statistical shape modelling directly on 3D points. As shown

in Figure 1, the input point set ∈ R
n×3 is encoded into a

latent representation which is then decoded towards 3D co-

ordinates. The main block of encoder consists of a con-

volution layer followed by batch normalisation, concatenat

layer with skip connection and a attention block based on

[22]. At end of the four main blocks, the output is max-

pooled to a flat vector, which is a compact representation

of the input 3D points. This is also called the latent vari-

ables/representations of the input data. The decoder uses

three fully connected (FC) layers to upsample the latent rep-

resentation towards 3n dimensional features, which is then

reshaped as the output point set ∈ R
n×3.

Loss Function. Since the correspondence is established

before training, we can calculate the mean per-point error
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Figure 1. The Architecture of PointAE Network for 3D statistical modelling with corresponding kernel size (K), number of feature maps

(N) and stride (S) indicated for each convolutional layer.

when minimising ||X−X∗||:

ℓ(X∗,X) =
1

n

n
∑

i=1

√

√

√

√

xyz
∑

xi∈X,x∗

i
∈X∗

(xi − x∗

i )
2 (3)

This is the key task in the proposed PointAE that is to min-

imise the distance error between xi and x∗

i .

3.4. Correspondence Refinement Block

The auto-encoder is able to denoise the data. We exploit

this property to refine the correspondence and bootstrap the

statistical modelling. As shown in Figure 2, the proposed

PointAE refine the mesh structure of the failure cases. Be-

cause the latent representation L is viewed as a lossy com-

pression of X, it can not be a good (small-loss) compres-

sion for arbitrary inputs. That is the sense in which an auto-

encoder generalizes: it gives low reconstruction error on test

examples from the same distribution as the training exam-

ples, but it generates the best reconstruction for the arbitrary

parts following this distribution. This mechanism enables

the auto-encoder to refine the correspondence. The pro-

posed PointAE forces points to follow the same distribution

regularity and refine the noisy points using the knowledge

from the training examples. The proposed correspondence

refinement block is expected to achieve two goals together:

(1) keep the same distribution regularity; (2) decrease dis-

tance error between the observation X and the reconstruc-

tion X∗.

To do this, we use Laplace-Beltrami (LB) regularised

mesh manipulation to retain the mesh structure when mov-

ing towards the 3D raw scan. Given the vertices of a

scan stored in the matrix Xinput ∈ R
n×3 and the denoised

mesh from PointAE whose vertices are stored in the ma-

trix Xdenoised ∈ R
n×3, we define the selection matrices

S1 ∈ [0, 1]m×n and S2 ∈ [0, 1]m×n as those that select the

m vertices with mutual nearest neighbours from denoised

mesh and the input scan respectively. This correspondence

refinement system can be written as:

(

λC

S1

)

Xrefined =

(

λCXdenoised

S2Xinput

)

(4)

where C ∈ R
p×p is the cotangent Laplacian approxima-

tion to the LB operator [36] and Xrefined ∈ R
p×3 are the

refined vertex positions that we wish to solve for. The pa-

rameter λ weights the relative influence of the position and

regularisation constraints, effectively determining the ‘stiff-

ness’ of the projection. As λ → 0, the projection tends

towards nearest neighbour projection. As λ → ∞, the de-

formed template will only be allowed to rigidly transform.

After correspondence refinement, the point sets can be fed

to PointAE. As shown in Figure 2, the points with better

correspondence from the bootstrapping process are fed to

PointAE.

3.5. Shape and Texture Modelling

Unlike previous methods using one other model for tex-

ture modelling, the proposed method is able to model shape

and texture simultaneously while not increasing the number

of latent parameters. To do this, we formulate n dimen-

sional input with 6 channels as:

Q = [q1,q2, · · · ,qi, · · · ,qn−1,qn], (5)

where the input Q ∈ R
n and the output Q∗ ∈ R

n have n

points with 6 channels, qi = (xi, yi, zi, ri, gi, bi) represents

the combination of 3D coordinates XYZ and texture color

RGB. So the proposed method can treat this input as a 6-

channel point set, which is normalised between [0, 1]. Then

the point auto-encoder can be formulated as:
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Figure 2. Correspondence refinement block. Note that PointAE refines the mesh structure in nose and mouth region, but it has noticeable

distance error in nose, mouth and cranium region. The correspondence refinement block significantly decreases the distance error and

retain mesh structure as rigid as possible as the X
∗.

L = E(Q; θe), Q∗ = D(L; θd) (6)

When ||Q − Q∗|| is minimised, the encoder generates

the latent variables to compactly represent both shape and

texture. However, the standard method–PCA needs to flat

the input as 6n dimensional input.

Loss Function. For the 3D coordinates xyz, we can

calculate the mean per-point error, while we employ root

mean square error (RMSE) for texture reconstruction loss.

To minimise ||Q−Q∗||, we can combine the mean per-point

error and RMSE as the loss function:

ℓst(Q∗,Q) = ℓ(Q∗

xyz,Qxyz)+RMSE(Q∗

rgb,Qrgb) (7)

So the proposed PointAE can statistically model the 3D

shape and texture simultaneously.

3.6. Implementation Details

PointAE. The Architecture of PointAE network is

shown in Figure 1 with corresponding kernel size (K), num-

ber of feature maps (N) and stride (S) indicated for each

convolutional layer. For the encoder, the structure is as fol-

lows: (1) K[1,3] N64 S[1,1], (2) K[1,1] N64 S[1,1], (3)

K[1,1] N64 S[1,1], (4) K[1,1] N256 S[1,1] and (5) K[1,1]

N1024 S[1,1]. The 1024 features are concatenated with 256

features from the skip connection. The merged 1280 fea-

tures are maxpooled to a latent space, which has 1280 latent

variables/representations. For the FC decoder, the structure

is as follows: (1) N1024, (2) N1024 and (3) N 3n. The final

layer reshape the 3n dimensional features into n× 3 points,

which is the reconstruction.

Training. We trained the model in DGX1 machine using

the following settings: batch size is 64, 2001 epochs, and

the learning rate starts at 0.001. We used the adam optimiser

and λ = 1.

4. Experimental Results

We evaluate the proposed method in three open datasets:

BU3DFE, Headspace and Caesar, which are face, full

head and body dataset. We compare the proposed method

with both standard method and deep methods. Note that

among the deep methods for comparison, the proposed

method is the only one which consume 3D point directly

without transferring mesh into other geometric representa-

tions/features or remeshing the surface. We evaluate the

proposed method qualitatively and quantitatively.

4.1. Evaluation Metric

The accuracy is evaluated by the Normalized Mean Error

(NME), that is the average of per-vertex distance error nor-

malized by the size of the 3D mesh. After the mesh is pose

normalised, the size can be defined as the maximum value

of length (l), width (w) and height (h) as demonstrated in

Figure 3. So the NME can be formulated as:

NME(X∗,X) =
1

n×max(l, w, h)
ℓ(X∗,X) (8)
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Figure 3. Demonstration of length (l), width (w) and height (h) in

3D mesh.

Figure 4. Reconstruction results with error map: (1) input data;

(2)w/o b1&b2; (3) w/o b1; (4) w/o b2 and (5) proposed method.

Figure 5. Reconstruction results with error map on BU3DFE

dataset: (1) and (2) input data, results from Compositional VAE

and results from the proposed method.

4.2. Ablation Study

Following the setting in [14], we evaluate the function

of each component such as skip connection (b1) and atten-

Figure 6. Reconstruction results with error map on Headspace

dataset: (1) and (2) input data; reconstruction from PCA; (3)pro-

posed method.

Figure 7. Reconstruction results with error map on Caesar dataset

from frontal view and top view: (1) input data; (2) PCA; (3)pro-

posed method.

# of L w/o b w/o b1 w/o b2 p1 p2

128 0.0612 0.0537 0.0271 0.0202 0.0168

256 0.0581 0.0517 0.0249 0.0163 0.0143

512 0.0540 0.0487 0.0225 0.0124 0.0095

1024 0.0501 0.0438 0.0196 0.0107 0.0083
Table 1. Normalized mean error on held-out shapes with different

latent dimension.

tion block (b2) in terms of reconstruction error. We use

80% of Headspace dataset for training and 20% for testing.

We compute the normalised average per-vertex distance er-

ror for quantitative evaluation. Figure 4 demonstrates the

reconstruction results along with error for the proposed

method without (w/o) b1 and b2, without b1, without b2,

the proposed method without correspondence refinement

(p1) and the proposed method (p2). As shown in Table 1,

the skip connection and attention block have significant im-

provement in the proposed method. In particular, the skip

connection has more influence in the proposed method than

the attention block. When comparing p1 and p2, p2 obtains

less reconstruction error across all the number of the latent

variables, which implies that the correspondence refinement

block enhanced the shape representation ability.
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Figure 8. Shape variations from the mean to mean + and - 3 standard deviations of top eight elements for the latent representations in

Headspace dataset.

Figure 9. Shape interpolation to describe the ability of compress-

ing expression: 1st row–PCA, 2nd row–proposed method.

4.3. Representation Power

To quantify the representation power of the statistical

modelling methods, we calculate the normalised average

per-vertex distance error on held-out shapes with different

latent dimension. We compare the proposed method with

PCA, MeshVAE [37] and Compositional VAE [1] in three

types of open-sourced datasets: BU3DFE [45], Headspace

[14, 35] and Caesar [32]. We use 80% of the dataset for

training and 20% for testing.

Face. BU3DFE includes 100 subjects with 2500 fa-

cial expression models. Each subject contains one neutral

and six expressions with four levels of strength. As can

be seen from Figure 5, the reconstruction results with er-

ror map shows that for the two unseen examples, the pro-

posed method has less reconstruction error, especially in

chin, cheek and forehead region. Table 2 demonstrates

the normalised average per-vertex distance error on held-

out shapes with different latent dimension in BU3DFE.

The proposed method achieves the best performance across

all the number of latent variables. The reason why pro-

posed method is better than Compositional VAE [1] is that

PointAE is directly applied to 3D points and Compositional

VAE [1] is to 2D UV representation of mesh.

Head. The Headspace dataset is a set of 3D images of

the human head, consisting of 1519 subjects wearing tight

fitting latex caps to reduce the effect of hairstyles. Figure 6

shows the reconstruction results with error map. For the two

# of L PCA [13] [1] Proposed

128 0.0311 0.0222 0.0178

256 0.0258 0.0174 0.0147

512 0.0213 0.0120 0.0096

1024 0.0187 0.0104 0.0074
Table 2. Normalized mean error on held-out shapes with different

latent dimension in BU3DFE.

# of L PCA [14] [1] proposed

128 0.0334 0.0194 0.0168

256 0.0286 0.0154 0.0143

512 0.0249 0.0124 0.0095

1024 0.0187 0.0103 0.0083
Table 3. Normalized mean error on held-out shapes with different

latent dimension in Headspace.

unseen shapes, the reconstruction of the proposed method is

closer to the input data. In particular, the proposed method

is able to capture the shape detail, for example, the wrinkles

around mouth. Table 3 demonstrates the normalised aver-

age per-vertex distance error on held-out shapes with differ-

ent latent dimension in Headspace. The proposed method

obtains a slight improvement than Compositional VAE [1].

More significant improvement exists when compared with

PCA [14] in Headspace. This lies in the fact that nonlinear

variations are captured in the five main blocks of decoder

in PointAE, while the nonlinear variations are easy to be

filtered out by PCA.

Body. Caesar has 4309 full body registered scans with

large variations in age distribution, weight and height,

which makes it challenging to model the shape variation.

In Figure 5, MeshVAE [37] shows a incorrect head pose

and thinner chest, while the proposed method has less error

across the whole body. As can be seen from Table 4, we

compute the normalised average per-vertex distance error

on held-out shapes with different latent dimension in Cae-

sar. The proposed method obtains the lowest per-vertex re-

construction error on held-out shapes across all the choices
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Figure 10. Texture and shape variations from the mean to mean + and - 3 standard deviations of top eight elements for the latent represen-

tations in Headspace dataset.

Figure 11. Two unseen examples reconstructed by shape&texture

model: the re-scaled per-vertex reconstruction error for the first

and second examples are 1.97 mm and 2.42 mm; The re-scaled ([0

255]) texture RMSE is 2.68 and 3.12.

# of L PCA [32] MeshVAE [37] proposed

128 0.0735 0.0548 0.0503

256 0.0648 0.0511 0.0459

512 0.0581 0.0448 0.0409

1024 0.0513 0.0405 0.0378
Table 4. Normalized mean error on held-out shapes with different

latent dimension in Caesar.

of the number of latent variables. This has larger error than

face and head modelling because of body size.

4.4. Morphable Models

We can build the shape model and texture model simul-

taneously with the proposed method. After reconstruction,

we need to re-scale the 3D coordinates back from [0 1].

Since Headspace released both 3D shape and texture data,

we use the proposed method to model both shape and tex-

ture variation in this dataset.

Shape model. We explore the learned latent represen-

tations by visualising the top eight components. We first

encode all training samples (both shape and texture) in the

latent space via the trained encoder. We compute the mean

and the mean + and − 3 standard deviations of top eight

components of the latent representation. We then perturb

each element of the latent vector with the amount of pertur-

bation equal to the corresponding standard deviation, and

use the decoder to transform the perturbed latent vector to

a reconstructed sample. As can be seen from Figure 8, the

first dominate latent variables show shape variation reflect-

ing the gender, while the second one demonstrates age cor-

related shape variation. With less dominate latent variables,

the shape variations become smaller and smaller. We use

shape interpolation from one expression to another for de-

scribing the ability of compressing expression. In Figure 9,

the proposed method presents a more smooth shape inter-

polation than PCA model.

Shape&Texture model. We select the top eight ele-

ments for the latent representations. From the joint learn-

ing of shape and texture, we can view both the texture and

shape variations together. the shape model the shape for vi-

sualisation of the texture model. As shown in Figure 10, it

shows texture and shape variations from the mean to mean +

and - 3 standard deviations of top eight elements for the la-

tent representations. The first dominant texture variation is

mainly from white to dark and the second is from young to

old which has some moustache. Figure 11 demonstrates two

unseen examples reconstructed by shape&texture model.

The re-scaled per-vertex reconstruction error for the first

and second examples are 1.97 mm and 2.42 mm. The re-

scaled ([0 255]) texture RMSE is 2.68 and 3.12.

5. Conclusion

We proposed a PointAE to simultaneously perform 3D

shape and texture statistical modelling directly on 3D points

and texture. The proposed PointAE achieved lower re-

construction error compared with the state-of-art methods.

The 3D models constructed by the proposed method are

more powerful in shape representation ability. The pro-

posed PointAE has the ability to refine the correspondence

with the proposed correspondence refinement block. The

one shot bootstrapping enhanced the representation ability

of the constructed 3D models.
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ter. Morphable face models - an open framework. CoRR,

abs/1709.08398, 2017. 2, 3

[20] Aleksey Golovinskiy, Wojciech Matusik, Hanspeter Pfister,

Szymon Rusinkiewicz, and Thomas Funkhouser. A statisti-

cal model for synthesis of detailed facial geometry. In ACM

Transactions on Graphics (TOG), volume 25, pages 1025–

1034, 2006. 2

[21] Colin Goodall. Procrustes methods in the statistical analysis

of shape. Journal of the Royal Statistical Society. Series B

(Methodological), pages 285–339, 1991. 3

[22] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-

works. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 7132–7141, 2018. 3

[23] IEEE. A 3D Face Model for Pose and Illumination Invariant

Face Recognition, Genova, Italy, 2009. 3

[24] Ioannis A Kakadiaris, Dimitri Metaxas, and Ruzena Bajcsy.

Active part-decomposition, shape, and motion estimation of

articulated objects: A physics-based approach. In CVPR,

volume 94, pages 980–984, 1994. 2

[25] Michael Kass, Andrew Witkin, and Demetri Terzopoulos.

Snakes: Active contour models. International journal of

computer vision, 1(4):321–331, 1988. 2

[26] David G Kendall. A survey of the statistical theory of shape.

Statistical Science, pages 87–99, 1989. 1

[27] Hyeongwoo Kim, Michael Zollhöfer, Ayush Tewari, Justus
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